Chapter 3: Analysis of closed-loop systems



Similar documents
Understanding Poles and Zeros

Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Dr Glenn Vinnicombe HANDOUT 3. Stability and pole locations.

EE 402 RECITATION #13 REPORT

G(s) = Y (s)/u(s) In this representation, the output is always the Transfer function times the input. Y (s) = G(s)U(s).

Controller Design in Frequency Domain

EECE 460 : Control System Design

Matlab and Simulink. Matlab and Simulink for Control

Positive Feedback and Oscillators

Chapter 9: Controller design

PID Controller Tuning: A Short Tutorial

DCMS DC MOTOR SYSTEM User Manual

Σ _. Feedback Amplifiers: One and Two Pole cases. Negative Feedback:

Second Order Systems

PROCESS CONTROL SYSTEM DESIGN Process Control System Design LECTURE 2: FREQUENCY DOMAIN ANALYSIS

ROUTH S STABILITY CRITERION

ECE 3510 Final given: Spring 11

MATLAB Control System Toolbox Root Locus Design GUI

Drivetech, Inc. Innovations in Motor Control, Drives, and Power Electronics

Root Locus. E(s) K. R(s) C(s) 1 s(s+a) Consider the closed loop transfer function:

3.2 Sources, Sinks, Saddles, and Spirals

Introduction to Control Systems

System Modeling and Control for Mechanical Engineers

19 LINEAR QUADRATIC REGULATOR

EDUMECH Mechatronic Instructional Systems. Ball on Beam System

Control System Definition

TEACHING AUTOMATIC CONTROL IN NON-SPECIALIST ENGINEERING SCHOOLS

S. Boyd EE102. Lecture 1 Signals. notation and meaning. common signals. size of a signal. qualitative properties of signals.

Design of a TL431-Based Controller for a Flyback Converter

Chapter 3 AUTOMATIC VOLTAGE CONTROL

ELECTRICAL ENGINEERING

Motor Modeling and Position Control Lab Week 3: Closed Loop Control

Overdamped system response

SECTION 19 CONTROL SYSTEMS

Loop Analysis. Chapter Introduction

DC motors: dynamic model and control techniques

Process Dynamics, Operations, and Control Lecture Notes - 11 Lesson 11. Frequency response of dynamic systems.

Laboratory 4: Feedback and Compensation

Manufacturing Equipment Modeling

Review of First- and Second-Order System Response 1

PID Control. Chapter 10

Applications of Second-Order Differential Equations

Students Manual for the Exam. General Engineering and Electrical Civil Engineering Discipline

Simple Harmonic Motion

Mutual Inductance and Transformers F3 3. r L = ω o

SIGNAL PROCESSING & SIMULATION NEWSLETTER

Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure 2. R. Figure 1.

PID Control. 6.1 Introduction

Dr. Yeffry Handoko Putra, S.T., M.T

Motor Control. Suppose we wish to use a microprocessor to control a motor - (or to control the load attached to the motor!) Power supply.

Chapter Eight Root Locus Control Design. 8.3 Common Dynamic Controllers

Introduction to Complex Numbers in Physics/Engineering

Dynamic Process Modeling. Process Dynamics and Control

1. s to Z-Domain Transfer Function

3.1 State Space Models

d di Flux (B) Current (H)

1.2 Second-order systems

Unsteady Pressure Measurements

Frequency Response of Filters

Loudspeaker Parameters. D. G. Meyer School of Electrical & Computer Engineering

Chapter 11 Current Programmed Control

Prelab Exercises: Hooke's Law and the Behavior of Springs

QNET Experiment #06: HVAC Proportional- Integral (PI) Temperature Control Heating, Ventilation, and Air Conditioning Trainer (HVACT)

Technical Guide No High Performance Drives -- speed and torque regulation

Advantages of Auto-tuning for Servo-motors

Design Methods for Control Systems

Nonlinear Systems and Control Lecture # 15 Positive Real Transfer Functions & Connection with Lyapunov Stability. p. 1/?

Higher Order Equations

2.161 Signal Processing: Continuous and Discrete Fall 2008

Simple Control Systems

Parameter identification of a linear single track vehicle model

Frequency response. Chapter Introduction

Stability of Linear Control System

Engineering Sciences 22 Systems Summer 2004

Real-Time Systems Versus Cyber-Physical Systems: Where is the Difference?

MOBILE ROBOT TRACKING OF PRE-PLANNED PATHS. Department of Computer Science, York University, Heslington, York, Y010 5DD, UK

Convolution, Correlation, & Fourier Transforms. James R. Graham 10/25/2005

PROCESS CONTROL SYSTEM DESIGN Process Control System Design. LECTURE 6: SIMO and MISO CONTROL

Enhancing Classical Controls Education via Interactive GUI Design

Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore.

SECTION 2 Transmission Line Theory

13 ELECTRIC MOTORS Basic Relations

The Calculation of G rms

SAMPLE CHAPTERS UNESCO EOLSS PID CONTROL. Araki M. Kyoto University, Japan

Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes R. W. Erickson

ω h (t) = Ae t/τ. (3) + 1 = 0 τ =.

Implementation of Fuzzy and PID Controller to Water Level System using LabView

Let s first see how precession works in quantitative detail. The system is illustrated below: ...

Electrical Resonance

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

ANALYTICAL METHODS FOR ENGINEERS

Spacecraft Dynamics and Control. An Introduction

THE EDUCATIONAL IMPACT OF A GANTRY CRANE PROJECT IN AN UNDERGRADUATE CONTROLS CLASS

Frequency Response of FIR Filters

First, we show how to use known design specifications to determine filter order and 3dB cut-off

CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis

(Refer Slide Time: 01:11-01:27)

ES250: Electrical Science. HW7: Energy Storage Elements

Stabilizing a Gimbal Platform using Self-Tuning Fuzzy PID Controller

2.6 The driven oscillator

Transcription:

Chapter 3: Analysis of closed-loop systems Control Automático 3º Curso. Ing. Industrial Escuela Técnica Superior de Ingenieros Universidad de Sevilla

Control of SISO systems Control around an operation point (u,y) r(t) - e(t) Controller u(t) + u(t) Process y(t) u (Reference is not a deviation variable ) Controller e(t) Controller u(t) Automatic control PI How to chose the value of the controller parameters (Kp and Ti) in a way such that the closed-loop system has an appropriate performance?

Control of SISO systems Heuristic design Tuning based on experiments Real system Model Design based on tables Tuning based on a set of experiments and a table that determines the value of each parameter Zieger-Nichols (Chapter 6) Mathematical design The tuning is based on a mathematical analisys of the closed-loop system and provides guaranteed properties Transient response Steady state response Robustness Analitic design techniques Root locus design techniques Loop-shaping design techniques

Control of SISO systems r(t) - e(t) Controller u(t) + u(t) Process y(t) u Closed-loop system It is hard to analize the dynamics of the closed-loop system if the process or the controller are nonlinear systems The design techniques studied in this course are based on the linearized model of the system around a given operation point (u,y)

Incremental variables model The linearized model can be compared with the incremental variables model for a given operating point which is defined as follows: + System - Incremental variables model (u,y) Assumption: The initial state is the operation point Remark: The model depends on the operating point

Incremental variables model Linearized model Assumption: Zero initial conditions. - e(t) Controller u(t) Linearized model around (u,y) Analisys of the closed-loop system. In this case, both the controller and the system are LTI systems. Teoría de sistemas Assumption: The properties of this (simplified) system are similar to the ones of the real closed-loop system if the trajectories are close to the operating point - Speed of the transient - Tracking of time-varying references - Disturbance rejection

Teoría de sistemas TEMA. Introducción y fundamentos. Sistemas dinámicos. Conceptos básicos. Ecuaciones y evolución temporal. Linealidad en los sistemas dinámicos. TEMA. Representación de sistemas. Clasificación de los sistemas. Clasificación de comportamientos. Señales de prueba. Descripción externa e interna. Ecuaciones diferenciales y en diferencias. Simulación. TEMA 3. Sistemas dinámicos lineales en tiempo continuo. Transformación de Laplace. Descripción externa de los sistemas dinámicos. Función de transferencia. Respuesta impulsional. Descripción interna de los sistemas dinámicos. TEMA 4. Modelado y simulación. Modelado de sistemas. Modelado de sistemas mecánicos. Modelado de sistemas hidráulicos. Modelado de sistemas eléctricos. Modelado de sistemas térmicos. Linealización de modelos no lineales. Modelos lineales. Álgebra de bloques. Simulación. TEMA 5. Respuesta temporal de sistemas lineales. Sistemas dinámicos lineales de primer orden. Ejemplos. Sistemas dinámicos lineales de segundo orden. Respuesta ante escalón. Sistemas de orden n. TEMA 6. Respuesta frecuencial de sistemas lineales. Función de transferencia en el dominio de la frecuencia. Transformación de Fourier. Representación gráfica de la función de transferencia. Diagramas más comunes. Diagrama de Bode. TEMA 7. Estabilidad. Estabilidad de sistemas lineales. Criterios relativos a la descripción externa de los sistemas dinámicos. Criterio de Routh-Hurwitz. Criterio de Nyquist. Criterios relativos a la descripción interna. Analysis of linear time invariant (LTI) systems

Closed-loop transfer function Linear time invariant systems (LTI) Remark: From now on, the variables y and u denote incremental values; that is, the deviation of the input and the output from the operating point Laplace transform (assuming zero initial conditions) Properties used: Linearity, transform of the time derivative Transfer function

Proportional term The value of the input u(t) is proportional to the error e(t) Controller u(t) Transfer function Time domain E(s) C(s) U(s) Frequency domain Desing parameter: Kp

Integral term The value of the input u(t) is proportional to the error and its integral e(t) Controller u(t) Transfer function Temporal domain E(s) C(s) U(s) Frequency domain Desing parameter: Kp, Ti Lag compensation net Controller with properties similar to the PI

Derivative term The value of the input u(t) is proportional to the error and its time derivative e(t) Controller u(t) Transfer function Time domain E(s) C(s) U(s) Design parameters: Kp, Td Frequency domain Lead compensator net Controller with properties similar to the PD

PID controller The value of the input u(t) is proportional to the error, its time derivative and its integral e(t) Controller u(t) Widely used in industry

e(t) PID controller The value of the input u(t) is proportional to the error, its time derivative and its integral Controller u(t) Transfer function Time domain E(s) C(s) U(s) Design parameter: Kp, Td, Ti Frequency domain Lead-lag compensator Controller with properties similar to the PID

Index Closed Loop Transfer Function Tuning a Controller Stability analysis of system Steady-state response of a closed-loop systems Transient response of a stable system. Closed-loop poles and zeros vs. Controller parameters

Closed-loop transfer function Block algebra (Ogata 3.3, Tema 3, Teoría de sistemas) S(s) + - S(s) S3(s) = S(s)-S(s) S(s) S(s) = S(s) S3(s) = S(s) Signal sum Signal bifurcation S(s) G(s) S(s)=G(s)S(s) LTI system

Closed-loop transfer function Closed-loop system R(s) - E(s) C(s) U(s) G(s) Y(s) R(s) Gbc(s) Y(s) Gbc(s) models how the ouput of the closed-loop system reacts to changes in the references The properties of a controller are defined based on the response of the closed-loop system

Other transfer functions Sensor dynamics R(s) + C(s) U(s) G(s) Y(s) - Ym(s) H(s) D(s) Disturbances R(s) + - C(s) U(s) G(s) Gd(s) + + Y(s) Ym(s) H(s)

Index Closed Loop Transfer Function Tuning a Controller Stability analysis of system Steady-state response of a closed-loop systems Transient response of a stable system. Closed-loop poles and zeros vs. Controller parameters

Controller tuning Obtain a set of controller parameter (C(s)) in order to guarantee that the closedloop systems satisfies a given set of conditions (specifications) Gbc(s) is not defined if parameters of C(s) are not fixed Specifications Stability Raise time (step reference change) Steady state error Specifications on the linearized model are relevant to the behaviour of the real closed-loop system Mathematical design Tuning based on the anlisys of the closed-loop dynamics (which depend on the controller parameters)

Example Closed-loop system Closed-loop response? Depends on the value of Kp Three poles that depend on Kp Static gain depens on Kp Reference signal: Step change - Simulations performed in Simulink/Matlab

Example Kp=. Kp= Kp= Kp=5

Example y(t).5 Kp =., Td =, /Ti = y(t).5.5 Kp =, Td =, /Ti = u(t).5 3 4 5 6. u(t) 3 4 5 6.5 e(t) 3 4 5 6.5 e(t).5 3 4 5 6.5 e(τ)dτ 3 4 5 6 4 e(τ)dτ.5 3 4 5 6 5 t 3 4 5 6 Respuesta del sistema en BC t 3 4 5 6 Respuesta del sistema en BC Kp =, Td =, /Ti = Kp = 5, Td =, /Ti = y(t) y(t) 3 4 5 6 3 4 5 6 u(t) u(t) 3 4 5 6 3 4 5 6 e(t) e(t) e(τ)dτ 3 4 5 6.5 e(τ)dτ 3 4 5 6 5 t.5 3 4 5 6 Respuesta del sistema en BC t 5 3 4 5 6 Respuesta del sistema en BC

Example Kp =., Td =, /Ti = y(t).5 3 4 5 6. u(t).5 3 4 5 6 e(t).5 e(τ)dτ t 3 4 5 6 4 3 4 5 6 Respuesta del sistema en BC

Example.5 Kp =, Td =, /Ti = y(t).5 3 4 5 6 u(t).5.5 3 4 5 6 e(t).5 e(τ)dτ.5 3 4 5 6 5 t 3 4 5 6 Respuesta del sistema en BC

Example Kp =, Td =, /Ti = y(t) 3 4 5 6 u(t) 3 4 5 6 e(t) e(τ)dτ t 3 4 5 6.5.5 3 4 5 6 Respuesta del sistema en BC

Example Kp = 5, Td =, /Ti = y(t) 3 4 5 6 u(t) e(t) e(τ)dτ 3 4 5 6 3 4 5 6 5 t 5 3 4 5 6 Respuesta del sistema en BC

Types of behaviour Unit step response Clasification of the output signal y(t) depending on the input signal Unit Step (the most widely used). Ramp. Sinusoidal. Provides information about the dynamic proterties of the system Model expressed in error variables (u,y) Assumption: Initial conditions in the operating point. Unit Step: Behaviours: Overdamped Underdamped Unstable Oscilatory

Overdamped Types of behaviour.9.8 Step Response Delay L Gain K Raise Time ts.7 Amplitude.6.5.4.3 K Raise Time: Time to reach 63% of the steady state value. Delay: Time of reaction for the output with respect to a change in the input... Gain: Quotient of the output and the input values. 5 5 L ts Time (sec)

Types of behaviour Underdamped Mp K Delay L Gain K Raise Time ts Peak Time tp Settling Time te Overshoot Mp Raise Time: Time to reach the steady state value for the first time. Peak Time: Time to reach the maximum value. Settling Time: Time to confine the output within a band of 5% arounf the steady state value. Overshoot: Percentage Increment of the peak value with respect to the steady state value.. ts tp te

Unstable Types of behaviour

Index Closed Loop Transfer Function Tuning a Controller Stability analysis of system Steady-state response of a closed-loop systems Transient response of a stable system. Closed-loop poles and zeros vs. Controller parameters

Stability (Chapter 7. Stability) Stability Criterion: Gbc(s) is stable if and only if all poles are located on the left-half complex plane. Closed loop poles are the roots of (depend on C(s)) A closed-loop system might become unstable if the controller is not properly designed. Example: Kp=5 Poles: -5.65,.5 +.87i,.5 -.87i The controller design must guarantee closed loop stability

Stability Analitic Procedure (Try & Error) Evalute closed loop poles for every combination of the controller parameters (Kp, Td, Ti) using the model of the system. Routh-Hurwitz stability criterion A tool to evaluate if a polinomial has roots on the right-half complex plane. The method prevents form computing the whole set of roots of a higher order polinomial It can be used to evaluate stability conditions Nyquist Stability Criterion (to be studied in chapter 5)

Routh-Hurwitz Stability Criterion Allows to determine if there exists a root in the right-half complex plane Important: Note the notation If there exists a negative parameter, then the polinomial has at least one root in the right-half plane. Build the Routh-Hurwitz table. If there exists a negative component on the first column, then the polinomial has at least one root in the right-half plane. There are special rules to deal with degenerate cases (See Chapter 7)

Example Closed loop system The poles are the solution of the following equation (depends on Kp) Gains range

Example Closed loop system The poles are the solution of the following equation (depend on Kp y Ti) Not vey useful for multiple parameters

Index Closed Loop Transfer Function Tuning a Controller Stability analysis of systems Steady-state response of a closed-loop system Transient response of a stable system. Closed-loop poles and zeros vs. Controller parameters

Steady State Response Analysis of system response as time tends to infinity (We assume the closed loop system is stable) Steady state error Final Value Theorem (property of Laplace transform) Important: Depends on R(s) Different references define different steady-state error parameters.

Error for Step input Error for a constant steady-state input.8 Position error constant.6.4. 3 4 5 6 7 8 9 All stable systems have bounded steady-state errors For the error to be null (The system reaches the reference)

Error for Ramp input Steady state error for ramp input Velocity Error 7 6 5 4 3 3 4 5 6 7 Bounded Velocity Error Null position Error (C(s)G(s) has at least one integrator) For the velocity error to be null (the system reached the reference)

Error for parabolic input Steady state error for parabolic input 4.5 4 Acceleration error constant 3.5 3.5.5.5.5.5.5 3 Bounded acceleration error Null position error Null velocity error (C(s)G(s) has at least two integrators) For the parabolic error to be null (The system reaches the reference)

Error Table Type of a system = Number of integrators Type Error Step Ramp Parabolic

Example Proportional Controller Type I System Proportional Controller affects the Bode Gain of the system, but can not change its Type. Improves (quantitatively) steady state behaviour. Depends on Kp.

Example Position error. Constant reference (Step).5 Kp =, Td =, /Ti = y(t).5 3 4 5 6 u(t).5.5 3 4 5 6 e(t).5 e(τ)dτ.5 3 4 5 6 5 t 3 4 5 6 Respuesta del sistema en BC

Example Velocity error. Increasing reference (ramp) 6 Kp =, Td =, /Ti = y(t) 4 3 4 5 6 u(t) 5 3 4 5 6 e(t) 5 e(τ)dτ t 3 3 4 5 6 3 4 5 6 Respuesta del sistema en BC

Example PI Controller Type I system P controllers affect the Bode gain of the system and increases the system type Improves (qualitatively) steady state behaviour Depends on Kp and Ti (Lag controllers allow to increase Bode gain)

Example Position error. Constant reference (Step).5 Kp =, Td =, /Ti =. y(t).5 3 4 5 6 u(t) 3 4 5 6 e(t).5 e(τ)dτ.5 3 4 5 6 3 t 3 4 5 6 Respuesta del sistema en BC

Example Velocity error. Increasing reference (ramp) 6 Kp =, Td =, /Ti =. The integral term is introduced to improve steady state response. y(t) u(t) 4 3 4 5 6 5 3 4 5 6 3 (It might unstabilize the system. Ex. Try simulation with Kp=, Ti=) e(τ)dτ e(t) 3 4 5 6 5 t 3 4 5 6 Respuesta del sistema en BC

Index Closed Loop Transfer Function Tuning a Controller Stability analysis of systems Steady-state response of a closed-loop system Transient response of a stable system. Closed-loop poles and zeros vs. Controller parameters

Transient Response Response to unit step input Classification of output signal y(t) depending on the input signal. Unit Step (the most widely used). Ramp. Sinusoidal. Provides information about the dynamical properties of the system R(s) E(s) C(s) U(s) G(s) Y(s) - Response in y(t) when a reference r(t) is applied Reference signal: Unit Step signal. Shows the speed of response of the system (In general the reference signal will be different than the unit step)

Transient Response TEMA 5. Respuesta temporal de sistemas lineales. Sistemas dinámicos lineales de primer orden. Ejemplos. Sistemas dinámicos lineales de segundo orden. Respuesta ante escalón. Sistemas de orden n. We are interested in the output y(t) as r(t) varies in time (Closed-loop behavior) The trnasient response of a LTI system depends on the closed-loop transfer function (Gbc(s)) One option: Try & Error Given a system, simulate or aplly inverde Laplace transform It is difficult to characterize propoerties as raise time or overshoot Identify the effect of parameters in the response.

First Order Systems dy τ + y = Ku, y() = dt Y(s) K G(s) = = U(s) + τ s y K : Static Gain u τ : Time Constant (units according to input & output) (measured in time units) 5 4 3 u = 3 4 5 6 7 8 9 3 4 5 6 7 8 9 3 4 5 6 7 8 9 3 tiempo y 9.5 9 8.5 8 7.5 7 6.5 6 5.5 5 4.5 4 3.5 3.5.63 y = 3.78 y = 6.5.5 τ 3 4 5 6 7 8 9 3 4 5 6 7 8 9 3 4 5 6 7 8 9 3 tiempo

Second order Systems d y dt + a dy dt + a y = b u d y dt + δ ω dy dt n + ωn y = K ω n u K :Static Gain (dim Y/dim U) δ : Damping Coefficient (adimensional) ω : Natural frequency ( rad/s) n Y(s) G(s) = = U(s) s Kωn + δω s+ ω n n

Second order Systems Poles : δ ω ± ω n n δ Im Im Re Re δ δ δ > : = : < : Overdamped Critically damped. Underdamped

Second order Systems Underdamped system S. O. = y( t p ) y( ) y( ) y(t) y( ) t s t p t e Tiempo t s t p = = ω ω π α n n δ π δ δ π δ..(%) = e S O t e 3 = ω n δ

) ( lim gain static the K is where )] cos( ) ( [ ) ( ) ( ) ( ) ( ' ) ( G s K t c t sen b e e a K t y s s p s c s k s s Y s k k k k r k t t j t p j k k k r k j t j i m i k k j = = = = = = + + + = + + + + = δ ω δ ω ω ω δ ω δ Higher order Systems n n n n m m m m m m m m m n n n n n n a s a a s s b bs b s G s u t b dt du t b dt u t d b dt u t d b y a dt dy t a dt t y d a dt t y d + + + + + + + = + + + + = + + + +...... ) ( ) ( ) (... ) ( ) ( ) (... ) ( ) (

Dominant Poles In practice, some poles have more influence in the response than others. These poles are called dominant poles The dominant poles are those yielding the slowest reponse The response speed is given by the exponent of the exponential terms (the real part of the pole). Remember: Dominant dynamics: poles with the slowest response In practice, the dominat poles are determined from their relative distance to the imaginary axis. p Im p Im p is dominant if d /d >5 p d d d Re d Re p The static gain must remain the same p p p

Dominant Poles G( s) = 544 ( s + )( s + 6)( s + 7) 544 ( s + )(6)(7) = s + Im y(t).5-6 -.5-7 Re.5 3 4 5 6 Tiempo(s) - is el dominant. The remaining poles are neglected

Effect of zeros in the output Zeros have an influence in the response.5 Step Response.5 Amplitude.5..4.6.8..4.6.8 Time (sec) 6 Step Response Amplitude 5 4 3.5.5 Time (sec)

Effect of zeros in the output Effect of adding a zero Qualitatively: 6 Step Response 5 4 y(t) dy(t)/dt yc(t) Amplitude 3..4.6.8..4.6.8 Time (sec)

Non-minimum phase zeros o x o x o o - - -5 - -5 5 Step Response Step Response.5 Step Response 6 Step Response.8.6.8.6 5 Amplitude.4..8 Amplitude.4..8 Amplitude.5 Amplitude 4 3.6.6.4..4..5..4.6.8..4.6.8 Time (sec)..4.6.8..4.6.8 Time (sec)..4.6.8..4.6.8 Time (sec)..4.6.8..4.6.8 Time (sec)

Non-minimum phase zeros x x o o - - -5 - -5 5 Step Response Step Response.5.5 Amplitude.5 -.5 Amplitude.5 - -.5 -.5 - -.5..4.6.8..4.6.8 Time (sec) -..4.6.8..4.6.8 Time (sec)

Dynamics cancellation Step Response x ox.8 - -7-6 -5-4 -3 - - Amplitude.6.4. 3 4 5 6 Time (sec) The closer the zero is to the pole, the less it influences system response Affects the dominant dynamics (in transient regime) Settling time is not significantly affected.

Design Hypothesis Quick review of concepts Time response of first order systems Time response of second order systems Time response of higher order systems Effect of zeros It is difficult to obtain explicit results in general Design Hypothesis Explicit expressions for the effect of controller parameters on the transient response for step inputs are required. A pair of conjugate complex poles dominate the closed loop response Zeros are difficult to deal with, in general. Not considered. Two design tools: Root Locus design Frequency domain design

Index Closed Loop Transfer Function Tuning a Controller Stability analysis of system Steady-state response of a closed-loop systems Transient response of a stable system. Closed-loop poles and zeros vs. Controller parameters

Poles and Zeros of Gbc(s) Closed-loop transfer function Zeros of the closed-loop system The same zeros of the openloop plant plus those of the controller Poles of the closed-loop system Depend on the design parameter In some cases it is possible to get explicit expressions for nd order systems with P and PD controllers Not possible in general Approximate methodologies

Example P Controller The poles depend on Kp Complex plane representation Root Locus

Example.5 Kp=5 Kp=.5 Kp= Kp=..5.5 6 5 4 3

Illustratuve example: Magnetic levitation system Description Ball material Ball diameter Coil diameter Value Steel 5 mm 8 mm Winding turns 85 Resistence Inductance Ω 77 mh a khz 44 mh a khz

Illustratuve example: Magnetic levitation system Nonlinear model of the system mx&& = mg k I X X F m F g System Linealization m : Ball mass g : Gravity constant X : Distance between ball and coil (magnitudes to be controlled) I : Coil current (control action) K : constant coefficient We assume the operating point X with control action I and consider error variables I = I X = X + I + X

System Linearization The incremental variables depend on the selected operating point.

System Linearization