Equations of State. Equations of State (EoS)



Similar documents
Phase Equilibrium: Fugacity and Equilibrium Calculations. Fugacity

CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section The Gas Laws The Ideal Gas Law Gas Stoichiometry

Chapter 2. Atomic Structure and Interatomic Bonding

a) Use the following equation from the lecture notes: = ( J K 1 mol 1) ( ) 10 L

10.7 Kinetic Molecular Theory Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

Chapter 8 Maxwell relations and measurable properties

Exam 4 Practice Problems false false

Thermodynamics. Thermodynamics (Th)

Thermodynamics of Mixing

INTERMOLECULAR FORCES

Problem Set 3 Solutions

AP CHEMISTRY 2009 SCORING GUIDELINES

CHEM 120 Online Chapter 7

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s):

IDEAL AND NON-IDEAL GASES

Boyles Law. At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 P = P

Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT).

10.7 Kinetic Molecular Theory Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

PV (0.775 atm)( L) n = = = mol RT -1-1

VAPORIZATION IN MORE DETAIL. Energy needed to escape into gas phase GAS LIQUID. Kinetic energy. Average kinetic energy

KINETIC THEORY OF MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature

Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random)

Why? Intermolecular Forces. Intermolecular Forces. Chapter 12 IM Forces and Liquids. Covalent Bonding Forces for Comparison of Magnitude

THE IDEAL GAS LAW AND KINETIC THEORY

= atm. 760 mm Hg. = atm. d. 767 torr = 767 mm Hg. = 1.01 atm

Chapter 10 Liquids & Solids

CHAPTER 12. Gases and the Kinetic-Molecular Theory

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

Calorimetry: Heat of Vaporization

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Objectives: 1. Be able to list the assumptions and methods associated with the Virial Equation of state.

HEAT UNIT 1.1 KINETIC THEORY OF GASES Introduction Postulates of Kinetic Theory of Gases

H 2O gas: molecules are very far apart

THE KINETIC THEORY OF GASES

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134)

Intermolecular Forces

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter

CHEM 36 General Chemistry EXAM #1 February 13, 2002

Gas Laws. Heat and Temperature

Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged.

CHAPTER 6 Chemical Bonding

KINETIC MOLECULAR THEORY OF MATTER

Chapter 10. Can You draw the Lewis structure for a given covalently bonded molecule?

= 800 kg/m 3 (note that old units cancel out) J 1000 g = 4184 J/kg o C

Bonding & Molecular Shape Ron Robertson

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

momentum change per impact The average rate of change of momentum = Time interval between successive impacts 2m x 2l / x m x m x 2 / l P = l 2 P = l 3

The literature pertaining to the sorption of gases by solids is now so vast that it is

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

So T decreases. 1.- Does the temperature increase or decrease? For 1 mole of the vdw N2 gas:

Problem Set 4 Solutions

(1) The size of a gas particle is negligible as compared to the volume of the container in which the gas is placed.

Chapter 6 Thermodynamics: The First Law

The strength of the interaction

THE HUMIDITY/MOISTURE HANDBOOK

Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K

atm = 760 torr = 760 mm Hg = kpa = psi. = atm. = atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10

Gibbs Free Energy and Chemical Potential. NC State University

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

Mole Notes.notebook. October 29, 2014

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6, , , ,

Lecture 3: Models of Solutions

Review of Chemical Equilibrium Introduction

Chemistry 13: States of Matter

AP Chemistry 2009 Scoring Guidelines

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages )

Chapter 13 - LIQUIDS AND SOLIDS

How to transform, with a capacitor, thermal energy into usable work.

CLASSICAL CONCEPT REVIEW 8

F321 MOLES. Example If 1 atom has a mass of x g 1 mole of atoms will have a mass of x g x 6.02 x = 7.

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

Chapter 2 Polar Covalent Bonds; Acids and Bases

Section 3: Crystal Binding

Organic Chemistry Calculations

Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline

Performing Calculatons

Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1. Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57, 61, 63, 67, 69, 71(a), 73, 75, 79

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

Temperature. Number of moles. Constant Terms. Pressure. Answers Additional Questions 12.1

Pesticide Analysis by Mass Spectrometry

Use the Force! Noncovalent Molecular Forces

ESSAY. Write your answer in the space provided or on a separate sheet of paper.

Chemical Composition. Introductory Chemistry: A Foundation FOURTH EDITION. Atomic Masses. Atomic Masses. Atomic Masses. Chapter 8

Chapter 7: Polarization

Structure, Polarity & Physical Properties

Element of same atomic number, but different atomic mass o Example: Hydrogen

Intermolecular and Ionic Forces

Boyle s law - For calculating changes in pressure or volume: P 1 V 1 = P 2 V 2. Charles law - For calculating temperature or volume changes: V 1 T 1

Thermochemistry. r2 d:\files\courses\ \99heat&thermorans.doc. Ron Robertson

Lecture 1: Physical Equilibria The Temperature Dependence of Vapor Pressure

IB Chemistry. DP Chemistry Review

Kinetic Molecular Theory. Chapter 5. KE AVE and Average Velocity. Graham s Law of Effusion. Chapter 7. Real Gases

Chapter 5 Single Phase Systems

Transcription:

Equations of State (EoS) Equations of State From molecular considerations, identify which intermolecular interactions are significant (including estimating relative strengths of dipole moments, polarizability, etc.) Apply simple rules for calculating P, v, or T Calculate P, v, or T from non-ideal equations of state (cubic equations, the virial equation, compressibility charts, and ThermoSolver) Apply the Rackett equation, the thermal expansion coefficient, and the isothermal compressibility to find v for liquids and solids State the molecular components that contribute to internal energy Relate macroscopic thermodynamic properties/behaviors with their molecular origins, including point charges, dipoles, induced dipoles, dispersion interactions, repulsive forces, and chemical effects Define van der Waals forces and relate it to the dipole moment and polarizability of a molecule Define a potential function Write equations for ideal gas, hard sphere, Sutherland, and Lennard-Jones potentials and relate them to intermolecular interactions Explain the origin of an use "complex" equations of state State the molecular assumptions of the ideal gas law Explain how the terms in the van der Waals equation relax these assumptions Describe how cubic equations of state account for attractive and repulsive interactions State and use the principle of corresponding states to develop expressions for the critical property data of a species Describe the purpose of the acentric factor and its role in the construction of compressibility charts Adapt our approach to mixtures Write the van der Waals mixing rules and explain their functionality in terms of molecular interactions Write the mixing rules for the virial coefficients and for pseudo-critical properties using Kay's rule Using mixing rules to solve for P, v, and T of mixtures Write the exact differential of one property in terms of two other properties Use departure functions to calculate property data for real fluids (and use them to solve engineering problems) Calculate departure functions from Lee-Kesler charts Use equations of state to calculate departure functions EoS: The Ideal Gas Law

Ideal Gas Law An equation of state relates the molar density (or specific molar volume) of a fluid (i.e., a vapor or a liquid) to the temperature and pressure of the fluid. The state postulate claims that any two intensive variables can fix the state of a system, therefore, we can tabulate all state variables with respect to any two (measurable) properties (see the steam tables), or (more conveniently) we can write an explicit mathematical expression of one property in terms of any two others: The most common and simplest equation of state is the ideal gas law: A generic expression for an equation of state is to define a property, the compressibility factor, as the ratio of Pv to RT: Obviously, for an ideal gas. Real gases often show at modest pressures and at very high P NOTE Interestingly, the ideal gas law can be derived from our molecular understanding of the properties T ( ) and P ( ). This requires the following assumptions: Ideal gases involve molecules that occupy no volume Ideal gases involve molecules that exert no intermolecular forces IMPORTANT The ideal gas law is an approximation (!) that has only limited applicability. It is usually used for diatomic gas when (RT/P)>5 L/ mol and for other gases when (RT/P) > 20 L/mol (i.e., at high specific volumes!). : State the molecular assumptions of the ideal gas law TEST YOURSELF: 44 g are placed in a 0.23 liter container at 26C. The pressure is recorded to be 6 MPa. Evaluate whether ideal gas conditions are well-approximated. EoS: Excluded Volume

Excluded Volume Real gases occupy volume because the atoms/molecules have an effective radius: The volume occupied per mole is given by: TEST YOURSELF: If our from the previous example has effective radii given as Carbon : 0.07 nm ; Oxygen : 0.062 nm; molecule : approx 0.19 nm, determine what the fractional volume occupied is. How to account for this effect? The excluded volume, is the volume that is occupied by atoms/ molecules and is therefore "unavailable" for molecular motion. Many EoS simply directly correct for this effect by subtracting the excluded volume,. This is one of the most common (and simplest) modifications of the ideal gas law. EoS: Intermolecular Forces

Intermolecular Forces Molecules are made of positively charged nuclei and negatively charges electrons, therefore, it is useful to think of many of the interactions between molecules as electronic in nature. The electric field intensity is given by: where denotes a spatial derivative, and is the molecular potential energy. The electrostatic intermolecular interactions that we will consider are: Point charges: between ions, or in plasmas Permanent Dipoles Induced Dipoles Dispersion Forces Interactions between point charges are the simplest kind of electrostatic interactions. Here we assume that all of the charge of a molecule is concentrated at a point. The interaction force/potential between point charges is given as: NOTE: If the charges are the same, then the force is positive (repulsive). EoS: Permanent Dipoles Permanent Dipoles Some molecules, while not having a net charge, have an asymmetrical distribution of charges (Ex: water, ammonia, acetone).

The dipole moment,, of a molecule is the charge times the distance separating the charge(s) and has units of Debye (D) (which is 3.336x ). NOTE The potential energy of a dipole drops off dramatically faster with than the energy between point charges. (Also, because it is an even power, there is a negative in both expressions.) Eos: Induced Dipoles and Dispersion Forces Induced Dipoles and Dispersion Forces Symmetric molecules have no net charge and a symmetrical distribution of charges, so there is no dipole interaction between them (Ex:, ). Nevertheless, proximity to permanent dipoles can induce a temporary dipole in these symmetric molecules. An induced dipole is caused when a molecule that would not by itself have a dipole moment is brought close to a molecule with a dipole moment. (That is, the dipole "pushes" the electron cloud of the symmetric molecule.) The polarizability,, of a molecule characterizes the ease to which that molecule's electrons are "pushed". What do you think influences this value? Even if two symmetric molecules (with no net charge) come into proximity, fluctuations in the electron cloud density can induce dipole-like behavior. Dispersion (London) Forces arise when two non-polar (i.e., do not have a dipole) molecules are brought close together so that their time-varying electron clouds "push" each other.

Dipole-dipole, dipole-induced-dipole, and dispersion forces are all attractive and all decay as (potential decays as ). All are lumped together as van der Waals forces. Define van der Waals forces and relate it to the dipole moment and polarizability of a molecule. EoS: Intermolecular Potentials Intermolecular forces and potentials So far, we have discussed attractive portion of potentials. The simplest way to include the idea of excluded volume is to assume a "hard sphere" repulsion when the molecules approach too closely. That is, we assume an impenetrable molecule radius,. for for The simplest total model of intermolecular potential available is the Sutherland Potential which simply adds van der Waals potential(s) to the hard sphere potential. for for A more "realistic" model of intermolecular potential is the Lennard- Jones Potential which includes van dew Waals-like attraction and a strong (but not hard sphere) repulsion.

Define a potential function Write equations for ideal gas, hard sphere, Sutherland, and Lennard- Jones potentials and relate them to intermolecular interactions EoS: The principle of corresponding states The principle of corresponding states Since the Lennard-Jones potential can be used somewhat generically to describe the interactions between molecules and it depends on only two parameters -- and -- it is intriguing to postulate the following. The principle of corresponding states suggests that (for normalized choices of and ) the dimensionless potential energy is the same for all species. In other words, rather than having apply solely to interactions between molecules (i.e., having a new version of this equation for every molecule), we can instead define a function: that works for everything.

Adapting this statement to macroscopic quantities, van der Waals suggested that we could instead normalize using the critical properties of a fluid so that The principle of corresponding states (take 2) states that all fluids at the same "reduced temperature" ( ) and "reduced pressure" ( ) have the same compressibility factor. Mathematically, this means that we can define a function: or NOTE This expression actually works quite well for non-polar fluids. That is, it works for fluids that exhibit only induced dipoles, rather than permanent ones. In order to extend this idea to asymmetrical (polar) molecules, we define: The Pitzer ascentric factor,, quantifies the degree of polarity of a molecule (that is, how asymmetrical it is). Finally, we can mathematically write this generic idea as: or NOTE The generalized compressibility charts plot and as a function of and. State and use the principle of corresponding states to develop expressions for the critical property data of a species Describe the purpose of the acentric factor and its role in the construction of compressibility charts TEST YOURSELF Let's revisit our friend and calculate the container size when 44 g is at P=6MPa and 26C (i.e., do we get 0.23 liters?) EoS: Intermolecular Potentials and Equations of State

Intermolecular Potentials and Equations of State We are now ready to build EoS based on our understanding on intermolecular interactions. NOTE Intermolecular interactions are at least pairwise, therefore, as decreases binary interactions are the first ones to become important The number of pairwise interactions scales with the number of molecules as follows: # of pairwise interactions per molecule = total # of pairwise interactions = # of pairwise interactions per molecule X # of molecules total # of pairwise interactions = NOTE Since the number of pairwise interactions increases with decreasing -- total # of pairwise interactions Revisiting our friend the van der Waals equation, we can then write: QUESTION? Why do we "correct" P? Why is that "correction" negative? We could also write this as: Explain how the terms in the van der Waals equation relax these assumptions Describe how cubic equations of state account for attractive and repulsive interactions

EoS: Cubic Equations of State Cubic Equations of State The general form of correcting the for "excluded volume" and subtracting a term proportional to (top correct the pressure to account for attractive forces) leads to a class of equations of state called cubic equations of state, that have the interesting property of being able to capture both the liquid and vapor conditions: In order to use the van der Waals equation of state, we need to determine the materialdependent constants, and. Using the principle of corresponding states, we can argue that the constants for all materials may be obtained by recognizing that, at the critical point: We can then use three equations (the vdw EOS and these two derivatives) at the critical point to write and in terms of and : this approach leads to (i.e., solving the two equations -- above -- for the two unknowns -- a and b): doing a bit more algebra, we can write an expression for : which is higher than is typically observed experimentally. Following the same procedure for a few of the more common other cubic equations: Name Attractive term a b

van der Waals Redlich-Kwong Soave- Redlich-Kwong Peng-Robinson NOTE: The critical compressibility factor for the Redlich-Kwong is improved, at 1/3, and is even more in line with experimental observations for SRK and PR (closer to 0.3) In the SRK and PR equations, is a function that replaces the from the RK equation. Both functions are similar, and given by: Describe how cubic equations of state account for attractive and repulsive interactions Calculate P, v, or T from non-ideal equations of state (cubic equations, the virial equation, compressibility charts, and ThermoSolver) TEST YOURSELF Use the vdw EoS to calculate the pressure of 44 g in a 0.23 liter container at 26C (i.e., do we get P=6 Mpa?) EoS: Virial Equation of State Virial Equations of State The virial equations of state are power series expansions for the compressibility factor in either specific volume: or pressure: An interesting consequence of this form for an equation of state is that the coefficients can be directly related to a first principles (statistical mechanics and/or physical chemistry) analysis of intermolecular potentials. is related to "two body" interactions is related to "three body" interactions...

NOTE: As pressure increases, multi-body interactions become more important and more terms in the virial equation should be used. Conversely, as pressure decreases, even two-body interactions become negligible and the ideal gas law is recovered. While these coefficients can be derived from first principles, there are a number of correlations that are in common use. One example includes the following (for the virial equation truncated at two-body interaction): Calculate P, v, or T from non-ideal equations of state (cubic equations, the virial equation, compressibility charts, and ThermoSolver) EoS: Equations of State for Mixtures Equations of State for Mixtures When dealing with mixtures the material-dependent constants require mixing rules due to the fact that the potential number of combinations is infinite. Virial Equation for Mixtures The most straight-forward, and theoretically sound, mixing rules apply to the virial equation. depends on two-body interactions two-body interactions ( ) depend on and depends on three body interactions three-body interactions ( ) depend on,, and Cubic EOS for Mixtures While not as theoretically sound the terms in the cubic equations of state have the following rough meanings: relates to the excluded volume due to molecule size relates to intermolecular interactions (assumed to be two-body interactions, for simplicity) therefore: or

where or (for some EOS) The excluded volume is simpler (and more "correct"), given by: Corresponding States for Mixtures There is no theoretically sound way to adapt the concept of corresponding states. The most commonly used is Kay's Rules, which defines "pseudo-critical" properties:, for example, where Write the van der Waals mixing rules and explain their functionality in terms of molecular interactions Write the mixing rules for the virial coefficients and for pseudocritical properties using Kay's rule Using mixing rules to solve for P, v, and T of mixtures TEST YOURSELF A gas mixture contains 20.0 mole % CH 4, 30.0% C 2 H 6, and the balance C 2 H 4. Ten kilograms of this gas is compressed to 200 bar at 90C. What is the volume? EoS: Equations of State for Liquids and Solids Liquids and Solids The specific volume (or density) of liquids and solids are essentially constant (except for the liquid near the critical point), therefore they are often called "incompressible". Nevertheless, there is, in fact, a small dependence of the specific volume on temperature and pressure: : The coefficient of thermal expansion is a measure of the dependence of a liquid/solid's specific volume on temperature and is given as

: The isothermal compressibility is a measure of the dependence of a liquid/solid's specific volume on pressure and is given as These quantities can be used in a simple equation of state in the following way: : Alternatively, the liquid specific volume at saturation conditions is bigen by the Rackett Equation: Apply the Rackett equation, the thermal expansion coefficient, and the isothermal compressibility to find v for liquids and solids EOS: Fundamental Property Relations Fundamental Property Relations and the Maxwell Equations All of thermodynamics is build on the two premises of the first and second law, which can mathematically be written as Combining these and using the definition of the (reversible) work, we get In addition to these two fundamental properties ( "derived properties": ), we have also defined several The way that much of the rest of thermodynamics is constructed is to use these definitions/relations and mathematically manipulate them. To do so, we need to recall the following two mathematical truths (note that the subscripts on the ()'s refer to variables held constant during the differentiation): NOTE: For a function that depends on two variables and, we can write NOTE: The order of differentiation does not matter, so : Taking the first of these facts and using it to write an expression for as a function of and, leads to:

Equating the terms in front of the and to their counterparts int he earlier expression for (above) leads to: By following the same procedure for by writing it as a function of and, leads to: Finally, doing the same for and, gives: EOS: Maxwell Relations Fundamental Property Relations and the Maxwell Equations (cont.) Further manipulating these relations by using our second mathematical fact yields the Maxwell relations as follows: Take our equations that originated from the analysis: and take the partial derivative with respect to for the top and with respect to for the bottom yields: Our second mathematical fact tells us that the right-hand side of both of these expressions is equivalent, so that we can write: Performing the same analysis on the expressions that originated from the,, and expressions gives the other three maxwell relations: NOTE: The "beauty" of the maxwell equations, as well as the fundamental property relations derived early, is that they can be used to relate measurable quantities (like, and ) to fundamental and derived

quantities. Also, in many case, we can substitute equations of state into these expressions to ad in calculating quantities of interest. EoS: Departure Functions Departure Functions In this section, we learned how to handle data for non-ideal-gas materials; however, the only way that we have handled non-measurable properties for such materials was to use the steam tables (which, obviously, only works for water). One conceptually satisfying way to alleviate that shortcoming is to exploit the fact that we need to choose a reference state when calculating fundamental or derived properties. In this approach, we choose as our reference state, the material of interest in its "ideal gas state". In this way, if we could calculate the difference between the material in its "ideal gas state" versus in its "real state", we could make use of the ideal-gas relations that we have thus far used. : Departure functions (here denoted as for a generic property, ) are defined as the difference between the property of interest in its real state (designated here as ) and its ideal gas state (designated here ): In this way, we can write the actual value of a property as: Using this approach, we can then express our differences in any state function (for example entropy) between states 1 and 2 as:

We have already discussed, so we can replace that to get: IMPORTANT: NOTE: The way that we "convert" a real fluid to an ideal gas is to drop the pressure fro down to. So that (as can be seen in our schematic), we can get the departure function at and by going from ( ) to ( -- ideal gas) to ( -- ideal gas). Doing this for both and allows us to calculate. We note that our analysis of the fundamental property relations told us the exact differential for at constant : So that our steps for calculating yield: A similar analysis for gives: IMPORTANT: where can be calculated from (noting that is independent of ): NOTE: The easiest way to calculate or is to look them up on Lee- Kesler tables in the same way that we did for values! : Use equations of state to calculate departure functions : Calculate departure functions from Lee-Kesler charts