Teori Himpunan. Bagian III



Similar documents
Kalkulus Fungsi Dua Peubah atau Lebih

INTRODUCTORY SET THEORY

A Little Set Theory (Never Hurt Anybody)

Lecture Note 1 Set and Probability Theory. MIT Spring 2006 Herman Bennett

Discrete Mathematics

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

PENCAPAIAN HOSPITAL PERFORMANCE INDICATOR FOR ACCOUNTABILITY (HPIA) No Indikator Standard Julai - Disember 2015

SPAM FILTERING USING BAYESIAN TECHNIQUE BASED ON INDEPENDENT FEATURE SELECTION MASURAH BINTI MOHAMAD

THE LANGUAGE OF SETS AND SET NOTATION

1. Prove that the empty set is a subset of every set.

Absolute Value Equations and Inequalities

Lecture 1. Basic Concepts of Set Theory, Functions and Relations

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Transaction Processing, Functional Applications & anton@ukdw.ac.id

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi

Math Week in Review #4. A proposition, or statement, is a declarative sentence that can be classified as either true or false, but not both.

Basic Concepts of Set Theory, Functions and Relations

THE RELATIONSHIP BETWEEN HUMAN RESOURCE INFORMATION SYSTEM (HRIS) AND HUMAN RESOURCE MANAGEMENT (HRM) ALFRED PUN KHEE SEONG

Semantics of UML class diagrams

LIGHTNING AS A NEW RENEWABLE ENERGY SOURCE SARAVANA KUMAR A/L ARPUTHASAMY UNIVERSITI TEKNOLOGI MALAYSIA

PROSES KELOMPOK DAN TIM KERJA

TRANSFORMATIONAL PROJECT MANAGER: AN ENABLER OF AN ENTERPRISE RESOURCE PLANNING (ERP) IMPLEMENTATION SUCCESS JOHN ONYEKACHI OKUGO

SOLUTIONS TO ASSIGNMENT 1 MATH 576

So let us begin our quest to find the holy grail of real analysis.

INTEGRATING CONSUMER TRUST IN BUILDING AN E-COMMERCE WEBSITE NUR ZAILAN BIN OTHMAN

INCIDENCE-BETWEENNESS GEOMETRY

PROFITABILITY ANALYSIS

JOB AGENT MANAGEMENT SYSTEM LU CHUN LING. A thesis submitted in partial fulfillment of. the requirements for the award of the degree of

MODELING AND SIMULATION OF SINGLE PHASE INVERTER WITH PWM USING MATLAB/SIMULINK AZUAN BIN ALIAS

Automata and Formal Languages

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011

Fundamentele Informatica II

Basic Probability Concepts

KRITERIA BORANG NYATA CUKAI PENDAPATAN (BNCP) TIDAK LENGKAP CRITERIA ON INCOMPLETE INCOME TAX RETURN FORM (ITRF) PEMBERITAHUAN

FRAMEWORK FOR EVALUATING PROGRAMMING LANGUAGES FOR COMPUTER GRAPHICS

Mathematics Review for MS Finance Students

SATUAN ACARA PERKULIAHAN (SAP) Mata Kuliah : Struktur Data Kode : TIS3213 Semester : III Waktu : 2 x 3 x 50 Menit Pertemuan : 6 & 7

Page 1 of 1. Page 2 of 2 % &! " '! ( ' ( $) * +, - % -. !" # $

Vocabulary Words and Definitions for Algebra

Elements of probability theory

Complement. If A is an event, then the complement of A, written A c, means all the possible outcomes that are not in A.

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

PRODUCTIVITY IMPROVEMENT VIA SIMULATION METHOD (MANUFACTURING INDUSTRY) HASBULLAH BIN MAT ISA

CS 3719 (Theory of Computation and Algorithms) Lecture 4

Cartesian Products and Relations

7. Solving Linear Inequalities and Compound Inequalities

All of mathematics can be described with sets. This becomes more and

Georg Cantor and Set Theory

How To Find Out How To Calculate A Premeasure On A Set Of Two-Dimensional Algebra

EFFECTIVE COST MANAGEMENT: APPLYING ACTIVITY BASED COSTING IN PRIVATE HEALTHCARE - (HAEMODIALYSIS SERVICES)

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)

Set Theory. 2.1 Presenting Sets CHAPTER2

CMPSCI 250: Introduction to Computation. Lecture #19: Regular Expressions and Their Languages David Mix Barrington 11 April 2013

This asserts two sets are equal iff they have the same elements, that is, a set is determined by its elements.

ANSWER SHEET INFORMATION AND COMUNICATION TECHNOLOGY (1CT)

Check Skills You ll Need. New Vocabulary union intersection disjoint sets. Union of Sets

DEVELOPING AN ISP FOR HOTEL INDUSTRY: A CASE STUDY ON PUTRA PALACE HOTEL

History. COBIT Control Objectives for IT Related Technology

Probability for Estimation (review)

BISKUT RAYA INVENTORY MANAGEMENT SYSTEM (BRIMS) NURUL AMIRAH BINTI ROSLAN THESIS SUBMITTED IN FULFILLMENT OF THE DEGREE OF COMPUTER SCIENCE

Lecture 16 : Relations and Functions DRAFT

How To Understand The History Of The Moon

EMPLOYEE ATTENDANCE SYSTEM KOIK SEOW LIN

CS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions

Extension of measure

7 Relations and Functions

Solving Rational Equations and Inequalities

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Summary. Operations on Fuzzy Sets. Zadeh s Definitions. Zadeh s Operations T-Norms S-Norms. Properties of Fuzzy Sets Fuzzy Measures

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

Chapter 2: Linear Equations and Inequalities Lecture notes Math 1010

Course Syllabus. MATH 1350-Mathematics for Teachers I. Revision Date: 8/15/2016

Radio Alarm Clock iphone/ipod Docking Station. Radio Alarm Clock iphone/ipod Docking Station. User Manual

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson

A STUDY OF SECURITY LIMITATIONS IN VIRTUAL LOCAL AREA NETWORK IMPLEMENTATION

Matrix Representations of Linear Transformations and Changes of Coordinates

Useful Mathematical Symbols

LEMBAGA HASIL DALAM NEGERI MALAYSIA PERCUKAIAN PEKERJA MALAYSIA YANG DIHANTAR BERTUGAS DI LUAR NEGARA KETETAPAN UMUM NO. 1/2011

Georg Cantor ( ):

LICENSE PLATE RECOGNITION OF MOVING VEHICLES. Siti Rahimah Binti Abd Rahim

Note on the Application Form for the JICA Training and Dialogue Program

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

1 VECTOR SPACES AND SUBSPACES

Discrete Maths. Philippa Gardner. These lecture notes are based on previous notes by Iain Phillips.

Panduan Program Power Led

E3: PROBABILITY AND STATISTICS lecture notes

GARIS PANDUAN PENGENDALIAN DIVIDEN SATU PERINGKAT DALAM LEBIHAN AKTUARI YANG DIPINDAHKAN KEPADA DANA PEMEGANG SAHAM

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability

BUS MANAGEMENT SYSTEM HASDILAZIRA BT ABD LATIIF

1.4 Compound Inequalities

UNIVERSITI PUTRA MALAYSIA DEVELOPMENT OF PROTOTYPE SCHEDULING AND SEQUENCING SOFTWARE FOR JOB SHOP MANUFACTURING IN SHEET METAL FABRICATION

OCBC GREAT EASTERN CO-BRAND CARD FREQUENTLY ASKED QUESTIONS (FAQ) REBATE FEATURES, INTEREST FREE AUTO INSTALMENT PAYMENT PLAN (AUTO-IPP) AND BENEFITS

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

EXPERIMENTAL ANALYSIS OF PASSIVE BANDWIDTH ESTIMATION TOOL FOR MULTIPLE HOP WIRELESS NETWORKS NURUL AMIRAH BINTI ABDULLAH

Sample Induction Proofs

Human Ingenuity / How has the global trade influenced a person's and a community's life?

DEVELOP AND DESIGN SHEMATIC DIAGRAM AND MECHANISM ON ONE SEATER DRAG BUGGY MUHAMMAD IBRAHIM B MD NUJID

WEB-BASED PROPERTY MANAGEMENT SYSTEM SAFURA ADEELA BINTI SUKIMAN

Transcription:

Teori Himpunan Bagian III

Teori Himpunan Himpunan: Kumpulan objek (konkrit atau abstrak) ) yang mempunyai syarat tertentu dan jelas, bisanya dinyatakan dengan huruf besar. a A a A a anggota dari A a bukan anggota dari A A = {a, a 2,,, a n } A memuat 2

Cara menyatakan himpunan a. Mendaftar b. Menyatakan sifat-sifat yang dipenuhi oleh anggota. c. Notasi pembentuk himpunan 3

Notasi Pembentuk Himpunan Format: {[struktur anggota]} Contoh: sedemikian hingga struktur keanggotaan] [syarat perlu untuk menjadi Q = {m/n : m,n Z, n } n Q adalah himpunan bilangan rasional Elemen-elemennya elemennya berstruktur m/n; harus memenuhi sifat setelah tanda : untuk menjadi anggota. {x R x 2 = } = {-,}{ 4

Contoh Himpunan: N himpunan bil. Cacah = {,,2,3,4, } P atau Z+ - himp. Bil. Bulat positif = {,2,3,4, } Z himpunan bil. bulat R himpunan bil.. real φ or {} himpunan kosong U himpunan semesta, himp.. yang memuat semua element yang dibicarakan. 5

A = A = {z} A = {{b, c}, {c, x, d}} Contoh Himpunan empty set/null set Note: z A, z but z {z} A = {{x, y}} Note: {x, y} A, but {x, y} {{x, y}} A = {x P(x)} set of all x such that P(x) A = {x x Nx x > 7} = {8, 9,, } set builder notation 6

Relasi Antar Himpunan. Himpunan yang Sama 2. Himpunan Bagian 3. Himpunan yang berpotongan 4. Himpunan Saling Lepas 5. Himpunan yang Ekuivalen 7

Himpunan yang Sama ( Set Equality) Himp.. A and B dikatakan sama jika keduanya memuat anggota- anggota yang tepat sama. A = B { x x A x B} atau A = B A B B A Contoh: A = {9, 2, 7, -3}, B = {7, 9, -3, 2} : A = B A = {dog, cat, horse}, B = {cat, horse, squirrel, dog} : A = {dog, cat, horse}, B = {cat, horse, dog, dog} : A B A = B 8

A B A B Himpunan Bagian A adalah himpunan bagian dari B jika setiap anggota A juga merupakan anggota B. A B x x (x A x B) Contoh: A = {3, 9}, B = {5, 9,, 3}, A B? A = {3, 3, 3, 9}, B = {5, 9,, 3}, A B? A = {, 2, 3}, B = {2, 3, 4}, A B? benar benar Salah 9

Himpunan Bagian Sifat: A = B (A B) (B A) (A B) (B C) A C (Lihat Venn Diagram) U B A C

Useful rules: A for any set A A A for any set A Himpunan Bagian Proper subsets (Himpunan( Bagian Sejati): A B A A is a proper subset of B B A B x x (x A x B) x x (x B x A) or A B x x (x A x B) x x (x B x A)

Dua himpunan A dan B dikatakan berpotongan, ditulis A)(B, jika ada anggota A yang menjadi anggota B. A)(B x x (x A x B) Himpunan A dan B dikatakan saling lepas (A//B), jika A, B, x x (x A x B) Himpunan A dan B yang Ekuivalen,, A B, A jika setiap anggota A dapat dipasangkan (dikorespondensikan) satu-satu dengan anggota B Buat Contoh Masing-masing masing!!! 2

Latihan. Buktikan jika M, maka M =. 2. A = {,2,3,4}; B = himpunan bilangan ganjil. Buktikan A B. 3. Buktikan A B, B C A C. 4. Buktikan K L, L M, M K K = M. 3

Interval Notation - Special notation for subset of R [a,b] = {x R a x b} (a,b) = {x R a < x < b} [a,b) = {x R a x < b} (a,b] = {x R a < x b} How many elements in [,]? In (,)? In {,} 4

Operasi Himpunan B (B complement) {x x U x B} Everything in the Universal set that is not in B A B (A union B) {x x A x B} Like inclusive or, can be in A or B or both B A B 5

A B (A intersect B) {x x A x B} A and B are disjoint if A B = Φ A - B (A minus B or difference) {x x A x B} A-B B = A BA A B B (symmetric difference) {x x A x B} = (A B) - (A B) We have overloaded the symbol.. Used in logic to mean exclusive or and in sets to mean symmetric difference 6

Contoh Let A = {n 2 n P n 4} = {,4,9,6} Let B = {n 4 n P n 4} = {,6,8,256} A B B = {,4,9,6,8,256} A B B = {,6} A-B B = {4,9} B-A A = {8, 256} A B B = {4,9,8,256} 7

Cardinality of Sets If a set S contains n distinct elements, n N, n we call S a finite set with cardinality n. n Examples: A = {Mercedes, BMW, Porsche}, A = 3 B = {, {2, 3}, {4, 5}, 6} B = 4 C = C = D = { x N x x 7 } D = 7 E = { x N x x 7 } E is infinite! 8

The Power Set P(A) power set of A A P(A) = {B B A} (contains all subsets of A) Examples: A = {x, y, z} P(A) = {,{, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}} A = P(A) = { }{ Note: A =, P(A) = 9

The Power Set Cardinality of power sets: P(A) = 2 A Imagine each element in A has an on/off switch Each possible switch configuration in A corresponds to one element in 2 A A x y z x y z 2 x y z 3 x y z For 3 elements in A, there are 2 2 22 = 8 elements in P(A) 4 x y z 5 x y z 6 x y z 7 x y z 8 x y z 2

Cartesian Product The ordered n-tuple (a, a 2, a 3,,, a n ) is an ordered collection of objects. Two ordered n-tuples (a, a 2, a 3,,, a n ) and (b, b 2, b 3,, b n ) are equal if and only if they contain exactly the same elements in the same order,, i.e. a i = b i for i n. The Cartesian product of two sets is defined as: A B B = {(a, b) a A a b B} Example: A = {x, y}, B = {a, b, c} A B B = {(x, a), (x, b), (x, c), (y, a), (y, b), (y, c)} 2

Cartesian Product The Cartesian product of two sets is defined as: A B B = {(a, b) a A a b B} Example: A = {good, bad}, B = {student, prof} A B B = {(good,{ student), (good, (good, prof), (bad, student), (bad, prof)} B A A = { (student, good), (prof,, good), (student, bad), (prof,, bad)} 22

Note that: A = A A = Cartesian Product For non-empty sets A and B: A B A A B B A A B = A B B The Cartesian product of two or more sets is defined as: A A 2 A n = {(a, a 2,,, a n ) a i A for i n} 23

Set Operations Union: A B A B = {x x A x x B} Example: A = {a, b}, B = {b, c, d} A B B = {a, b, c, d} Intersection: A B A B = {x x A x x B} Example: A = {a, b}, B = {b, c, d} A B B = {b} 24

Set Operations Two sets are called disjoint if their intersection is empty, that is, they share no elements: A B B = The difference between two sets A and B contains exactly those elements of A that are not in B: A-B B = {x x A x x B} Example: A = {a, b}, B = {b, c, d}, A-B A B = {a} 25

Set Operations The complement of a set A contains exactly those elements under consideration that are not in A: A c = U-AU Example: U = N,, B = {25, 25, 252, } B c = {,, 2,,, 248, 249} 26

Set Operations Table in Section.5 shows many useful equations. How can we prove A (BA (B C) = (A B) B) (A C)? Method I: x A (B C) x A x (B C) x A (x B x C) (x A x B) (x A x C) (distributive law for logical expressions) x (A B) x (A C) x (A B) B) (A C) 27

Set Operations Method II: Membership table means x x is an element of this set means x x is not an element of this set A B C B C A (B C) A B A C (A B) (A C) 28

Sifat Operasi Himpunan. Asosiatif: : (A B) C = A (B C) (A B) C C = A (B C) 2. Idempoten: : A A A A = A; A A A = A 3. Identitas: : A S A S = S; A A S = A A = A; A A = 4. Distributif: : A (B A C) = (A B) (A C) A (B C) = (A B) B) (A C) 5. Komplementer: : A A A = S; A A = 6. De Morgan: (A B) B) = A B A (A B) B) = A A B 7. Penyerapan: : A (AA (A B) = A A (A B) = A 29

Latihan. Buktikan A (B C) = (A B) B) (A C) 2. Buktikan A-(B C) = (A-B) B) (A-C) 3. Bila A B, buktikan A B B = A dan A B B = B 4. Buktikan (A B) x C = (AxC)( AxC) (BxC) 3