Ecology and Simpson s Diversity Index



Similar documents
Regents Biology LAB. STUDY OF POPULATION DENSITY ON A SUBURBAN LAWN

Lesson Overview. Biodiversity. Lesson Overview. 6.3 Biodiversity

Curriculum Design for Mathematic Lesson Probability

Introduction to Ecology

Global Ecology and Wildlife Conservation

Standards: Human activity has consequences on living organisms and ecosystems. (94412, )

Note on Draft Progress Report Template

UEBT. Biodiversity Barometer

Colorado Natural Heritage Program

Agriculture, Food & Natural Resources Career Cluster Wildlife Management

The Research on Environment Protection Knowledge and Competencies in Non-Formal Education

(b) You draw two balls from an urn and track the colors. When you start, it contains three blue balls and one red ball.

Understanding by Design. Title: BIOLOGY/LAB. Established Goal(s) / Content Standard(s): Essential Question(s) Understanding(s):

Lesson 6: Fisheries Management in the Open Ocean. Open Ocean

Taking the Classroom Outside By Ashley Schopieray

BEGINNER S BRIDGE NOTES. Leigh Harding

Activity 1.6: Food for Thought: Climate Change and Trophic Cascades

Biodiversity Concepts

Lab 11. Simulations. The Concept

The study of probability has increased in popularity over the years because of its wide range of practical applications.

Current California Math Standards Balanced Equations

AP Biology Unit I: Ecological Interactions

Tuesday 14 May 2013 Morning

As stewards of the land, farmers must protect the quality of our environment and conserve the natural resources that sustain it by implementing

3.1 Measuring Biodiversity

Wildlife Ecologist. Mount Gibson Wildlife Sanctuary

Protected Area Categories and Management Objectives

Section 3: Trophic Structures

A Guide to Woodland Carbon for Business

Biodiversity

GCSE BITESIZE Examinations

Ecology 1 Star. 1. Missing from the diagram of this ecosystem are the

hij GCSE Science A 2 Foundation Tier Unit 6F SPECIMEN MARK SCHEME Version 1.0

Broken Arrow Public Schools AP Environmental Science Objectives Revised

High Conservation Value Forests 3.1. Old Growth Forests. Management & Monitoring Framework

GCSE Science: Biology

CHAPTER 20 COMMUNITY ECOLOGY

Section 5.1 Food chains and food webs

Grade 8 Proportional Reasoning Lesson and Resources

Complete tests for CO 2 and H 2 Link observations of acid reactions to species

Program Rating Sheet - Athens State University Athens, Alabama

Life in the Bay Getting to know the Bay s plants and animals

Why Count Birds? (cont.)

Prime Time: Homework Examples from ACE

Explanatory Memorandum to the Conservation of Habitats and Species (Amendment) Regulations 2012

MATH 140 Lab 4: Probability and the Standard Normal Distribution

Environmental Science Merit Badge Workbook

Section 5: Conserve to Enhance Program Goals What is Conserve to Enhance All About?

Standard 12: The student will explain and evaluate the financial impact and consequences of gambling.

Rarefaction Method DRAFT 1/5/2016 Our data base combines taxonomic counts from 23 agencies. The number of organisms identified and counted per sample

Biological Diversity and Tourism: Development of Guidelines for Sustainable Tourism in Vulnerable Ecosystems

Mangrove loss faster than land-based forests

Book One. Beginning Bridge. Supplementary quizzes and play hands edition

Importance of forestry reserves to the regulation of water quality and microalgae structure of temporary ponds in Burkina Faso (West Africa)

HUMANPOPULATIONGROWTHANDNATURAL RESOURCES Study Guide. As the human population grows, the demand for Earth s resources increases.

FUTURE CHALLENGES OF PROVIDING HIGH-QUALITY WATER - Vol. II - Environmental Impact of Food Production and Consumption - Palaniappa Krishnan

Mobilising Vegetation Plot Data: the National Vegetation Survey Databank. Susan Wiser April

Math 728 Lesson Plan

Species-of-the-Week. Blanding s Turtle (Emydoidea blandingii) Species of Special Concern in Michigan

1. Biodiversity: Basic Commodity or Luxury Item? Conclusions and Recommendations Key References... 6

How To Write A Strategic Framework For The Evaluation And Monitoring Of Marine Parks In Nsw

ENVIRONMENTAL SCIENCE CURRICULUM for CLASS IX to X

APES 2013 Janssen APES Student Information Name: Date: APES SCAVENGER HUNT

The Sustainable Sites Initiative: Future Business Opportunities? 2009 Sustainable Sites Initiative

SLOW ONSET EVENTS. climate change impacts on BIODIVERSITY

A Correlation of Environmental Science Your World, Your Turn 2011

Creating Chains and Webs to Model Ecological Relationships

Unit 1: Best practice in science (LEVEL 2)

POKER LOTTO LOTTERY GAME CONDITIONS These Game Conditions apply, until amended or revised, to the POKER LOTTO lottery game.

The investigation is an individual project undertaken by you with support from your teacher/lecturer to show that you can:

Problem of the Month: Fair Games

Chapter 54: Community Ecology

Natural Capital what do accountants think?

Ecology Module B, Anchor 4

Syllabus Example - CCU

HLPE report on Nutrition and Food Systems

Research to improve the use and conservation of agricultural biodiversity for smallholder farmers

The relationship between forest biodiversity, ecosystem resilience, and carbon storage

Biomass Supply Chains in South Hampshire

Statistics 2014 Scoring Guidelines

M O N T E R E Y B A Y A Q U A R I U M

EVALUATION OF GEOTHERMAL ENERGY AS HEAT SOURCE OF DISTRICT HEATING SYSTEMS IN TIANJIN, CHINA

Great Crested Newt Habitat Suitability Index

Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools

QUALITY TOOLBOX. Understanding Processes with Hierarchical Process Mapping. Robert B. Pojasek. Why Process Mapping?

A ROCHA INTERNATIONAL S INVOLVEMENT IN PAPUA NEW GUINEA

Nectar host plant selection and floral probing by the Indian butterfly Danaus genutia (Nympahlidae)

Cherokee County School District Student Performance Standards Unit Guides - Science: Fifth Grade

Mathematical goals. Starting points. Materials required. Time needed

Discover a Species. Smoky Mountain Diversity. Episode: For a follow-along viewing guide for students, see Viewing Guide 12.

What Does the Normal Distribution Sound Like?

1.7.0 Floodplain Modification Criteria

Australian Wildlife Conservancy Yookamurra Intern Program

Transcription:

ACTIVITY BRIEF Ecology and Simpson s Diversity Index The science at work Ecologists, such as those working for the Environmental Agency, are interested in species diversity. This is because diversity is usually proportional to the stability of the ecosystem: the greater the diversity the greater the stability. The most stable communities have large numbers of species which are fairly evenly distributed in good-sized populations. Pollution often reduces diversity by favouring a few dominant species. Diversity is therefore a factor in successful conservation management. A diversity index takes into account the number of species present, as well as the abundance of each species. Species diversity should not be confused with species richness. The number of species per sample, e.g. plants in a 1 m 2 quadrat, can be used as a measure of richness. Or a consolidated species list may be built up of all the species found in a habitat or ecosystem over a period of time. These are useful for comparing different areas, but just counting species will not allow comparison of diversity. Your brief Environmental scientists use a variety of different methods to compare diversity in different ecosystems and to monitor the progress of conservation measures. One of the most popular methods is to use the relative abundance of different species to calculate Simpson s Index of Diversity. You can investigate this by using ordinary playing cards as species to generate data to calculate Simpson s Index, D. D = Σn(n - 1) N(N - 1) where N = the total number of organisms of all species and n = the total number of organisms of a particular species from which Simpson s Diversity Index, 1 D, is found. Once you have an understanding of the method works you can obtain and analyse your own data. Use: Practical sheet: Using cards to investigate Simpson s Diversity Index Practical sheet: Finding Simpson s Diversity Index for an ecosystem Ecology and Simpson s Diversity Index: page 1 of 9

PRACTICAL SHEET Using cards to investigate Simpson s Diversity Index You will need one pack of 52 standard playing cards The cards represent nine possible species: Species A: all picture cards (jacks, queens and kings) Species D: even numbered diamonds Species G: even numbered hearts copies of the recording sheet Species B: odd numbered clubs Species E: even numbered diamonds Species H: odd numbered spades Species C: odd numbered clubs Species F: odd numbered hearts Species I: even numbered spades Procedure Work with a partner to investigate the following communities: Community 1 Shuffle the cards. Count out 26 cards, this is your sample. Using the Recording sheet, note how many of each species (A to I) you have in your sample. Tally your results by putting an upright line in the appropriate box, /. Complete the table to calculate the Simpson index. Note: you can make gates //// with each fifth tally to make counting easier Community 2 Remove seven jacks, queens or kings from the pack of 52 cards to leave five cards for every species. Repeat as for Community 1. Community 3 Remove the jacks, queens and kings and one of the suits from the pack of 52 cards to leave you with three suits and six species with five cards each. Repeat as for Community 1. Community 4 Make up a further community of your own to investigate. Use all of the species but alter the relative numbers of cards to get the lowest diversity that you can. Questions Make notes to answer these questions: 1 Why is 1 D rather than D used as a measure of diversity? 2 Two factors affect diversity scores: (a) what are they? (b) what effect do they have? 3 How could you ensure reliability? Ecology and Simpson s Diversity Index: page 2 of 9

Recording sheet Species Tally Total, n n - 1 n(n - 1) Odds Evens clubs Odds Evens diamonds Odds Evens hearts Odds Evens spades N = Σn(n - 1) = Totals N - 1 = N(N - 1) = D = Σn(n - 1) = N(N - 1) 1 D = Ecology and Simpson s Diversity Index: page 3 of 9

PRACTICAL SHEET Finding Simpson s Diversity Index for an ecosystem If you have already sampled an area, you may be able to use the data to calculate Simpson s Diversity Index. All you need is the number of different species and the number of times each species was found (frequencies). If you are to compare ecosystems, you must use the same sampling method and compare the same organisms. So, you might look at diversity of the invertebrates in a clean and a polluted stream or the ground flora (vegetation) or insects in a woodland compared to a field. If you already have suitable data (for example from a quadrat study or kick sampling in a stream), calculate Simpson s Diversity Index. Note that a single calculation is not much help, you need to be able to compare different areas sampled using the same technique. If you need to collect data you will need further instructions from your teacher. One advantage of using this particular index is that you only need to be able to distinguish species, you do not need to identify them. Representative sample You may be restricted by time and only able to take a limited number of samples. If you have time to make a more serious study, you can use a simple technique to test that you have a sample that is truly representative of the area that you a studying. This is done by keeping a cumulative species total as each random sample is taken, i.e. the total number of different species that have been found to date. This is plotted against the sample number. After no more species have been found for three or four samples, you know that you are likely to have found them all. Try this for practice The following data were obtained for woodland vegetation using randomly placed 1 m 2 quadrats. Trial number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Number of species 9 14 17 18 19 21 22 23 23 24 24 24 24 24 24 Plot the data and suggest the point at which sampling could stop. Ecology and Simpson s Diversity Index: page 4 of 9

Teacher notes This activity links to OCR Unit 14 Ecology and managing the environment, and AQA Unit 16 Ecology, conservation and recycling. For both units, students must carry out an ecological study. OCR Unit 14: Ecology and managing the environment Students must: produce evidence of your investigation on ecology and managing ecosystems This evidence needs to include: AO3: a planned investigation of an ecosystem. To gain the highest marks, student should: demonstrate a thorough knowledge and understanding of the relationship between the organisms, their physical environment and each other in ecological succession use appropriate scientific terms and conventions accurately research the effect of agricultural practice, human habitation and greenhouse gas production on ecosystems and biodiversity, selecting a wide range of relevant information and presenting it clearly and logically evaluate the information available and justify the choice you included organise information to evaluate the scientific, moral and ethical reasons for preserving ecosystems and species diversity describe a range of methods used to manage ecosystems and preserve species diversity interpret, explain and evaluate a range of data relating to the success of a project managing one ecosystem carry out complex calculations on ecological data involving the statistical analysis of the data obtained (e.g. chi-squared or t test) obtain the correct solutions to an appropriate degree of accuracy and demonstrate an understanding of the significance of the outcomes. AQA Unit 16 Ecology, Conservation and Recycling Students must: produce a portfolio of evidence which considers the ecology of an ecosystem and the impact mankind has had on the environment. Their portfolio of evidence should contain A. details of an ecological survey, including food chains, food webs and energy flow within a chosen habitat including: Ecology and Simpson s Diversity Index: page 5 of 9

the identification of a particular habitat an account of research undertaken in relation to the ecological survey. This will include and explanation of techniques which could be used the use of a suitable sampling technique, to estimate the distribution and/or numbers of organisms and use this information to estimate population size a summary of the physical and biological characteristics of the habitat based on the findings of your sampling details of feeding relationships including food webs and food chains based on the findings of your sampling energy flow within the habitat based on the findings of your sampling This activity introduces students to the Simpson s Diversity Index which they may wish to use in the ecological study. Practical sheet: Investigating Simpson s Diversity Index This can be completed in a single lesson. Some students find the concept of species diversity quite difficult, confusing diversity with species richness. This simple exercise allows them to rapidly generate data and use a structured recording sheet to calculate Simpson s Index, D, and Simpson s Diversity Index, 1 D. D = Σn(n - 1) N(N - 1) The two factors affecting diversity, richness and evenness, are investigated by creating and comparing: a high diversity community with a fairly even distribution of species a community with one dominant species a community with fewer species a community with the lowest possible diversity index using nine species (students need to work this out use all the court cards, but only one card of each other species ) Requirements For each pair: one pack of 52 standard playing cards four recording sheets Recording sheet This is designed to allow straightforward calculation of D and 1 D. Answers to questions 1 Why is 1-D rather than D used as a measure of diversity? It s more logical and less likely to cause confusion. The scale then gives a score from 0 to 1 with higher scores showing higher diversity (instead of being associated with low scores). Ecology and Simpson s Diversity Index: page 6 of 9

2 Two factors affect diversity scores. (a) What are they? Species richness (or species total) and evenness (or conversely, unequal distributions). (b) What effect do they have? An increase in either leads to an increase in diversity. The more species the higher the diversity, but if they are not evenly distributed, for example if one species is much more abundant, diversity falls. 3 How could you ensure reliability? Check that a representative sample has been obtained, e.g. by comparing scores for different samples to see if they are consistent. Practical sheet: Finding Simpson s Diversity Index for an ecosystem A version of the recording sheet which could be used for the students own results can be found at the end of this document. If necessary, extra rows can be added to allow for more species. An estimate of diversity can be found for any set of data that allow the total number of species and the occurrence of each species to be found. Data purely for the purpose of calculating this index can be found rapidly if species are simply distinguished, rather than identified. If students are set this task they will need to decide or be given clear instructions for the sampling technique to be used to ensure fair comparisons of different areas can be made. Representative sample The data provided show the total plateaus at 24 species after 10 quadrats, suggesting that no further samples were needed after about the 12 th quadrat. Ecology and Simpson s Diversity Index: page 7 of 9

Woodland plant species Cumulative species total 30 25 20 15 10 5 0 1 3 5 7 9 11 13 15 Quadrat number This technique is a useful test for optimum sample size and can be applied to other situations such as finding densities. Ecology and Simpson s Diversity Index: page 8 of 9

Recording sheet for field work Date Description of ecosystem investigated Species found Tally Total, n n - 1 n(n - 1) 1 2 3 4 5 6 7 8 9 10 N = Σn(n - 1) = Totals N - 1 = N(N - 1) = D = Σn(n - 1) = N(N - 1) 1 D = Ecology and Simpson s Diversity Index: page 9 of 9