Rail-to-Rail, High Output Current Amplifier AD8397



Similar documents
High Speed, Low Cost, Triple Op Amp ADA4861-3

High Common-Mode Rejection. Differential Line Receiver SSM2141. Fax: 781/ FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection

Precision, Unity-Gain Differential Amplifier AMP03

High Speed, Low Power Dual Op Amp AD827

Low Cost, High Speed, Rail-to-Rail, Output Op Amps ADA4851-1/ADA4851-2/ADA4851-4

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

Quad Low Offset, Low Power Operational Amplifier OP400

Low Cost Instrumentation Amplifier AD622

High Accuracy, Ultralow IQ, 1.5 A, anycap Low Dropout Regulator ADP3339

High Speed, Low Noise Video Op Amp AD829

PIN CONFIGURATION FEATURES ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS. D, F, N Packages

CMOS Switched-Capacitor Voltage Converters ADM660/ADM8660

High Speed, Low Power Monolithic Op Amp AD847

HA-5104/883. Low Noise, High Performance, Quad Operational Amplifier. Features. Description. Applications. Ordering Information. Pinout.

High Accuracy, Ultralow IQ, 1 A, anycap Low Dropout Regulator ADP3338

Wide Bandwidth, Fast Settling Difet OPERATIONAL AMPLIFIER

High Voltage Current Shunt Monitor AD8212

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifiers AD8276/AD8277

Features. Ordering Information. * Underbar marking may not be to scale. Part Identification

DESCRIPTIO. LT1226 Low Noise Very High Speed Operational Amplifier

CMOS 1.8 V to 5.5 V, 2.5 Ω SPDT Switch/2:1 Mux in Tiny SC70 Package ADG779

TS321 Low Power Single Operational Amplifier

LM741. Single Operational Amplifier. Features. Description. Internal Block Diagram.

+5 V Powered RS-232/RS-422 Transceiver AD7306

Low Power, 3.3 V, RS-232 Line Drivers/Receivers ADM3202/ADM3222/ADM1385


ICS SPREAD SPECTRUM CLOCK SYNTHESIZER. Description. Features. Block Diagram DATASHEET

160 MHz Rail-to-Rail Amplifier with Disable AD8041

Low Voltage Microphone Preamplifier with Variable Compression and Noise Gating SSM2167

15 MHz Rail-to-Rail Operational Amplifiers OP162/OP262/OP462

Features. Modulation Frequency (khz) VDD. PLL Clock Synthesizer with Spread Spectrum Circuitry GND

Low Noise, High Speed Amplifier for 16-Bit Systems AD8021

1 pc Charge Injection, 100 pa Leakage CMOS 5 V/5 V/3 V 4-Channel Multiplexer ADG604

PowerAmp Design. PowerAmp Design PAD135 COMPACT HIGH VOLATGE OP AMP

Precision Thermocouple Amplifiers with Cold Junction Compensation AD8494/AD8495/AD8496/AD8497

1.5 Ω On Resistance, ±15 V/12 V/±5 V, icmos, Dual SPDT Switch ADG1436

TL084 TL084A - TL084B

LM381 LM381A Low Noise Dual Preamplifier

LM833 LOW NOISE DUAL OPERATIONAL AMPLIFIER

Description. 5k (10k) - + 5k (10k)

Low Noise, Matched Dual PNP Transistor MAT03

MC Low noise quad operational amplifier. Features. Description

CMOS Low Voltage 2.5 Ω Dual SPDT Switch ADG736L

LF442 Dual Low Power JFET Input Operational Amplifier

LM386 Low Voltage Audio Power Amplifier

TSV6290, TSV6290A, TSV6291, TSV6291A

Advanced Monolithic Systems

LM118/LM218/LM318 Operational Amplifiers

LF412 Low Offset Low Drift Dual JFET Input Operational Amplifier

Voltage Output Temperature Sensor with Signal Conditioning AD22100

5.5 V Input, 300 ma, Low Quiescent Current, CMOS Linear Regulator ADP122/ADP123

Supertex inc. HV Channel High Voltage Amplifier Array HV256. Features. General Description. Applications. Typical Application Circuit

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

High-Speed, 5 V, 0.1 F CMOS RS-232 Drivers/Receivers ADM222/ADM232A/ADM242

Application Note TMA Series

LM2902. Low-power quad operational amplifier. Features. Description

INTEGRATED CIRCUITS DATA SHEET. TDA7000 FM radio circuit. Product specification File under Integrated Circuits, IC01

UA741. General-purpose single operational amplifier. Features. Applications. Description. N DIP8 (plastic package)

SELECTION GUIDE. Nominal Input

MUSES8920. High Quality Audio J-FET Input Dual Operational Amplifier - 1 -

2 TO 4 DIFFERENTIAL PCIE GEN1 CLOCK MUX ICS Features

DUAL/QUAD LOW NOISE OPERATIONAL AMPLIFIERS

CMOS 5 V/+5 V 4 Single SPDT Switches ADG619/ADG620

SPREAD SPECTRUM CLOCK GENERATOR. Features

LM380 Audio Power Amplifier

LM138 LM338 5-Amp Adjustable Regulators

TS34119 Low Power Audio Amplifier

NE592 Video Amplifier

ICS514 LOCO PLL CLOCK GENERATOR. Description. Features. Block Diagram DATASHEET

Low Noise, Precision, High Speed Operational Amplifier (A VCL > 5) OP37

LM108 LM208 LM308 Operational Amplifiers

MAX14760/MAX14762/MAX14764 Above- and Below-the-Rails Low-Leakage Analog Switches

PS323. Precision, Single-Supply SPST Analog Switch. Features. Description. Block Diagram, Pin Configuration, and Truth Table. Applications PS323 PS323

AD8601/AD8602/AD8604. Precision CMOS, Single-Supply, Rail-to-Rail, Input/Output Wideband Operational Amplifiers FEATURES PIN CONFIGURATIONS

1.0A LOW DROPOUT LINEAR REGULATOR

CA3420. Features. 0.5MHz, Low Supply Voltage, Low Input Current BiMOS Operational Amplifier. Applications. Functional Diagram. Ordering Information

CLA LF: Surface Mount Limiter Diode

High-Speed, 5 V, 0.1 F CMOS RS-232 Driver/Receivers ADM202/ADM203

CMOS 1.8 V to 5.5 V, 2.5 2:1 Mux/SPDT Switch in SOT-23 ADG719

LM mW Stereo Cell Phone Audio Amplifier

Description. Output Stage. 5k (10k) - + 5k (10k)

INTEGRATED CIRCUITS DATA SHEET. TDA W BTL mono audio amplifier. Product specification File under Integrated Circuits, IC01

CMOS 1.8 V to 5.5 V, 2.5 Ω 2:1 Mux/SPDT Switch in SOT-23 ADG719

4 OUTPUT PCIE GEN1/2 SYNTHESIZER IDT5V41186

Low Noise, Low Drift Single-Supply Operational Amplifiers OP113/OP213/OP413

1 TO 4 CLOCK BUFFER ICS551. Description. Features. Block Diagram DATASHEET

2 CMOS 5 V/5 V, SPST Switches ADG601/ADG602

TL074 TL074A - TL074B

Kit 27. 1W TDA7052 POWER AMPLIFIER

ICS379. Quad PLL with VCXO Quick Turn Clock. Description. Features. Block Diagram

DATA SHEET. TDA8560Q 2 40 W/2 Ω stereo BTL car radio power amplifier with diagnostic facility INTEGRATED CIRCUITS Jan 08

TRIPLE PLL FIELD PROG. SPREAD SPECTRUM CLOCK SYNTHESIZER. Features

DATA SHEET. TDA1510AQ 24 W BTL or 2 x 12 W stereo car radio power amplifier INTEGRATED CIRCUITS

DATA SHEET. TDA1543 Dual 16-bit DAC (economy version) (I 2 S input format) INTEGRATED CIRCUITS

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS

Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches

5 kv rms Signal Isolated High Speed CAN Transceiver with Bus Protection ADM3054

Push-Pull FET Driver with Integrated Oscillator and Clock Output

Balanced Line Receiver ICs

Transcription:

Rail-to-Rail, High Output Current Amplifier AD8397 FEATURES Dual operational amplifier Voltage feedback Wide supply range from 3 V to 24 V Rail-to-rail output Output swing to within.5 V of supply rails High linear output current 3 ma peak into 32 Ω on ±2 V supplies while maintaining 8 dbc SFDR Low noise 4.5 nv/ Hz voltage noise density at khz.5 pa/ Hz current noise density at khz High speed 69 MHz bandwidth (G =, 3 db) 53 V/μs slew rate (RLOAD = 25 Ω) APPLICATIONS Twisted-pair line drivers Audio applications General-purpose ac applications GENERAL DESCRIPTION The AD8397 comprises two voltage feedback operational amplifiers capable of driving heavy loads with excellent linearity. The common-emitter, rail-to-rail output stage surpasses the output voltage capability of typical emitter-follower output stages and can swing to within.5 V of either rail while driving a 25 Ω load. The low distortion, high output current, and wide output dynamic range make the AD8397 ideal for applications that require a large signal swing into a heavy load. Fabricated with Analog Devices, Inc., high speed extra fast complementary bipolar high voltage (XFCB-HV) process, the high bandwidth and fast slew rate of the AD8397 keep distortion to a minimum. The AD8397 is available in a standard 8-lead SOIC_N package and, for higher power dissipating applications, a thermally enhanced 8-lead SOIC_N_EP package. Both packages can operate from 4 C to +85 C. V OUT (V) V OUT (V) PIN CONFIGURATION OUT IN 2 +IN 3 V S 4 8 +V S 7 OUT2 6 IN2 5 +IN2 Figure. 8-Lead SOIC.5.25..75.5.25.25.5.75..25.5 2 4 6 8 2 4 6 8 2 TIME (µs) Figure 2. Output Swing, VS = ±.5 V, RL = 25 Ω 2 9 6 3 3 6 9 2 2 4 6 8 2 4 6 8 2 TIME (µs) Figure 3. Output Swing, VS = ±2 V, RL = Ω 569-569-3 569-32 Rev. A Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 96, Norwood, MA 262-96, U.S.A. Tel: 78.329.47 www.analog.com Fax: 78.46.33 2 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS Features... Applications... General Description... Pin Configuration... Revision History... 2 Specifications... 3 Absolute Maximum Ratings... 7 Maximum Power Dissipation... 7 ESD Caution... 7 Typical Performance Characteristics...8 Applications Information... Power Supply and Decoupling... Layout Considerations... Unity-Gain Output Swing... Capacitive Load Drive... 2 Outline Dimensions... 3 Ordering Guide... 3 REVISION HISTORY 5/ Rev. to Rev. A Changes to Applications Section and General Description Section... Changed Maximum Output Current Parameter to Peak AC Output Current Parameter, Table... 3 Added Note and Note 2, Table... 3 Changed Maximum Output Current Parameter to Peak AC Output Current Parameter, Table 2... 4 Added Note and Note 2, Table 2... 4 Changed Maximum Output Current Parameter to Peak AC Output Current Parameter, Table 3... 5 Added Note and Note 2, Table 3... 5 Changed Maximum Output Current Parameter to Peak AC Output Current Parameter, Table 4... 6 Added Note and Note 2, Table 4... 6 Changes to Figure 4... 7 Changed General Description Section to Applications Information Section... Updated Outline Dimensions... 3 /5 Revision : Initial Version Rev. A Page 2 of 6

SPECIFICATIONS VS = ±.5 V or +3 V (at TA = 25 C, G = +, RL = 25 Ω, unless otherwise noted). Table. Parameter Test Conditions/Comments Min Typ Max Unit DYNAMIC PERFORMANCE 3 db Bandwidth VOUT =. V p-p 5 MHz. db Flatness VOUT =. V p-p 3.6 MHz Large Signal Bandwidth VOUT = 2. V p-p 9 MHz Slew Rate VOUT =.8 V p-p 32 V/μs NOISE/DISTORTION PERFORMANCE Distortion (Worst Harmonic) fc = khz, VOUT =.4 V p-p, G = +2 9 dbc Input Voltage Noise f = khz 4.5 nv/ Hz Input Current Noise f = khz.5 pa/ Hz DC PERFORMANCE Input Offset Voltage. 2.5 mv TMIN TMAX 2.5 mv Input Offset Voltage Match. 2. mv Input Bias Current 2 9 na TMIN TMAX.3 μa Input Offset Current 5 3 na Open-Loop Gain VOUT = ±.5 V 8 88 db INPUT CHARACTERISTICS Input Resistance f = khz 87 kω Input Capacitance.4 pf Common-Mode Rejection ΔVCM = ± V 7 8 db OUTPUT CHARACTERISTICS Output Resistance.2 Ω +Swing RLOAD = 25 Ω +.39 +.43 VP Swing RLOAD = 25 Ω.4.37 VP +Swing RLOAD = Ω +.45 +.48 VP Swing RLOAD = Ω.47.44 VP Peak AC Output Current 2 SFDR 7 dbc, f = khz, VOUT =.7 VP, RLOAD = 4. Ω 7 ma POWER SUPPLY Operating Range (Dual Supply) ±.5 ±2. V Supply Current 6 7 8.5 ma/amp Power Supply Rejection ΔVS = ±.5 V 7 82 db Unity gain used to facilitate characterization. To improve stability, a gain of 2 or greater is recommended. 2 Peak ac output current specification assumes normal ac operation and is not valid for continuous dc operation. Rev. A Page 3 of 6

VS = ±2.5V or +5 V (at TA = 25 C, G = +, RL = 25 Ω, unless otherwise noted). Table 2. Parameter Test Conditions/Comments Min Typ Max Unit DYNAMIC PERFORMANCE 3 db Bandwidth VOUT =. V p-p 6 MHz. db Flatness VOUT =. V p-p 4.8 MHz Large Signal Bandwidth VOUT = 2. V p-p 4 MHz Slew Rate VOUT = 2. V p-p 53 V/μs NOISE/DISTORTION PERFORMANCE Distortion (Worst Harmonic) fc = khz, VOUT = 2 V p-p, G = +2 98 dbc Input Voltage Noise f = khz 4.5 nv/ Hz Input Current Noise f = khz.5 pa/ Hz DC PERFORMANCE Input Offset Voltage. 2.4 mv TMIN TMAX 2.5 mv Input Offset Voltage Match. 2. mv Input Bias Current 2 9 na TMIN TMAX.3 μa Input Offset Current 5 3 na Open-Loop Gain VOUT = ±. V 85 9 db INPUT CHARACTERISTICS Input Resistance f = khz 87 kω Input Capacitance.4 pf Common-Mode Rejection ΔVCM = ± V 76 8 db OUTPUT CHARACTERISTICS Output Resistance.2 Ω +Swing RLOAD = 25 Ω +2.37 +2.42 VP Swing RLOAD = 25 Ω 2.37 2.32 VP +Swing RLOAD = Ω +2.45 +2.48 VP Swing RLOAD = Ω 2.46 2.42 VP Peak AC Output Current 2 SFDR 7 dbc, f = khz, VOUT =. VP, RLOAD = 4.3 Ω 23 ma POWER SUPPLY Operating Range (Dual Supply) ±.5 ±2.6 V Supply Current 7 9 2 ma/amp Power Supply Rejection ΔVS = ±.5 V 75 85 db Unity gain used to facilitate characterization. To improve stability, a gain of 2 or greater is recommended. 2 Peak ac output current specification assumes normal ac operation and is not valid for continuous dc operation. Rev. A Page 4 of 6

VS = ±5 V or + V (at TA = 25 C, G = +, RL = 25 Ω, unless otherwise noted). Table 3. Parameter Test Conditions/Comments Min Typ Max Unit DYNAMIC PERFORMANCE 3 db Bandwidth VOUT =. V p-p 66 MHz. db Flatness VOUT =. V p-p 6.5 MHz Large Signal Bandwidth VOUT = 2. V p-p 4 MHz Slew Rate VOUT = 4. V p-p 53 V/μs NOISE/DISTORTION PERFORMANCE Distortion (Worst Harmonic) fc = khz, VOUT = 6 V p-p, G = +2 94 dbc Input Voltage Noise f = khz 4.5 nv/ Hz Input Current Noise f = khz.5 pa/ Hz DC PERFORMANCE Input Offset Voltage. 2.5 mv TMIN TMAX 2.5 mv Input Offset Voltage Match. 2. mv Input Bias Current 2 9 na TMIN TMAX.3 μa Input Offset Current 5 3 na Open-Loop Gain VOUT = ±2. V 85 94 db INPUT CHARACTERISTICS Input Resistance f = khz 87 kω Input Capacitance.4 pf Common-Mode Rejection ΔVCM = ± V 84 94 db OUTPUT CHARACTERISTICS Output Resistance.2 Ω +Swing RLOAD = 25 Ω +4.7 +4.82 VP Swing RLOAD = 25 Ω 4.74 4.65 VP +Swing RLOAD = Ω +4.92 +4.96 VP Swing RLOAD = Ω 4.92 4.88 VP Peak AC Output Current 2 SFDR 8 dbc, f = khz, VOUT = 3 VP, RLOAD = 2 Ω 25 ma POWER SUPPLY Operating Range (Dual Supply) ±.5 ±2.6 V Supply Current 7 9 2 ma/amp Power Supply Rejection ΔVS = ±.5 V 76 85 db Unity gain used to facilitate characterization. To improve stability, a gain of 2 or greater is recommended. 2 Peak ac output current specification assumes normal ac operation and is not valid for continuous dc operation. Rev. A Page 5 of 6

VS = ±2 V or +24 V (at TA = 25 C, G = +, RL = 25 Ω, unless otherwise noted). Table 4. Parameter Test Conditions/Comments Min Typ Max Unit DYNAMIC PERFORMANCE 3 db Bandwidth VOUT =. V p-p 69 MHz. db Flatness VOUT =. V p-p 7.6 MHz Large Signal Bandwidth VOUT = 2. V p-p 4 MHz Slew Rate VOUT = 4. V p-p 53 V/μs NOISE/DISTORTION PERFORMANCE Distortion (Worst Harmonic) fc = khz, VOUT = 2 V p-p, G = +5 84 dbc Input Voltage Noise f = khz 4.5 nv/ Hz Input Current Noise f = khz.5 pa/ Hz DC PERFORMANCE Input Offset Voltage. 3. mv TMIN TMAX 2.5 mv Input Offset Voltage Match. 2. mv Input Bias Current 2 9 na TMIN TMAX.3 μa Input Offset Current 5 3 na Open-Loop Gain VOUT = ±3. V 9 96 db INPUT CHARACTERISTICS Input Resistance f = khz 87 kω Input Capacitance.4 pf Common-Mode Rejection VCM = ± V 85 96 db OUTPUT CHARACTERISTICS Output Resistance.2 Ω +Swing RLOAD = Ω +.82 +.89 VP Swing RLOAD = Ω.83.77 VP Peak AC Output Current 2 SFDR 8 dbc, f = khz, VOUT = VP, RLOAD = 32 Ω 3 ma POWER SUPPLY Operating Range (Dual Supply) ±.5 ±2.6 V Supply Current 8.5 5 ma/amp Power Supply Rejection VS = ±.5 V 76 86 db Unity gain used to facilitate characterization. To improve stability, a gain of 2 or greater is recommended. 2 Peak ac output current specification assumes normal ac operation and is not valid for continuous dc operation. Rev. A Page 6 of 6

ABSOLUTE MAXIMUM RATINGS Table 5. Parameter Rating Supply Voltage 26.4 V Power Dissipation See Figure 4 Storage Temperature Range 65 C to +25 C Operating Temperature Range 4 C to +85 C Lead Temperature (Soldering, sec) 3 C Junction Temperature 5 C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Thermal resistance for standard JEDEC 4-layer board: 8-lead SOIC_N: θja = 57.6 C/W 8-Lead SOIC_N_EP: θja = 47.2 C/W MAXIMUM POWER DISSIPATION The maximum power that can be dissipated safely by the AD8397 is limited by the associated rise in junction temperature. The maximum safe junction temperature for plastic encapsulated devices is determined by the glass transition temperature of the plastic, approximately 5 C. Temporarily exceeding this limit may cause a shift in parametric performance due to a change in the stresses exerted on the die by the package. MAXIMUM POWER DISSIPATION (W) 4.5 4. 3.5 3. 2.5 2..5..5 8-LEAD SOIC T J = 5 C 4 3 2 2 3 4 5 6 7 8 9 AMBIENT TEMPERATURE ( C) Figure 4. Maximum Power Dissipation vs. Ambient Temperature 569-2 ESD CAUTION Rev. A Page 7 of 6

TYPICAL PERFORMANCE CHARACTERISTICS 8 V OUT 6 2 OUTPUT (mv) 4 2 2 4 V IN CMRR (db) 3 4 5 6 OUT OUT 2 6 7 8 2 4 6 8 2 4 6 8 2 TIME (ns) Figure 5. Small Signal Pulse Response (G = +, VS = ±5 V, RL = 25 Ω) OUTPUT (V) 5 4 V IN V OUT 3 2.2.4.6.8..2.4.6.8 2. TIME (μs) Figure 6. Large Signal Pulse Response ( V to 4 V, VS = ±5 V, RL = 25 Ω) 569-29 569-22 CROSSTALK (db) 8 9.. Figure 8. Common-Mode Rejection (CMRR) vs. Frequency (VS = ±5 V, RL = 25 Ω) 2 3 4 5 6 7 8 9 OUT OUT 2.. Figure 9. Output-to-Output Crosstalk vs. Frequency (VS = ±5 V, VO = V p-p, RL = 25 Ω) 569-5 569-6 INPUT (V) 3. 2.5 2..5..5.5 V IN VOUT. 2 4 8 2 6 2 24 28 32 36 4 TIME (ns) Figure 7. Output Overdrive Recovery (VS = ±5 V, Gain = +2, RL = 25 Ω) 6 5 4 3 2 OUTPUT (V) 569-4 GAIN (db).3.2...2 V O = mv p-p.3. Figure.. db Flatness (VS = ±5 V, VO =. V p-p, Gain = +, RL = 25 Ω) 569-7 Rev. A Page 8 of 6

G = + NORMALIZED GAIN (db) 2 G = +2 G = + NORMALIZED GAIN (db) 2 G = + G = + G = +2 3 3 4.. 569-8 4.. 569- Figure. Small Signal Frequency Response for Various Gains (VS = ±5 V, VO =. V p-p, RL = 25 Ω) Figure 4. Large Signal Frequency Response for Various Gains (VS = ±5 V, VO = 2 V p-p, RL = 25 Ω) 2V 2 GAIN (db) 2 3 4.. 5V 2.5V Figure 2. Small Signal Frequency Response for Various Supplies (Gain = +, VO =. V p-p, RL = 25 Ω) 569-9 GAIN (db) 2 3 2.5V 5V 4.. 2V Figure 5. Large Signal Frequency Response for Various Supplies (Gain = +, VO = 2 V p-p, RL = 25 Ω) 569-2 35 8 9 OPEN-LOOP GAIN (db) 6 4 2 GAIN PHASE 45 45 9 PHASE (Degrees) PSRR (db) 2 3 4 5 6 +PSRR PSRR 2 35 4 8... Figure 3. Open Loop Gain and Phase vs. Frequency (VS = ±5 V, RL = 25 Ω) 569-7 8.. Figure 6. Power Supply Rejection Ratio (PSRR) vs. Frequency (VS = ±5 V, RL = 25 Ω) 569-3 Rev. A Page 9 of 6

DISTORTION (dbc) 2 3 4 5 6 7 8 9 SECOND THIRD 2.. 4 5 6 Figure 7. Distortion vs. Frequency (VS = ±5 V, VO = 2 V p-p, G = +2, RL = 25 Ω) 569-23 DISTORTION (dbc) 4 5 6 7 8 9 2 2 3 4 5 6 7 8 9 OUTPUT VOLTAGE (V p-p) 4 5 6 SECOND THIRD Figure 2. Distortion vs. Output Voltage @ khz, (VS = ±5 V, G = +2, RL = 25 Ω) 569-26 DISTORTION (dbc) 7 8 9 SECOND DISTORTION (dbc) 7 8 9 SECOND THIRD 2.25.5.75..25.5.75 2. 2.25 2.5 2.75 OUTPUT VOLTAGE (V p-p) Figure 8. Distortion vs. Output Voltage @ khz, (VS = ±.5 V, G = +2, RL = 25 Ω) 569-24 THIRD 2 2 4 6 8 2 4 6 8 2 22 24 OUTPUT VOLTAGE (V p-p) Figure 2. Distortion vs. Output Voltage @ khz, (VS = ±2 V, G = +5, RL = 5 Ω) 569-27 4 5 6 DISTORTION (dbc) 7 8 9 SECOND THIRD 2.5..5 2. 2.5 3. 3.5 4. 4.5 5. OUTPUT VOLTAGE (V p-p) Figure 9. Distortion vs. Output Voltage @ khz, (VS = ±2.5 V, G = +2, RL = 25 Ω) 569-25 Rev. A Page of 6

APPLICATIONS INFORMATION The AD8397 is a voltage feedback operational amplifier that features an H-bridge input stage and common-emitter, rail-to-rail output stage. The AD8397 can operate from a wide supply range, ±.5 V to ±2 V. When driving light loads, the rail-to-rail output is capable of swinging to within.2 V of either rail. The output can also deliver high linear output current when driving heavy loads, up to 3 ma into 32 Ω while maintaining 8 dbc SFDR. The AD8397 is fabricated on Analog Devices proprietary XFCB-HV. POWER SUPPLY AND DECOUPLING The AD8397 can be powered with a good quality, well-regulated, low noise supply from ±.5 V to ±2 V. Pay careful attention to decoupling the power supply. Use high quality capacitors with low equivalent series resistance (ESR), such as multilayer ceramic capacitors (MLCCs), to minimize the supply voltage ripple and power dissipation. Locate a. μf MLCC decoupling capacitor(s) no more than /8 inch away from the power supply pin(s). A large tantalum μf to 47 μf capacitor is recommended to provide good decoupling for lower frequency signals and to supply current for fast, large signal changes at the AD8397 outputs. LAYOUT CONSIDERATIONS As with all high speed applications, pay careful attention to printed circuit board (PCB) layout to prevent associated board parasitics from becoming problematic. The PCB should have a low impedance return path (or ground) to the supply. Removing the ground plane from all layers in the immediate area of the amplifier helps to reduce stray capacitances. The signal routing should be short and direct in order to minimize the parasitic inductance and capacitance associated with these traces. Locate termination resistors and loads as close as possible to their respective inputs and outputs. Keep input traces as far apart as possible from the output traces to minimize coupling (crosstalk) though the board. When the AD8397 is configured as a differential driver, as in some line driving applications, provide a symmetrical layout to the extent possible in order to maximize balanced performance. When running differential signals over a long distance, the traces on the PCB should be close together or any differential wiring should be twisted together to minimize the area of the inductive loop that is formed. This reduces the radiated energy and makes the circuit less susceptible to RF interference. Adherence to stripline design techniques for long signal traces (greater than approximately inch) is recommended. UNITY-GAIN OUTPUT SWING When operating the AD8397 in a unity-gain configuration, the output does not swing to the rails and is constrained by the H-bridge input. This can be seen by comparing the output overdrive recovery in Figure 7 and the input overdrive recovery in Figure 22. To avoid overdriving the input and to realize the full swing afforded by the rail-to-rail output stage, use the amplifier in a gain of two or greater. VOLTS 7 6 5 4 3 2 INPUT OUTPUT 8 6 24 32 4 TIME (ns) 48 56 64 72 8 Figure 22. Unity-Gain Input Overdrive Recovery 569-28 Rev. A Page of 6

CAPACITIVE LOAD DRIVE When driving capacitive loads, many high speed operational amplifiers exhibit peaking in their frequency response. In a gain-of-two circuit, Figure 23 shows that the AD8397 can drive capacitive loads up to 27 pf with only 3 db of peaking. For amplifiers with more limited capacitive load drive, a small series resistor (RS) is generally used between the amplifier output and the capacitive load in order to minimize peaking and ensure device stability. Figure 24 shows that the use of a 2.2 Ω series resistor can further extend the capacitive load drive of the AD8397 out to 47 pf, while keeping the frequency response peaking to within 3 db. GAIN (db) 5 5 5 2 25 22pF 5pF pf 27pF GAIN (db) 5 5 5 2 25 3 35 39pF 27pF 33pF 47pF 4.. Figure 24. Capacitive Load Peaking with 2.2 Ω Series Resistor 569-3 3 35 4.. Figure 23. Capacitive Load Peaking Without Series Resistor 569-2 Rev. A Page 2 of 6

OUTLINE DIMENSIONS 5. (.968) 4.8 (.89) 4. (.574) 3.8 (.497) 8 5 4 6.2 (.244) 5.8 (.2284).25 (.98). (.4) COPLANARITY. SEATING PLANE.27 (.5) BSC.75 (.688).35 (.532).5 (.2).3 (.22) 8.25 (.98).7 (.67).5 (.96).25 (.99).27 (.5).4 (.57) 45 COMPLIANT TO JEDEC STANDARDS MS-2-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 25. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) 247-A 4. (.57) 3.9 (.54) 3.8 (.5) 5. (.97) 4.9 (.93) 4.8 (.89) 8 5 TOP VIEW 4 6.2 (.244) 6. (.236) 5.8 (.228) 3.98 (.22) FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. 2.4 (.95).75 (.69).35 (.53).27 (.5) BSC.65 (.65).25 (.49) BOTTOM VIEW (PINS UP).5 (.2).25 (.) 45. (.4) MAX COPLANARITY..5 (.2).3 (.2) SEATING PLANE.25 (.98).7 (.67) 8.27 (.5).4 (.6) COMPLIANT TO JEDEC STANDARDS MS-2-AA CONTROLLING DIMENSIONS ARE IN MILLIMETER; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 26. 8-Lead Standard Small Outline Package with Exposed Pad [SOIC_N_EP] Narrow Body (RD-8-2) Dimensions shown in millimeters and (inches) 7-28-28-A ORDERING GUIDE Model Temperature Package Package Description Package Outline AD8397ARZ 4 C to +85 C 8-Lead SOIC_N R-8 AD8397ARZ-REEL 4 C to +85 C 8-Lead SOIC_N R-8 AD8397ARZ-REEL7 4 C to +85 C 8-Lead SOIC_N R-8 AD8397ARDZ 4 C to +85 C 8-Lead SOIC_N_EP RD-8-2 AD8397ARDZ-REEL 4 C to +85 C 8-Lead SOIC_N_EP RD-8-2 AD8397ARDZ-REEL7 4 C to +85 C 8-Lead SOIC_N_EP RD-8-2 Z = RoHS Compliant Part. Rev. A Page 3 of 6

NOTES Rev. A Page 4 of 6

NOTES Rev. A Page 5 of 6

NOTES 2 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D569--5/(A) Rev. A Page 6 of 6