Simulation of Indirect Field-Oriented Induction Motor Drive System Using Matlab/Simulink Software Package



Similar documents
INDUCTION MOTOR MODELLING FOR VECTOR CONTROL PURPOSES

COMPARISON OF SCALAR AND VECTOR CONTROL STRATEGIES OF INDUCTION MOTORS

Chapter 30: Magnetic Fields Due to Currents

Space Vector Modulated Direct Torque Controlled (DTC SVM) Inverter Fed Induction Motor Drive

Small Hydropower Plant with variable speed PM generator

Worked Examples. v max =?

Modelling and simulation of a signal injection self-sensored drive

Experimental DTC of an Induction Motor Applied to Optimize a Tracking System

Parameter Identification of DC Motors

Mechanics 1: Motion in a Central Force Field

Effect of Unemployment Insurance Tax On Wages and Employment: A Partial Equilibrium Analysis

Ph.D. in Electrical Engineering XXV Cycle

Description: Conceptual questions about projectile motion and some easy calculations. (uses applets)

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

Standardized Coefficients

Optimizing Supply Chain Collaboration Based on Negotiation and Bargain Power for Single Retailer And Single Supplier

Mathematical Modelling of PMSM Vector Control System Based on SVPWM with PI Controller Using MATLAB

Application Note, V1.0, July 2006 AP16097 XC164. Different PWM Waveforms Generation for 3-Phase AC Induction Motor with XC164CS.

Simulation of Sensorless Speed Control of Induction Motor Using APFO Technique

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Analysis of Variable Frequency Three Phase Induction Motor Drive

Lecture 14: Transformers. Ideal Transformers

Forces & Magnetic Dipoles. r r τ = μ B r

Lecture 15: Transformer Shunt Inductance. Tuned Transformers.

THESIS Roland Tóth 2004

Chapter 13 Fluids. Use the definition of density to express the mass of the gold sphere: The mass of the copper sphere is given by:

AP Physics Electromagnetic Wrap Up

On Efficiently Updating Singular Value Decomposition Based Reduced Order Models

Solutions to Problems: Chapter 7

Design of Model Reference Self Tuning Mechanism for PID like Fuzzy Controller

Application Note. 8-bit Microcontrollers. AVR494: AC Induction Motor Control Using the constant V/f Principle and a Natural PWM Algorithm

PHYSICS 151 Notes for Online Lecture #11

Figure 1. Universal Hydraulic Testing Machine

Doppler Effect. wavelength

10. Collisions. Before During After

Deflection of Electrons by Electric and Magnetic Fields

Three Phase Theory - Professor J R Lucas

Delft. Matlab and Simulink for Modeling and Control. Robert Babuška and Stefano Stramigioli. November 1999

SOLUTIONS TO CONCEPTS CHAPTER 16

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Model Question Paper Mathematics Class XII

Ladar-Based Detection and Tracking of Moving Objects from a Ground Vehicle at High Speeds

Design of The Feedback Controller (PID Controller) for The Buck Boost Converter

Techniques for Robotic Force Sensor Calibration

HADNOUT E.13 - EXAMPLES ON TRANSFER FUNCTIONS, POLES AND ZEROS

Solution Derivations for Capa #8

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.

Gross Trade Accounting, Cross Country Production Sharing and Global Value-Chain

MECH Statics & Dynamics

Design of Wind Energy System on the Building Tower Applications

THE PRINCIPLE OF THE ACTIVE JMC SCATTERER. Seppo Uosukainen

Two Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL

Effect of Unbalance Voltage on the Operation and Performance of a Three Phase Distribution Transformers

Exam 3: Equation Summary

4a 4ab b (count number of places from first non-zero digit to

Bob York. Simple FET DC Bias Circuits

The Virtual Spring Mass System

DYNAMIC MODEL OF INDUCTION MOTORS FOR VECTOR CONTROL. Dal Y. Ohm Drivetech, Inc., Blacksburg, Virginia

Using Model Checking to Analyze Network Vulnerabilities

ELECTRİC DRİVE SYSTEMS AND MATLAB APPLICATIONS

Module 8. Three-phase Induction Motor. Version 2 EE IIT, Kharagpur

Solution of the Heat Equation for transient conduction by LaPlace Transform

Purchase and rental subsidies in durable-good oligopolies* 1

12. Rolling, Torque, and Angular Momentum

1D STEADY STATE HEAT

The Essence of the Electromagnetic Wave is Not Energy

Decision-Driven Fixed Income Attribution

Scal abil it y of ANSYS 16 applicat ions and Hardware select ion.

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t

Math 22B, Homework #8 1. y 5y + 6y = 2e t

A COMPARATIVE STUDY OF THREE-PHASE AND SINGLE-PHASE PLL ALGORITHMS FOR GRID-CONNECTED SYSTEMS

PY1052 Problem Set 8 Autumn 2004 Solutions

Chapter 11 Relative Velocity

The Role of Gravity in Orbital Motion

Mechanics 1: Work, Power and Kinetic Energy

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing

6. Friction, Experiment and Theory

SIMULATION OF ELECTRIC MACHINE AND DRIVE SYSTEMS USING MATLAB AND SIMULINK

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

SUPPORT VECTOR MACHINE FOR BANDWIDTH ANALYSIS OF SLOTTED MICROSTRIP ANTENNA

Predictive Control of Permanent Magnet Synchronous Motor Based on Optimization Model Algorithmic Control

AC VOLTAGE CONTROLLER CIRCUITS (RMS VOLTAGE CONTROLLERS)

Combined make-to-order/make-to-stock supply chains

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2

σ m using Equation 8.1 given that σ

Sensorless Field Oriented Control (FOC) for Permanent Magnet Synchronous Motors (PMSM)

= W m 2. = J = 7.50 MeV

Large Generators and High Power Drives

Rotation of an Object About a Fixed Axis

ELECTRIC SERVO MOTOR EQUATIONS AND TIME CONSTANTS

2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES

ASHRAE Journal July

Uniform Rectilinear Motion

VISCOSITY OF BIO-DIESEL FUELS

Transcription:

J.Baah Reeache (Science) Vol.31. Pat.1. 83-94 (2005) Siulation of Indiect Field-Oiented Induction Moto Die Syte Uing Matlab/Siulink Softwae Package Raad S. Fayath* Motafa M.Ibahi** Majid A. Alwan*** Haoutuon A. Haiik** *Al-Nahein Unieity, College of Engineeing **Unieity of Baah, College of Engineeing, Depatent of Electical Engineeing *** Unieity of Baah, College of Engineeing, Depatent of copute Engineeing Indexing te: IFO, Induction oto, Matlab/Siulink, AC die. Receied 14/2/2005,Accepted 17/7/2005 Abtact Thi pape peent a ethodolgy fo coputational odeling of the indiect fieldoiented ( IFO) induction oto die yte. The nueical odel of the quiel-cage, thee-phae induction oto i epeented a a yte of diffeential equation. In ode to tudy the pefoance of the yte a iulation poga wa ipleented uing Matlab/Siulink oftwae package. The induction oto i upplied by a pace ecto Pule Width Modulation (PWM) inete which i ipleented alo by the ae iulation poga. The dynaic cue of the oto phae cuent, oltage, peed and electoagnetic toque duing tating and teady-tate condition ae ploted. The tep change loading effect on the tationay efeence fae tato cuent coponent, ynchonou otating fae tato cuent coponent, electoagnetic toque and tationay efeence fae oto flux coponent ae obeed. 1-INTRODUCTION In field oientation, the oto input cuent ae adjuted to et a pecific angle between fluxe poduced in the oto and tato winding in a anne that follow fo the opeation of a dc achine. When the dynaic equation fo an induction oto i tanfoed by ean of well known otating tanfoation ethod into a efeence fae that concede with oto flux, the eult becoe iila to the dynaic behaio of a dc achine. Thi allow the ac oto tato cuent to be epaated into a flux-poducing coponent and an othogonal toque-poducing coponent, analogou to a dc achine field cuent and aatue cuent [1]. The key to field-oiented contol i knowledge of the oto flux poition angle with epect to the tato. Application in which oto flux i ened ae now geneally teed Diect Field Oientation (DFO) ethod. It i poible to copute the angle fo haft poition infoation, poided that othe oto paaete ae known. Thi appoach i now geneally teed Indiect Field Oientation (IFO) [2]. Whatee the field-oientation appoach, once the flux angle i known, an algoithi pefo the tanfoation fo thee-phae tato cuent into the othogonal toque and flux poducing coponent. Contol i then pefoed in thee coponent, and an inee tanfoation i ued to deteine the neceay thee-phae cuent o oltage[3]. 2-MATHEMATICA DESCRIPTION OF THREE-PHASE INDUCTION MOTOR The pace ecto fo of the oltage equation gie the induction oto odel. The yte odel defined in the tationay α,β- coodinate yte attached to the tato i expeed by the following equation [4]. The oto odel i uppoed to be ideally yetical with a linea agnetic cicuit chaacteitic. a- The tato oltage diffeential equaton: [ See Appendix (A)]

Raad S. Fayath, Motafa M.Ibahi, Majid A. Alwan & Haoutuon A. Haiik = R i + α α d dt α (1) = R i + β β d dt β (2) b-the oto oltage diffeential equation: d α = 0 = R i α + α + w β (3) dt d β = 0 = R i β + β w α (4) dt c-the tato and oto flux linkage expeed in te of the tato and oto cuent pace ecto: α β α β = i + i (5) α β α = i + i (6) α β = i + i (7) β α = i + i (8) β d- Electoagnetic toque expeed by utilizing pace ecto quantitie: 3 Te = P( α i β β i α ) (9) 2 Beide the tationay efeence fae attached to the tato, oto odel oltage pace ecto equation can be foulated in a geneal efeence fae, which otate at a geneal peed (w a ). If a geneal efeence fae, with diect and quadatue axe x,y otating at a geneal intantaneou peed w a =dθ a /dt i ued, a hown in Fig.(1), whee θ a i the angle between the diect axi of the tationay efeence fae (α) attached to the tato and the eal axi (x) of the geneal efeence fae, then the following equation define the tato cuent pace ecto in geneal efeence fae [5]: jθa i a = i e = i x + ji y (10) The tato oltage and flux-linkage pace ecto can be iilaly obtained in the geneal efeence fae. Siila conideation hold fo the pace ecto of the oto oltage, cuent and flux linkage. The eal axi (α) of the efeence fae attached to the oto i diplaced fo the diect axi of the tato efeence fae by the oto angle θ. It can be een that the angle between the eal axi (x) of the geneal efeence fae and the eal axi of the efeence fae otating with the oto (α) i (θ a - θ ). In the geneal efeence fae, the pace ecto of the oto cuent can be expeed a: i a = i e a = i + j( θ θ ) x ji y (11) Whee i i the pace ecto of the oto cuent in the oto efeence fae. Siilaly the pace ecto of the oto oltage and oto flux linkage in the geneal efeence fae can be expeed. The efeence fae ay be aligned with the tato flux-linkage pace ecto, the oto flux-linkage pace ecto o the agnetizing pace ecto. The ot popula efeence fae i the efeence fae attached to the oto flux linkage pace ecto with diect axi (d) and quadatue axi (q). Afte tanfoation into d-q coodinate the oto odel i the following [6]: = R i + p w (12) d d d q 84

Siulation of Indiect Field-Oiented Induction Moto Die q d q d = R i + p w (13) q d q d d = 0 = R i + p ( w w) (14) q q q = 0 = R i + p + ( w w) (15) d d d = i + i (16) = i + i (17) q d q d q = i + i (18) q q d = i + i (19) q 3 Te = P( d i q qi d ) (20) 2 Fig.(2) epeent a Matlab/Siulink odel of the thee-phae induction oto in the tationay efeence fae. 3- FIED-ORIENTED CONTRO OF THREE PHASE INDUCTION MOTOR [ See Appendix (B)] Thi contol i uually pefoed in the efeence fae (d-q) attached to the oto flux pace ecto. That why the ipleentation of ecto contol equie infoation on the odulu and the pace angle (poition) of the oto flux pace ecto. The tato cuent of the induction achine ae epaated into flux-and toque poducing coponent by utilizing tanfoation to the d-q coodinate yte, whoe diect axi (d) i aligned with the oto flux pace ecto. It ean that the q-axi coponent of the oto flux pace ecto i alway zeo. 0 and alo p = 0 (21) q = q Fig.(3) how the baic tuctue of the indiect field-oiented contol of the thee-phae induction oto. 4-ROTOR FUX MODE Knowledge of the oto flux pace ecto agnitude and poition i key infoation fo the thee phae induction oto ecto contol. With the oto agnetic flux pace ecto, the otational coodinate yte (d-q) can be etablihed. Thee ae eeal ethod fo obtaining the oto agnetic flux pace ecto. The ipleented flux odel utilize onitoed oto peed and tato oltage and cuent. It i calculated in the tationay efeence fae (α-β) attached to the tato. The oto flux pace ecto i obtained by oling the following two diffeential equation, which ae eoled into the α and β coponent [7]. [( 1 σ ) τ + τ ] p α = α α wτ β στ pi α (22) R [( 1 σ ) τ + τ ] p β = β β + wτ α στ pi β (23) R 5-DECOUPING CIRCUIT Fo pupoe of the oto flux-oiented ecto contol, the diect-axi tato cuent i d (oto flux-poducing coponent) and the quadatue-axi tato cuent i q (toque-poducing coponent) ut be contolled independentely. Howee, the equation of the tato oltage coponent ae coupled. The diect axi coponent d alo depend on i q and the quadatue axi coponent q alo depend on i d. The tato oltage coponent d and q cannot be conideed a decoupled contol aiable fo the oto flux and electoagnetic toque. The tato cuent i d and i q can only be independently contolled ( decoupled contol ) if the 85

Raad S. Fayath, Motafa M.Ibahi, Majid A. Alwan & Haoutuon A. Haiik tato oltage equation ae decoupled and the tato cuent coponent i d and i q ae indiectly contolled by contolling the teinal oltage of the induction oto. The equation of the tato oltage coponent in the d-q coodinate yte (12) and (13) can be efoulated and epaated into two coponent, (i) linea coponent lin lin d, q (ii) decoupling coponent decouple decouple d, q [8]. The equation ae decoupled a follow: lin decouple d d = d + d = [ K Ri d + K pi d ] [ w K i q + ] (24) τ q whee lin decouple d = q + q = [ K Ri q + K pi q ] [ w K i d + w] (25) = R (26) 2 K R R + 2 K 2 = (27) and the decoupling coponent ae : decouple d decouple q = [ w K i q + d ] (28) τ = [ w K i d + wd ] (29) The decoupling algoith tanfo the nonlinea oto odel to linea equation which can be contolled by geneal PI o PID contolle intead of coplicated contolle. 6-PROPOSED INDIRECT FIED-ORIENTED CONTRO SCHEME Fig.(4) how the ipleented block diaga of an induction oto indiect fieldoiented contol, incopoating a decoupling cicuit. The detail of Fig.(4) ae epeented in Fig.(5,6,7,8 and 9). The taed aiable epeent the efeence alue of the aiable, and ae obtained unde contant flux condition. i i d q = w d = l = 2 P T e d 2 T Pτ e 2 d (30) (31) (32) w l = w w (33) The oto peed and flux dynaic ae educed to iple linea yte. PI contolle can then be ued to achiee atifactoy egulation. Fo the peed, the paaete of the PI contolle ae deigned on the bai of the oto electical and echanical tie contant. 7-SIMUATION RESUTS In thi ection, the iulation eult ae peented to eify the feaibility of the popoed oeall odel. Fig. (10) how the oto (electical) peed in which at t=2.5 econd a full load toque tep change i applied. The electoagnetic toque pofile of thi cae i 86

Siulation of Indiect Field-Oiented Induction Moto Die hown in Fig. (11). Alo the diect-quadatue axi oto flux coponent in the tationay efeence fae ae hown in detail fo thi cae in Fig. (12), while the diect-quadatue axi tato cuent coponent in the tationay efeence fae ae hown in Fig (13). The tato phae cuent and oltage ae hown in Fig. 14 and 15 epectiely, fo the full load condition. The effect of the full load toque tep change on the ynchonou otating d-q coponent of the tato cuent ae hown in Fig. 16 and 17 which claifie the decoupling poce of the two-tato cuent coponent in a ey good illutated ethod. Fo the ae yte and fo anothe un it i aued a teady tate full load opeation and a tep down change in peed i applied at t=3 econd. The peed and the electoagnetic toque pofile fo thi cae of opeation ae hown in Fig. (18) and (19) epectiely, while Fig. (20) and (21) epeent epectiely the diect and quadatue axi tato cuent (in the ynchonou otating fae) chaacteitic duing thi tep change. β y w a x i β θ a α i α Fig.(1) The geneal efeence fae and the x, y axe otating at a geneal peed Fig. (2) Matlab/Siulink odel of the thee-phae induction oto in the tationay efeence fae. 87

Raad S. Fayath, Motafa M.Ibahi, Majid A. Alwan & Haoutuon A. Haiik Flux co Toqu e Toqu e and flux Refee nce cuent Field oiente Refeence Stato cuent Powe inete 3-Phae inducti on oto Refeenc + + e Cue nt T Tacogene Fig. (3) Block diaga of the indiect field oiented induction oto die yte ato Speed feedback Fig. (4) The Matlab/Siulink odel of the indiect field-oiented contol of the thee phae induction oto. Fig.(5) d-q to alpha-beta tanfoation Fig.(6) alpha-beta to d-q tanfoation 88

Siulation of Indiect Field-Oiented Induction Moto Die Fig.(7) a,b,c to alpha-beta tanfoation Fig.(8) Roto flux ecto angle calculation block Fig.(9) The pace ecto PWM Inete Matlab/Siulink odel Fig.(10) Roto electical peed pofile with full-load toque tep change at t=2.5 ec. Fig.(11) Electoagnetic toque of the thee-phae induction oto with a full-load toque tep change at t=2.5 ec. 89

Raad S. Fayath, Motafa M.Ibahi, Majid A. Alwan & Haoutuon A. Haiik (a) (a) (b) (b) (c) (c) Fig.(12) Fig.(13) a) Roto flux pace phao eolution. a) Stato cuent pace phao b) Roto flux beta-coponent. eolution. c) Roto flux alpha-coponent. b) Stato cuent beta-coponent. c) Stato cuent alpha-coponent. 90

Siulation of Indiect Field-Oiented Induction Moto Die Fig.(14) Stato phae cuent at full-load. Fig.(15) Stato phae phae oltage at full-load. Fig.(16) Stato cuent d-coponent fo a full-load toque tep change at t=2.5 ec. Fig.(17) Stato cuent q-coponent fo a full-load toque tep change at t=2.5 ec 91

Raad S. Fayath, Motafa M.Ibahi, Majid A. Alwan & Haoutuon A. Haiik Fig.(18) Roto electical peed pofile with tep tep down tep change at full load condition. Fig. (19) Electoagnetic toque at full full load condition with a peed tep down change at t=3 ec. Fig.(20) Stato cuent d-coponent at full load condition with a peed tep down change at t=3 ec. Fig. (21) Stato cuent q-coponent at full load condition with a peed tep down change at t=3 ec. 92

Siulation of Indiect Field-Oiented Induction Moto Die محاكاة منظومة سوق محرك حثي ثلاثي الطور بواسطة موجه الفيض غير مباشر باستخدام برنامج Matlab/Siulink ** مصطفى محمد اب ارهيم * رعد سامي فياض *** ماجد عبد النبي علوان ج ي (*) ل ع ب ئكم ه ذي م/ قكي بئكهمخز ب ج ي ل ع (**) ب ئك ا ش ذب/ قكي بئكهمخز ب / فزلئكهمخز بئكقهذاي ي ي ب *** ) ( جي لع بئكا شذب /قكيبئكهمخزب/ فزل همخز بئكحي زاي ة ** هاروتيون أنت ارنيك هايريك الخلاصة يستعرض هذا البحث طريقة لمحاكاة منظومة سوق محرك حثي ثلاثي الطور بواسطة موجه الفيض غير مباشر وباستخدام برنامج.Matlab/Siulink تم التعامل مع المحرك الحثي الثلاثي الطور على اساس معادلاته التفاضلية المكتوبة لمركبتي كل من التيار والفولتية على اساس مرجعي ساكن. يغذى المحرك من خلال مغير يعمل بتضمين عرض الموجة- المتجه الفضاي ي والذي بدوره تم تركيبه على اساس التقنية التي تعمل بها مثل هذا النوع من المغي ارت. تمت د ارسة عمل المنظومة على اساس التحميل المفاجي لعزم الحمل الكامل عند سرعة مرجعية ثابتة. ولغرض ملاحظة عمل التغذية الخلفية لمنظومة سيطرة السرعة تم التغيير المفاجي للسرعة عند الحمل الكامل وملاحظة تصرف المنظومة لهذا النوع من التغيير. أن استجابة المنظومة للتغي ارت الفجاي ية قد أظهرت تطابقا مع التصرف المتوقع للمنظومة والموصوف من خلال المعادلات الرياض. 8-CONCUSIONS In thi pape, ipleentation of a odula iulink odel fo indiect field-oiented induction oto die yte ha been intoduced uing Matlab/Siulink oftwae package. Unlike ot othe die odel ipleentation, with thi odel, the ue ha acce to all the intenal aiable fo getting an inight into the achine opeation. The eae of ipleenting contol with thi odel i alo deontated with eeal un eult. The eult how a good ageeent to the theoetical backgound of the die yte. REFERENCES [1] i Zhen and ongya Xu, Fuzzy leaning enhanced peed contol of an indiect fieldoiented induction achine die. IEEE Tan. Contol y.and technology, ol. 8 No.2 Mach 2000. [2] J.F. Moynihan, P. Kettle and A.Muay. High pefoance contol of AC eooto uing an integated DSP Intelligent otion. May 1998 poceeding p.(213-222). 93

Raad S. Fayath, Motafa M.Ibahi, Majid A. Alwan & Haoutuon A. Haiik [3] M.A. Ouhouche and N.echein RT-ab baed eal-tie iulation of a diect fieldoiented contolle fo an induction oto. Electonic, Real tie iulation 18-Aug.- 2002. [4] Digital ignal poceing olution fo AC induction oto Application note BPRA043, Texa intuent, 1996. [5] R.Beguenane and M. Ouhouche. MRAC-IFO Induction oto contol with iultaneou elocity and oto-inee tie contant etiation. IASTED Intenational confeence PES 2003. [6] E. Delaleau, J.P. oui and R. Otega. Modeling and contol of induction oto. Int. J. Appl. Math. Coput. Sci. 2001, Vol.11, No.1, 105-129. [7] J. Jung and K.Na. A dynaic decoupling contol chee fo high-peed opeation of induction oto. IEEE Tanaction on indutial electonic, Vol. 46, No. 1 Febuay 1999. [8] M. A. Ouhouche, Siulation of diect field-oiented contolle fo an induction oto uing MATAB/SIMUINK oftwae Package Poceeding of the IASTED Intenational confeence odelling and iulation (MS 2000), May 15-17,2000- Pittbugh, Pennylania,USA. 94