ASEN 3112 - Structures. MDOF Dynamic Systems. ASEN 3112 Lecture 1 Slide 1



Similar documents
Example Analysis of MDOF Forced Damped Systems

Modal Analysis Damped Systems

Similarity and Diagonalization. Similar Matrices

Introduction to Matrix Algebra

Understanding Poles and Zeros

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

Introduction to Complex Numbers in Physics/Engineering

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

by the matrix A results in a vector which is a reflection of the given

Notes on Determinant

Let s first see how precession works in quantitative detail. The system is illustrated below: ...

LS.6 Solution Matrices

Oscillations. Vern Lindberg. June 10, 2010

Linear Algebra: Determinants, Inverses, Rank

13 MATH FACTS a = The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

Unit - 6 Vibrations of Two Degree of Freedom Systems

Numerical Analysis Lecture Notes

Orthogonal Diagonalization of Symmetric Matrices

ANALYTICAL METHODS FOR ENGINEERS

Second Order Linear Differential Equations

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

Linear Algebra Review. Vectors

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

5.3 The Cross Product in R 3

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8

Lecture 5: Singular Value Decomposition SVD (1)

DATA ANALYSIS II. Matrix Algorithms

DRAFT. Further mathematics. GCE AS and A level subject content

Elasticity Theory Basics

α = u v. In other words, Orthogonal Projection

Continued Fractions and the Euclidean Algorithm

F Matrix Calculus F 1

APPLIED MATHEMATICS ADVANCED LEVEL

MATH APPLIED MATRIX THEORY

Chapter 6. Orthogonality

Numerical Analysis Lecture Notes

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Physics 1120: Simple Harmonic Motion Solutions

Vector and Matrix Norms

2.2 Magic with complex exponentials

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Eigenvalues and Eigenvectors

Prentice Hall Mathematics: Algebra Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

Least-Squares Intersection of Lines

3.1 State Space Models

Inner Product Spaces

Methods for Vibration Analysis

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Chapter 17. Orthogonal Matrices and Symmetries of Space

Linear Algebra: Vectors

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

G. GRAPHING FUNCTIONS

Figure 1.1 Vector A and Vector F

Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.

2 Session Two - Complex Numbers and Vectors

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Nonlinear Iterative Partial Least Squares Method

LINEAR ALGEBRA W W L CHEN

Section 1.1. Introduction to R n

Data Mining: Algorithms and Applications Matrix Math Review

HW6 Solutions. MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) November 14, Checklist: Section 7.8: 1c, 2, 7, 10, [16]

The Method of Partial Fractions Math 121 Calculus II Spring 2015

More than you wanted to know about quadratic forms

Review of Fundamental Mathematics

1 Sets and Set Notation.

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited

BASIC VIBRATION THEORY

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

Lecture 2 Matrix Operations

Lecture 2: Homogeneous Coordinates, Lines and Conics

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

The Characteristic Polynomial

Vocabulary Words and Definitions for Algebra

8 Square matrices continued: Determinants

6. Vectors Scott Surgent (surgent@asu.edu)

Linear Algebra I. Ronald van Luijk, 2012

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Simple Harmonic Motion

Linear Algebra Notes for Marsden and Tromba Vector Calculus

SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( )( ). The Odd-Root Property

v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors.

Introduction to Matrices for Engineers

APPLICATIONS. are symmetric, but. are not.

1 of 79 Erik Eberhardt UBC Geological Engineering EOSC 433

Review Jeopardy. Blue vs. Orange. Review Jeopardy

Applications of Second-Order Differential Equations

State of Stress at Point

a cos x + b sin x = R cos(x α)

[1] Diagonal factorization

Physics 231 Lecture 15

One advantage of this algebraic approach is that we can write down

3.2 Sources, Sinks, Saddles, and Spirals

Eigenvalues, Eigenvectors, and Differential Equations

Transcription:

19 MDOF Dynamic Systems ASEN 3112 Lecture 1 Slide 1

A Two-DOF Mass-Spring-Dashpot Dynamic System Consider the lumped-parameter, mass-spring-dashpot dynamic system shown in the Figure. It has two point masses m 1 and m 2, which are connected by a spring-dashpot pair with constants k 2 and c 2, respectively. Mass m 1is linked to ground by another spring-dashpot pair with constants k 1 and c 1, respectively. The system has two degrees of freedom (DOF). These are the displacements u 1(t) and u 2(t) of the two masses measured from their static equilibrium positions. Known dynamic forces p 1 (t) and p 2 (t) act on the masses. Our goal is to formulate the equations of motion (EOM) and to place them in matrix form. Static equilibrium position u 1 = u 1(t) u 2 = u 2(t) p (t) 1 Static equilibrium position ;; k 1 k 2 p (t) 2 c 1 Mass m 1 c 2 Mass m 2 ASEN 3112 Lecture 1 Slide 2

Dynamic Free-Body-Diagrams to Derive EOM The EOM are derived from the dynamic Free Body Diagrams (DFBD) shown in the figure. Isolate the masses and apply the forces acting on them. Spring and dashpot forces are denoted by F si and F di for the ith spring and ith dashpot, respectively. The inertia force acting on the ith mass is F. Ii Positive force conventions are those shown in the Figure. Summing forces along x we get the two force equilibrium equations s2 F = k u s1 p (t) 1 s2 F = k (u u ). F = c u 1 1 d1 1 1 F = m u.. I1 1 1 2 2 1 d2 2 2 1 p (t) F F d2.. F = c (u u ) F = m u.. 2 I2 2 2 x DFBD #1: F x at mass 1 : F I 1 F s1 F d1 + F s2 + F d2 + p 1 = 0 DFBD #2: F x at mass 2 : F I 2 F s2 F d2 + p 2 = 0 ASEN 3112 Lecture 1 Slide 3

EOM in Scalar Form ASEN 3112 - Structures Replace now the expression of motion-dependent forces in terms of the displacement DOF, their velocities and accelerations: F s1 = k 1 u 1 F s2 = k 2 (u 2 u 1 ) F d1 = c 1 u 1 F d2 = c 2 ( u 2 u 1 ) F I 1 = m ü 1 F I 2 = m ü 2 1 2 Note that for the spring and dashpot that connect masses 1 and 2, relative displacements and velocities must be used. Replacing now into the force equilibrium equations furnished by the two DFBD gives m 1 ü 1 k 1 u 1 c 1 u 1 + k 2 (u 2 u 1 ) + c 2 ( u 2 u 1 ) + p 1 = 0 m 2 ü 2 k 2 (u 2 u 1 ) c 2 ( u 2 u 1 ) + p 2 = 0 Finally, collect all terms that depend on the DOF and their time derivatives in the LHS, while moving everything else (here, the given applied forces).. to the RHS. Sign convention: m u terms on the LHS must be positive. m 1 ü 1 + c 1 u 1 + c 2 u 1 c 2 u 2 + k 1 u 1 + k 2 u 1 k 2 u 2 = p 1 m 2 ü 2 c 2 u 1 + c 2 u 2 k 2 u 1 + k 2 u 2 = p 2 ASEN 3112 Lecture 1 Slide 4

EOM in Matrix Form ASEN 3112 - Structures Rewrite now the scalar EOM derived in the previous slide in matrix form: m 1 0 0 m 2 ü 1 ü 2 + c 1 + c 2 c 2 c 2 c 2 u 1 u 2 + k 1 + k 2 k 2 k 2 k 2 u 1 u 2 = p 1 p 2 Passing to compact matrix notation M ü + C u + Ku= p Here M, C and K denote the mass, damping and stiffness matrices, respectively, p, u, u and u are the force, displacement, velocity and acceleration vectors, respectively. The latter four are functions of time: u = u(t), etc., but the time argument will be often omitted for brevity. Note that matrices M, C and K are symmetric, and that M is diagonal. The latter property holds when masses are "point lumped" at the DOF locations, as in this model. ASEN 3112 Lecture 1 Slide 5

Numerical Example ASEN 3112 - Structures For the two-dof example of Slide 2, assume the numerical values m 1 = 2 m 2 = 1 c 1 = 0.1 c 2 = 0.3 k 1 = 6 k 2 = 3 p 1 = 2 sin 3t p 2 = 5 cos 2t Then the matrix EOM are [ ] [ ][ ] [ ][ ] [ ] 2 0 ][ü1 0.4 0.3 u1 9 3 u1 2 sin 3t + + = 0 1 ü 2 0.3 0.3 u 2 3 3 u 2 5 cos 2t The known matrices and vectors (the givens for the problem) are M = [ ] 2 0 0 1 C = [ 0.4 0.3 0.3 0.3 ] K = [ 9 3 3 3 ] p = [ ] 2 sin 3t 5 cos 2t ASEN 3112 Lecture 1 Slide 6

Vibration Eigenproblem: Assumptions on Damping and Forces Suppose that the example two-dof system is undamped: c 1= c 2= 0, whence C = 0, the null 2 x 2 matrix. It is also unforced: p 1= p 2= 0, whence p = 0, the null 2 x 1 vector. The matrix EOM reduces to.. M u + K u = 0 ASEN 3112 - Structures This is the MDOF generalization of the free, undamped SDOF oscillator covered in Lecture 17. Next, assume that this unforced and undamped dynamic system is undergoing in-phase harmonic motions of circular frequency ω. ASEN 3112 Lecture 1 Slide 7

Vibration Eigenproblem: Assumed Harmonic Motion ASEN 3112 - Structures The assumption of harmonic motion can be mathematically stated using either trigonometric functions, or complex exponentials: u(t) = U cos (ω t α) or u(t) = U e iω t in which U is a nonzero 2-vector that collects amplitudes of the motions of the point masses as entries, and (in the first form) α is a phase shift angle. Both expressions lead to identical results. For the ensuing derivations we select the first form. The corresponding velocities and accelerations are. u(t) = ω U sin (ω t α).. 2 u(t) = ω U cos (ω t α) ASEN 3112 Lecture 1 Slide 8

Vibration Eigenproblem: Characteristic Equation Substitute the accelerations into the matrix EOM, and extract U cos(ω t α) as common post-multiplier factor: M ü + Ku= [ K ω 2 M ] U cos ωt α = 0 If this vector expression is to be identically zero for any time t, the product of the first two terms (matrix times vector) must vanish. Thus [ K ω 2 M ] U = D ω U = 0 This D is called the dynamic stiffness matrix. The foregoing equation states the free vibrations eigenproblem for an undamped MDOF system. For nontrivial solutions U 0 the determinant of the dynamic stiffness matrix must be zero, whence C ω 2 = det D ω = det [ K ω 2 M ] = 0 This is called the characteristic equation of the dynamic system. ASEN 3112 Lecture 1 Slide 9

Vibration Eigenproblem: Natural Frequencies For a two-dof system C(ω) is a quadratic polynomial in ω, which will yield two roots: ω 2 2 1 and ω 2. We will later see that under certain conditions on K and M, which are satisfied here, those roots are real and nonnegative. Consequently the positive square roots 2 ω 1 =+ ω 2 1 ω 2 =+ ω 2 2 are also real and nonnegative. Those are called the undamped natural circular frequencies. (Qualifiers "undamped" and "circular" are often omitted unless a distinction needs to be made.) As usual they are measured in radians per second, or rad/sec. They can be converted to frequencies in cycles per second, or Hertz (Hz) by scaling through 1/(2π), and to natural periods in seconds by taking the reciprocals: f i = ω i 2π, T i = 1 f i = 2π ω i, i = 1, 2 ASEN 3112 Lecture 1 Slide 10

Eigenvectors As Vibration Modes 2 2 1 How about the U vector? Insert ω = ω in the eigenproblem to get 1 2 1 (K - ω M) U = 0 and solve this homogeneous system for a nonzero U 1 (This operation is always possible because the coefficient matrix is singular by definition.) 2 2 Repeat with ω = ω 2, and call the solution vector U 2. Vectors U 1 and U 2 are mathematically known as eigenvectors. Since they can be scaled by arbitrary nonzero factors, we must normalize them to make them unique. Normalization criteria often used in structural dynamics are discussed in a later slide. For this application (i.e., structural dynamics), these eigenvectors are called undamped free-vibrations natural modes, a mouthful often abbreviated to vibration modes or simply modes, on account of the physical interpretation discussed later. The visualization of an eigenvector as a motion pattern is called a vibration shape or mode shape. 1 ASEN 3112 Lecture 1 Slide 11

Generalization to Arbitrary Number of DOF Thanks to matrix notation, the generalization of the foregoing derivations to an undamped, unforced, Multiple-Degree-Of-Freedom (MDOF) dynamical system with n degrees of freedom is immediate. In this general case, matrices K and M are both n x n. The characteristic polynomial is of order n in ω. 2 This polynomial provides n roots labeled ω 2 i, i = 1, 2,... n, arranged in ascending order. Their square roots give the natural frequencies of the system. The associated vibration modes, which are called U i before normalization, are the eigenvectors of the vibration eigenproblem. Normalization schemes are studied later. ASEN 3112 Lecture 1 Slide 12

Linkage to Linear Algebra Material ASEN 3112 - Structures To facilitate linkage to the subject of algebraic eigenproblems covered in Linear Algebra sophomore courses, as well as to capabilities of matrix oriented codes such as Matlab, we effect some notational changes. First, rewrite the vibration eigenproblem as KU i = ω 2 i MU i where i is a natural frequency index that ranges from 1 through n. Second, rename the symbols as follows: K and M become A and B, 2 respectively, ω i becomes λ i, and U i becomes x i. These changes allow us to rewrite the vibration eigenproblem as Ax i = λ i Bx i i = 1, 2,...n i = 1, 2,...n This is the canonical form of the generalized algebraic eigenproblem that appears in Linear Algebra textbooks. If both A and B are real symmetric, this is called the generalized symmetric algebraic eigenproblem. ASEN 3112 Lecture 1 Slide 13

Properties of the Generalized Symmetric Algebraic Eigenproblem If, in addition, B is positive definite (PD) it is shown in Lineaar Algebra textbooks that (i) All eigenvalues λ i are real (ii) All eigenvectors x have real entries i Property (i) can be further strengthened if A enjoys additional properties: (iii) If A is nonnegative definite (NND) and B is PD all eigenvalues are nonnegative real (iv) If both A and B are PD, all eigenvalues are positive real The nonnegativity property is obviously important in vibration analysis since frequencies are obtained by taking the positive square root of the eigenvalues. If a squared frequency is negative, its square roots are imaginary. The possibility of negative squared frequencies arises in the study of dynamic stability and active control systems, but those topics are beyond the scope of the course. ASEN 3112 Lecture 1 Slide 14

The Standard Algebraic Eigenproblem If matrix B is the identity matrix, the generalized algebraic eigenproblem reduces to the standard algebraic eigenproblem Ax i = λ i x i i = 1, 2,...n If A is real symmetric this is called the standard symmetric algebraic eigenproblem, or symmetric eigenproblem for short. Since the identity is obviously symmetric and positive definite, the aforementioned properties (i) through (iv) also hold for the standard version. Some higher level programming languages such as Matlab, Mathematica and Maple, can solve eigenproblems directly through their built-in libraries. Of these 3 commercial products, Matlab has the more extensive capabilities, being able to process generalized eigenproblem forms directly. On the other hand, Mathematica only accepts the standard eigenproblem as built-in function. Similar constraints may affect hand calculators with matrix processing abilities. To get around those limitations, there are transformation methods that can convert the generalized eigenproblem into the standard one. ASEN 3112 Lecture 1 Slide 15

Reduction to the Standard Eigenproblem (cont'd) Two very simple schemes to reduce the generalized eigenproblem to standard form are (I) (II) If B is nonsingular, premultiply both sides by its inverse. If A is nonsingular, premultiply both sides by its inverse. For further details, see Remark 19.1 in Lecture 19. The matrices produced by these schemes will not generally be symmetric, even if A and B are. There are fancier reduction methods that preserve symmetry, but those noted above are sufficient for this course. ASEN 3112 Lecture 1 Slide 16

Using the Characteristic Polynomial To Get Natural Frequencies ASEN 3112 - Structures For a small number of DOF, say 4 or less, it is often expedient to solve for the eigenvalues of the vibration eigenproblem directly by finding the roots of the characteristic polynomial 2 2 C(λ) = det(d) = 0 in which λ = ω and D = K ω M = K λ M is the dynamic stiffness matrix. This procedure will be followed in subsequent Lectures for two-dof examples. It is particularly useful with hand calculators that can compute polynomial roots but cannot handle eigenproblems directly. Eigenvectors may then be obtained as illustrated in the next Lecture. ASEN 3112 Lecture 1 Slide 17

Eigenvector Uniqueness ASEN 3112 - Structures We go back to the mass-stiffness notation for the vibration eigenproblem, which is reproduced below for convenience: For specificity we will assume that (I) The mass matrix is positive definite (PD) while the stiffness matrix is nonnegative definite (NND). As a consequence, all eigenvalues 2 λ = ω are nonnegative real, and so are their positive square roots ω. (ΙΙ) All frequencies are distinct: ω i KU i = ω 2 i MU i i i i ω j if i j Under these assumptions, the theory behind the algebraic eigenproblem says that for each ω i there is one and only one eigenvector U i, which is unique except for an arbitrary nonzero scale factor. ASEN 3112 Lecture 1 Slide 18

What Happens If There Are Multiple Frequencies? ASEN 3112 - Structures Life gets more complicated. See Remark 19.3 in Lecture Notes. ASEN 3112 Lecture 1 Slide 19

Normal Modes and Their Orthogonality Properties An eigenvector U scaled as per some normalization condition (for example, unit Euclidean length) is called a normal mode. We will write U i = c i φ i i = 1, 2,...n Here φ i is the notation for the ith normal mode. This is obtained from U on dividing through some scaling factor c i, chosen as per some normalization criterion. (Those are discussed in a later slide). Normal modes enjoy the following orthogonality properties with respect to the mass and stiffness matrices: φ T i M φ j = 0 φ T i K φ j = 0 i j ASEN 3112 Lecture 1 Slide 20

Generalized Mass and Stiffness If i = j, the foregoing quadratic forms provide two important quantities called the generalized mass M, and the generalized stiffness K : i i M i = φ T i M φ i > 0 K i = φ T i K φ i 0 i = 1, 2,...n These are also called the modal mass and the modal stiffness, respectively, in the structural dynamics literature. The squared natural frequencies appear as the ratio of generalized stiffness to the corresponding generalized masses: ωi 2 = K i M i This formula represents the generalization of the SDOF expression for 2 the natural frequency: ω = k/m, to MDOF. n i = 1, 2,...n ASEN 3112 Lecture 1 Slide 21

Mass-Orthonormalized Eigenvectors ASEN 3112 - Structures The foregoing definition of generalized mass provides one criterion for eigenvector normalization, which is of particular importance in modal response analysis. If the scale factors are chosen so that M i = φ T i M φ i = 1 i = 1, 2,...n the normalized eigenvectors (a.k.a. normal modes) are said to be mass-orthogonal. If this is done, the generalized stiffnesses become the squared frequencies: ω 2 i = K i = φ i K φ i i = 1, 2,...n ASEN 3112 Lecture 1 Slide 22

Eigenvector Normalization Criteria Three eigenvector normalization criteria are in common use in structural dynamics. They are summarized here for convenience. The ith unnormalized eigenvector is generically denoted by U i, whereas a normalized one is called φ i. We will assume that eigenvectors are real, and that each entry has the same physical unit. Furthermore, for (III) we assume that M is positive definite (PD). (I) Unit Largest Entry. Search for the largest entry of U i in absolute value, and divide by it. (This value must be nonzero, else U would be null.) (II) Unit Length. Compute the Euclidean length of the eigenvector, and divide T by it. The normalized eigenvector satisfies U U = 1. (III) Unit Generalized Mass. Get the generalized mass M i = U i M U i, which must be positive under the assumption that M is PD, and divide U i by the positive square root of M i. The normalized eigenvector satisfies φ TM φ = 1. The resulting eigenvectors are said to be mass-orthogonal. i i If the mass matrix is the identity matrix, the last two methods coalesce. For just showing mode shapes pictorially, the simplest normalization method (I) works fine. For the modal analysis presented in following lectures, (III) offers computational and organizational advantages, so it is preferred for that task. i i i T ASEN 3112 Lecture 1 Slide 23

Frequency Computation Example Consider the two-dof system introduced in an earlier slide. As numeric values take m 1= 2, m 2= 1, c 1= c 2 = 0, k 1= 6, k 2= 3, p 1= p 2= 0. The mass and stiffness matrices are [ ] [ ] 2 0 9 3 M = K = 0 1 3 3 whereas the damping matrix C and dynamic force vector p vanish. The free vibrations eigenproblem is [ ][ ] [ ][ ] [ 9 3 U1 2 0 = ω 2 U1 9 2ω 2 ][ ] 3 U1 or 3 3 U 2 0 1 U 2 3 3 ω 2 = U 2 The characteristic polynomial equation is [ 9 2ω 2 ] 3 det 3 3 ω 2 = 18 15ω 2 + 2ω 4 = (3 2ω 2 )(.6 ω 2 ) = 0 The roots of this equation give the two undamped natural squared frequencies ω1 2 = 3 2 = 1.5 ω2 2 = 6 The undamped natural frequencies (to 4 places) are ω 1= 1.225 and ω 2 = 2.449. If the physical sets of units is consistent, these are expressed in radians per second. To convert to cycles per second, divide by 2π: f 1= 0.1949 Hz and f 2= 0.3898 Hz. The calculation of eigenvectors is carried out in the next Lecture. [ 0 0 ] ASEN 3112 Lecture 1 Slide 24