AP Biology. The four big ideas are:



Similar documents
AP Biology Essential Knowledge Student Diagnostic

AP Biology Syllabus

Central High School DC Angelo State University BIO 1481 Principles of Biology I Spring 2016

Biology AP Edition - Campbell & Reece (8th Edition)

Essentials of Human Anatomy & Physiology 11 th Edition, 2015 Marieb

MCAS Biology. Review Packet

Unit I: Introduction To Scientific Processes

Mississippi SATP Biology I Student Review Guide

AP Biology: Sample Syllabus 1

College Biology Course Syllabus

BIOLOGY 101 COURSE SYLLABUS FOR FALL 2015

A CONTENT STANDARD IS NOT MET UNLESS APPLICABLE CHARACTERISTICS OF SCIENCE ARE ALSO ADDRESSED AT THE SAME TIME.

Honors Biology Course Summary Department: Science

STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE. BIOL 101 Introduction to Biology

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

A Correlation of Pearson Miller & Levine Biology 2014 To the Utah Core State Standards for Biology Grades 9-12

CURRICULUM MAP (Revised )

AP Biology Course Syllabus

A Correlation of Miller & Levine Biology 2014

AP Biology Syllabus

Student Text and E-Book ISBN:

Cellular Respiration: Practice Questions #1

1. The diagram below represents a biological process

General Biology. Course Description and Philosophy

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z.

Understanding by Design. Title: BIOLOGY/LAB. Established Goal(s) / Content Standard(s): Essential Question(s) Understanding(s):

Endocrine System: Practice Questions #1

Course Textbook: Campbell & Reece, et al, AP Edition Biology 7th Edition, Pearson Benjamin Cummings, 2005

AP Biology Unit I: Ecological Interactions

Study Partner/Essential Study Partner (ESP):

Cells & Cell Organelles

XII. Biology, Grade 10

Topic 3: Nutrition, Photosynthesis, and Respiration

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A.

Cellular Energy. 1. Photosynthesis is carried out by which of the following?

Campbell Biology in Focus Correlation for AP Biology Curriculum Framework

Cell and Membrane Practice. A. chromosome B. gene C. mitochondrion D. vacuole

How To Understand The Human Body

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage?

AP Biology 2015 Free-Response Questions

Campbell Biology 9 th Edition, 2011 AP Edition

The Origin of Life. The Origin of Life. Reconstructing the history of life: What features define living systems?

Quick Hit Activity Using UIL Science Contests For Formative and Summative Assessments of Pre-AP and AP Biology Students

South Texas College Biology Department Section Outline

High School Science Course Correlations between Ohio s 2010 Course Syllabi and the First Draft of the High School NGSS

Biology. EL indicates a goal that supports the Maryland Environmental Literacy Standards.

INSTRUCTIONAL MATERIALS ADOPTION Score Sheet I. Generic Evaluation Criteria II. Instructional Content Analysis III. Specific Science Criteria

AP Biology. Course Planning and Pacing Guide 1. Teresa Massey. Elizabeth Andrews High School Stone Mountain, Georgia

pathway that involves taking in heat from the environment at each step. C.

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water

SCIENCE. Introducing updated Cambridge International AS & A Level syllabuses for. Biology 9700 Chemistry 9701 Physics 9702

Prentice Hall Biology (Miller/Levine) 2008 Correlated to: Colorado Science Standards and Benchmarks (Grades 9-12)

Biology: Foundation Edition Miller/Levine 2010

GENE REGULATION. Teacher Packet

Reproductive System & Development: Practice Questions #1

Structure and Function of DNA

Comprehensive Lab Kits & Digital Curriculum for Online Learners

An Overview of Cells and Cell Research

Page 1. Name: 4) The diagram below represents a beaker containing a solution of various molecules involved in digestion.

Visualizing Cell Processes

tissues are made of cells that work together, organs are )

Smart Science Lessons and Middle School Next Generation Science Standards

AS Biology Unit 2 Key Terms and Definitions. Make sure you use these terms when answering exam questions!

Organic Compounds. Essential Questions: What is Organic? What are the 4 major Organic Compounds? How are they made? What are they used for?

10.1 The function of Digestion pg. 402

COURSE TITLE COURSE DESCRIPTION

Scope and Sequence Interactive Science grades 6-8

Cell Biology Questions and Learning Objectives

Carbon-organic Compounds

Cell Unit Practice Test #1

CPO Science and the NGSS

Pores and pumps: facilitated diffusion, active transport, cotransport

Page 1. Name:

Chapter 2: Cell Structure and Function pg

BIOLOGY 3: Introduction to Biology Sections 0108 and 0109

Biology 1107 & 1108 Handbook. Spring 2010 Created by Tom Abbott, Faculty Coordinator Biology University of Connecticut

Johnson State College External Degree Program. BIO-1210-JY01 Introduction to Biology Syllabus Spring 2015

The Molecules of Cells

Biology Final Exam Study Guide: Semester 2

Chapter 5: The Structure and Function of Large Biological Molecules

Bob Jesberg. Boston, MA April 3, 2014

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure enzymes control cell chemistry ( metabolism )

Anatomy and Physiology Placement Exam 2 Practice with Answers at End!

SCIENCE. The Wayzata School District requires students to take 8 credits in science.

Homeostasis and Transport Module A Anchor 4

Biochemistry. Entrance Requirements. Requirements for Honours Programs. 148 Bishop s University 2015/2016

MULTIPLE CHOICE QUESTIONS

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet

The Steps. 1. Transcription. 2. Transferal. 3. Translation

This package cannot be substituted with other materials.

Fair Lawn. Public Schools. Biology CP & Academic. Science Department. Fair Lawn, NJ. August. Biology Ac & CP 1

Basic Scientific Principles that All Students Should Know Upon Entering Medical and Dental School at McGill

Biochemistry of Cells

COURSE SYLLABUS BIOL 1010 Introduction to Biology I (4)

Introduction to the Cell: Plant and Animal Cells

Principles of Evolution - Origin of Species

The Molecules of Life - Overview. The Molecules of Life. The Molecules of Life. The Molecules of Life

MASTER OF SCIENCE IN BIOLOGY

Transcription:

AP Biology Course Overview: This course is an intensive study in biological concepts that emphasizes inquiry based learning. It is structured around the four Big Ideas and the Enduring Understandings that are identified in the Curriculum Framework. Students will become the directors of their own learning as they plan and implement multiple investigations. Science is a never ending process with every investigation leading to another. Inquiry allows students to experience this process while making connections across the four big ideas and building a solid scientific foundation of knowledge and experience. The four big ideas are: 1. The process of evolution drives the diversity and unity of life. 2. Biological systems utilize free energy and molecular building blocks to grow, to reproduce, and to maintain dynamic homeostasis. 3. Living systems store, retrieve, transmit, and respond to information essential to life processes. 4. Biological systems interact, and these systems and their interactions possess complex properties. AP Biology is available to Juniors and Seniors as a science elective. The class meets 4 days a week for 48 minutes and 1 day per week for a double lab period of 96 minutes. All students must have completed an introductory biology class and completed or concurrently taking chemistry. At least 25% of instructional time is devoted to laboratory work that incorporates at least two labs for each of the four big ideas. Additional lab work will be completed to deepen students understanding and application of concepts taught throughout the class. The laboratory investigations used will allow students to work with and practice the seven Science Practices as defined in the Curriculum Framework. Laboratory work will be documented in a laboratory book, and presented in a various forms such as formal lab reports, group and individual presentations, and abstracts. Seven 1. The student can use representations and modes to communicate scientific phenomena and solve scientific problems. 2. The student can use mathematics appropriately. 3. The student can engage in scientific questioning to extend thinking or to guide investigations within the context of the AP course. 4. The student can plan and implement data collection strategies appropriate to a particular scientific question. 5. The student can perform data analysis and evaluation of evidence. 6. The student can work with scientific explanations and theories. 7. The student is able to connect and relate knowledge across various scales, concepts and representations in and across domains. Instructional Resources Reece, Jane, et al., Campbell Biology, 9 th edition, 2011, Pearson Benjamin Cummings. Ancillary material for Campbell Biology 9 th edition

www.campbellbiology.com (This website accompanies the main text with an e-book, animations, presentations, investigations, and other accompaniments.) AP Biology Investigative Labs: an Inquiry Based Approach. Your Inner Fish. Shubin, Neil (All students must read and complete a written assignment prior to the evolution unit of class.) Units of Instruction The big ideas are not taught as separate ideas but are intertwined throughout the unit. Students are given guided reading questions to accompany all text and journal readings that are required throughout the year. Journal articles are given at various times during the year to expand on classroom discussion topics and new innovations within various fields of study. Both formal and informal assessments are given on a regular basis. These assessments include end of unit exams, free response essays, quizzes, discussions, and projects. Unit 1: Nature of Science Timeframe: 4 days with 1 lab period Text Correlations: Campbell - Chapters 1, 2, and 3 2D Growth and dynamic homeostasis of a biological system are influenced by changes in the system s environment. 2E Many biological processes involved in growth, reproduction and dynamic homeostasis include temporal regulation and coordination. 4B Competition and cooperation are important aspects of biological systems. Discuss how biology is multidisciplinary. Introduction to inquiry based learning and how to set up and use lab books in the classroom. Scientific design of experiments. Basic chemistry review that includes structures of atoms and bonding properties. AP Lab #12: Animal Behavior (Big Idea #4: Interactions with a connection to Big Idea #2) Using molecular models to show various bonding. Use of sponges to show dehydration synthesis and hydrolysis. 1.3 The student can refine representations and models of natural or manmade phenomena and systems in the domain. 3.2 The student can refine scientific questions. 4.2 The student can design a plan for collecting data to answer a particular scientific question. 5.1 The student can analyze data to identify patterns or relationships. 6.1 The student can justify claims with evidence. 7.2 The student can connect concepts in and across domains to generalize or extrapolate in and/or across enduring understandings and/or big ideas.

Unit 2: Molecules Timeframe: 12 days with 2 lab periods. Text Correlations: Campbell - Chapters 4, 5, 8 2A Growth, reproduction, and maintenance of the organization of living systems require free energy and matter. 2D Growth and dynamic homeostasis of a biological system are influenced by changes in the system s environment. 4B Competition and cooperation are important aspects of biological systems. Life is dependent on water s emergent properties. The cycling of materials, such as Carbon and Nitrogen, are necessary for life. Carbon is the backbone of life, and the study of carbon compounds is organic chemistry. The function of carbohydrates, lipids, proteins, and nucleic acids are related to their structure and are constant across multiple domains. Organisms are subject to the laws of thermodynamics. ATP and its function within the cell. Enzyme function and structure. Metabolic pathways are conserved across all currently recognized domains. Digesting various macromolecules in humans via student created puzzle that shows digestion in multiple domains. Building functional groups using molecular models. Creating a student protein chain in which each student picks up multiple amino acid properties and shows how the properties interact with each other. Using pipe cleaners and beads to show protein folding. AP Lab #13: Enzyme Activities (Big Idea #4: Interactions with a connection to Big Idea #2) 4.2 The student can design a plan for collecting data to answer a particular scientific question. 5.1 The student can analyze data to identify patterns or relationships. 6.1 The student can justify claims with evidence. 6.4 The student can make claims and predictions about natural phenomena based on scientific theories and models. 7.2 The student can connect concepts in and across domains to generalize or extrapolate in and/or across enduring understandings and/or big ideas.

Unit 3: Cells and Membranes Timeframe: 15 days with 3 lab periods Text Correlations: Campbell - Chapters 6, 7, 11, 12 2B Growth, reproduction and dynamic homeostasis require that cells create and maintain internal environments that are different from their external environments. 2E Many biological processes involved in growth, reproduction and dynamic homeostasis include temporal regulation and coordination. 3D Cells communicate by generating, transmitting and receiving chemical signals. A tour of the various structures within a cell and their functions. Prokaryotic and eukaryotic cells differ and can be seen in structural evidences. Surface area-to-volume ratios affect the ability to obtain resources or remove wastes. Cell membranes are selectively permeable due to their structure. Molecules are able to move across membranes using various transportation methods that include passive and active transport mechanisms. The cell cycle shows the process of growth and reproduction of cells. Internal and external influences can affect the control of the cell cycle. Cell division in prokaryotic and eukaryotic organisms. Build a membrane activity. Students use pasta, pipe cleaners, cotton balls, and various other materials to create a model of a membrane. AP Lab #4: Diffusion and Osmosis (Big Idea #2: Cellular Processes) Cell size races Students will design a cell out of agar and then race against other students to determine which cell is able to diffuse material the fastest. Cell to cell communication activity with dialysis tubing, starch, and sugar solutions. Students use pictures of cells in mitotic division to calculate approximate percent of time spent in each part of the cell cycle. 4.2 The student can design a plan for collecting data to answer a particular scientific question. 4.3 The student can collect data to answer a particular scientific question. 4.4 The student can evaluate sources of data to answer a particular scientific question. 5.1 The student can analyze data to identify patterns or relationships. 5.2 The student can refine observations and measurements based on data analysis.

Unit 4: Cellular Energetics Timeframe: 10 days with 2 lab periods Text Correlations: Campbell - Chapters 9, 10 1B Organisms are linked by lines of descent from common ancestry. 2A Growth, reproduction, and maintenance of the organization of living systems require free energy and matter. 2B Growth, reproduction and dynamic homeostasis require that cells create and maintain internal environments that are different from their external environments. 4A Interactions within biological systems lead to complex problems. Autotrophs capture free energy from physical sources in their environment, which is then transformed into organic molecules through the complex process of photosynthesis. Heterotrophs capture free energy from carbon compounds found in other living organisms, by transforming the carbon compounds into energy using complex biochemical pathways. AP Lab #5: Photosynthesis (Big Idea #2: Cellular Processes with a connection to Big Idea #1 and #4) AP Lab #6: Cellular Respiration (Big Idea #2: Cellular Processes with connections to Big Idea #1 and #4) 1.4 The student can use representations and models to analyze situations or solve problems qualitatively and quantitatively. 3.1 The student can pose scientific questions. 6.1 The student can justify claims with evidence. 6.2 The student can construct explanations of phenomena based on evidence produced through scientific practices 7.2 The student can connect concepts in and across domains to generalize or extrapolate in and/or across enduring understandings and/or big ideas.

Unit 5: Heredity Timeframe: 12 days with 2 lab periods Text Correlations: Campbell - Chapters 13, 14, 15 1A Change in the genetic makeup of a population over time is evolution. 1C Life continues to evolve within a changing environment. 2E Many biological processes involved in growth, reproduction and dynamic homeostasis include temporal regulation and control. 3A Heritable information provides for continuity of life. 3B Expression of genetic information involves cellular and molecular mechanisms. 3C The processing of genetic information is imperfect and is a source of genetic variation. Meiosis and the flow of genetic information. Genetics concepts and Inheritance patterns Genes and chromosomes Environmental influences can act as a selective force in populations. Phenotypic variations occur through mutations in DNA and impact the fitness of the organism and the population. Causes of genetic disorders Simulating meiosis using beads. AP Lab #2: Mathematical Modeling: Hardy-Weinberg (Big Idea #1:Evolution) Genetic problems Corn genetics lab: Students count a dihybrid and monohybrid cross then complete a chi-square analysis. M&M Chi-square analysis Crossing over in Sordaria Student presentations of genetic disorders. 1.5 The student can reexpress key elements of natural phenomena across multiple representations in the domain. 5.3 The student can evaluate the evidence provided by data sets in relation to a particular scientific question. 7.1 The student can connect phenomena and models across spatial and temporal scales.

Unit 6: Molecular Genetics Timeframe: 24 days with 4 lab periods Text Correlations: Campbell - Chapters 16, 17, 18, 19, 20, 21 1A Change in the genetic makeup of a population over time is evolution. 1C Life continues to evolve within a changing environment. 2C Organisms use feedback mechanisms to regulate growth and reproduction, and to maintain dynamic homeostasis. 2E Many biological processes involved in growth, reproduction and dynamic homeostasis include temporal regulation and coordination. 3A Heritable information provides for continuity of life. 3B Expression of genetic information involves cellular and molecular mechanisms. 3C The processing of genetic information is imperfect and is a source of genetic variation. Structure and function of DNA and RNA DNA is the genetic material proved through experiments. DNA replication, transcription and translation. Mutations and gene expression Viral structure and activity DNA technology including operons, gel electrophoresis, PCR, etc. DNA replication, transcription, and translation paper cut out activity. Restriction enzymes paper exercise AP Lab #9: Restriction Enzyme Analysis of DNA (Big Idea #3: Genetics and Information Transfer with connections to Big Idea #1)modified using Bio-Rad s restriction analysis of DNA experiment AP Lab #8: Bacterial Transformation (Big Idea #3: Genetics and Information Transfer with connections to Big Idea #1 ) modified using Bio-Rad s pglo experiment Viral Art students create their own virus then draw their virus in the lytic cycle. 3.1 The student can pose scientific questions. 5.3 The student can evaluate the evidence provided by data sets in relation to a particular scientific question. 6.4 The student can make claims and predictions about natural phenomena based on scientific theories and models. 7.1 The student can connect phenomena and models across spatial and temporal scales.

Unit 7: Evolution Timeframe: 15 days with 3 lab periods Text Correlations: Campbell - 21, 22, 23, 24, 25, 26, 1A Change in the genetic makeup of a population over time is evolution. 1B Organisms are linked by lines of descent from common ancestry. 1C Life continues to evolve within a changing environment. 1D The origin of living systems is explained by natural processes. 3A Heritable information provides for continuity of life. 3C The processing of genetic information is imperfect and is a source of genetic variation. Early evolution of life including endosymbiosis Theory of Natural Selection Evidences of evolution including the fossil record, comparative anatomy and embryology, molecular biology, nd taxonomy Mechanisms of evolution including genetic drift, founder effect, bottleneck effect, microevolution verses macroevolution, convergent and divergent evolution, and barriers of isolation Diversity within life Your Inner Fish discussion AP Lab #3: Blast (Big Idea #1: Evolution) Cartoon activity: Snapshots in Time: students attempt to put in order a mixed fairy tale and create a story to go with the pictures. Revisiting Hardy-Weinberg and AP lab #2 looking at these mechanisms of evolution how can we modify the data sets to show various scenarios? Examining the fossil record in which students create a time line Making cladograms an ENSI lesson plan Molecular Biology and Phylogeny (cytochrome C) an ENSI lesson plan Students will look at the kingdoms of life and find commonalities and differences among the kingdoms. They will also look at the general characteristics of the kingdoms of life. Video What Darwin Never Knew 1.1 The student can create representations and models of natural or manmade phenomena and systems in the domain. 1.2 The student can describe representations and models of natural or manmade phenomena and systems in the domain. 3.3 The student can evaluate scientific questions. 5.1 The student can analyze data to identify patterns or relationships. 6.4 The student can make claims and predictions about natural phenomena based on scientific theories and models. 7.1 The student can connect phenomena and models across spatial and temporal scales.

Unit 8: Structure and Function of Living Organisms Timeframe: 35 days with 6 lab periods Text Correlations: Campbell - 35, 36, 39, 40, 43, 47, 48, 49 (with example from Ch. 35-51) 1A Change in the genetic makeup of a population over time is evolution. 1B Organisms are linked by lines of descent from common ancestry. 2A Growth, reproduction, and maintenance of the organization of living systems require free energy and matter. 2B Growth, reproduction and dynamic homeostasis require that cells create and maintain internal environments that are different from their external environments. 2C Organisms use feedback mechanisms to regulate growth and reproduction, and to maintain dynamic homeostasis. 2D Growth and dynamic homeostasis of a biological system are influenced by changes in the system s environment. 3E Transmission of information results in changes within and between biological systems. Discussion of how plants grow including structures of plants. Tropisms in plants Signal transductions in plants and animals Feedback loops in animals Structure determines function looking at examples throughout kingdoms Immune System structure and function Nervous System structure and function Looking a reproduction and development throughout kingdoms. Stem cells and research Flower dissection AP Lab #11: Transpiration (Big Idea #4: Interactions with connections to Big Ideas #1 and #2) Growing monocot and dicots (Baby Book of Plants) Looking at Stomata in various plant leaves using clear nail polish and microscopes. Students make predictions about where they expect to find more stomata and why, then collect leaves and find out. Student created posters about various feedback loops that occur in animals Circulatory system lab blood pressure Lights, Camera, Action Potential activity to simulate movement in neurons Student directed and created plays on immune responses where students work to create the play, cast it, and then performs in class. Brain cap activity students draw a brain onto a swim cap then label the various sections Chicken Wing dissection looking at structures within the chicken wing and how they function. Short research presentation on various aspects of stem cells and new research.

1.4 The student can use representations and models to analyze situations or solve problems qualitatively and quantitatively. 4.1 The student can justify the selection of the kind of data needed to answer a particular scientific question. 6.4 The student can make claims and predictions about natural phenomena based on scientific theories and models. 7.1 The student can connect phenomena and models across spatial and temporal scales.

Unit 9: Ecology Timeframe: 20 days with 4 lab periods Text Correlations: Campbell - 52, 53, 54, 55, 56 1A Change in the genetic makeup of a population over time is evolution. 1B Organisms are linked by lines of descent from common ancestry. 1C Life continues to evolve within a changing environment. 1D The origin of living systems is explained by natural processes. 3A Heritable information provides for continuity of life. 3C The processing of genetic information is imperfect and is a source of genetic variation. Animal Behavior Population ecology Succession in nature Ecosystems Cycling in Nature Conservation AP Lab #12 : Fruit Fly Behavior (Big Idea #4: Interactions with connections to Big Idea #2) Dissolved oxygen and Primary Productivity old AP lab #12 Graphing growth curves and analyzing them. Animated investigation from Campbell Biology chapter 31: How Does the Fungus Pilobolous Succeed as a Decomposer Animated investigation from Campbell Biology chapter 52: How do Abiotic Factors Affect Distribution of Organisms? Biome brochures Students create a brochure that highlights a specific biome, the brochure must include facts about the biome, issues and fixes, conservation, must include cited data from research. 1.3 The student can refine representations and models of natural or manmade phenomena and systems in the domain. 3.2 The student can refine scientific questions. 4.2 The student can design a plan for collecting data to answer a particular scientific question. 5.1 The student can analyze data to identify patterns or relationships. 6.1 The student can justify claims with evidence. 7.2 The student can connect concepts in and across domains to generalize or extrapolate in and/or across enduring understandings and/or big ideas.