GRADATION OF AGGREGATE FOR CONCRETE BLOCK



Similar documents
NOTE: FOR PROJECTS REQUIRING CONTRACTOR MIX DESIGN, THE DESIGN PROCEDURES ARE SPECIFIED IN THE SPECIAL PROVISIONS OF THE CONTRACT.

Lab 1 Concrete Proportioning, Mixing, and Testing

Strength and Workability Characteristics of Concrete by Using Different Super Plasticizers

PROPERTIES AND MIX DESIGNATIONS

Manufacturing Quality Concrete Products

C. Section TESTING LABORATORY SERVICE.

STATE OF OHIO DEPARTMENT OF TRANSPORTATION SUPPLEMENTAL SPECIFICATION 888 PORTLAND CEMENT CONCRETE PAVEMENT USING QC/QA.

:: ARTIFICIAL SAND :: Zone One Sand : Zone Two Sand :

SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES

CONCRETE: CONTRACTOR S QUALITY CONTROL PLAN

SECTION 311 PLACEMENT AND CONSTRUCTION OF CEMENT TREATED SUBGRADESOIL CEMENT BASE COURSE

cement Masonry Cement Engineered for quality and reliability, Lafarge cements for masonry deliver consistent performance. page 2 Lafarge Cement

Effect of basalt aggregates and plasticizer on the compressive strength of concrete

Proper use of the Rebound Hammer Updated to reflect the changes to ASTM C805

Chapter 8 Design of Concrete Mixes

Properties of Fresh Concrete

Pavement Thickness. esign and RCC-Pave Software. Roller-Compacted Concrete Pavement: Design and Construction. October 24, 2006 Atlanta, Georgia

Sieve Analysis of Aggregates

SOIL-LIME TESTING. Test Procedure for. TxDOT Designation: Tex-121-E 1. SCOPE 2. APPARATUS 3. MATERIALS TXDOT DESIGNATION: TEX-121-E

The University of Toledo Soil Mechanics Laboratory

Commonwealth of Pennsylvania PA Test Method No. 632 Department of Transportation October Pages LABORATORY TESTING SECTION. Method of Test for

AGREGADOS RECICLADOS MITOS Y REALIDADES

POWDER PROPERTIES LABORATORY

QUALITY ASSURANCE PROGRAM (QAP) City Rohnert Park

FACT SHEET: HYDRATED LIME FOR MASONRY PURPOSES

EXPERIMENT NO.1. : Vicat s apparatus, plunger

DIVISION 300 BASES SECTION 304 AGGREGATE BASE COURSE DESCRIPTION MATERIALS CONSTRUCTION REQUIREMENTS

1.5 Concrete (Part I)

SECTION 55 PIPE FOR STORM DRAINS AND CULVERTS (FAA D-701)

Erosion Resistance Performance Comparison Of Natracil, Stabilizer And Envirobond s Organic-Lock

NRMCA Quality Certification. Ready Mixed Concrete Quality Management System. Certification Criteria Document

Quality Assurance Program. June by Texas Department of Transportation (512) all rights reserved

SafetyBuletin. Concrete101 Aguidetounderstandingthequalitiesofconcrete andhowtheyaffectpumping

Apr 17, 2000 LAB MANUAL PARTICLE SIZE ANALYSIS OF SOILS AASHTO Designation T 88 (Mn/DOT Modified)

INDEX DESCRIPTION MATERIALS APPROVAL OF SUBBASE COURSE CONSTRUCTION MEASUREMENT PAYMENT 6

A COMPREHENSIVE STUDY ON PARTIAL REPLACEMENT OF CEMENT WITH SUGARCANE BAGASSE ASH, RICE HUSK ASH & STONE DUST

6 QUALITY CONTROL PROCEDURES

Strength of Concrete

Stone crusher dust as a fine aggregate in Concrete for paving blocks

SECTION 623 CONCRETE BONDING COMPOUND, EPOXY MORTAR AND EPOXY POLYMER CONCRETE OVERLAY SECTION CONCRETE BONDING COMPOUND.

SIENA STONE GRAVITY RETAINING WALL INSTALLATION SPECIFICATIONS. Prepared by Risi Stone Systems Used by permission.

Analysis of M35 and M40 grades of concrete by ACI and USBR methods of mix design on replacing fine aggregates with stone dust

ENGINEERED QUARTZ STONE

SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 11/5/13)

4-02 Gravel Base Ballast and Crushed Surfacing

EXPERIMENTAL INVESTIGATION ON BEHAVIOUR OF NANO CONCRETE

Example Specification for Concrete using Current Building Code Requirements

Aggregates for Path Construction

CGA Standard Practices Series. Article 600 Standard for Pozzolan Enhanced Grouts Used in Annular Seals & Well Destruction

Quality Assurance Concepts. Outline

DryWeight BulkVolume

SPECIFICATIONS. INTERLOCKING CONCRETE POROUS PAVING UNITS or Permeable Interlocking Concrete Pavers (PICP)

MASONRY INFORMATION. Selecting and Specifying Mortar and Grout for Unit Masonry. Introduction. Desirable Mortar Properties. Selection of Mortar

CONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST

Saint Gobain Gyproc India Ltd. (Formerly India Gypsum Ltd.)

Shotcrete Quality Control and Testing for an Underground Mine in Canada

CW 3110 SUB-GRADE, SUB-BASE AND BASE COURSE CONSTRUCTION TABLE OF CONTENTS

Use of Recycled Concrete Aggregates in Structural Concrete in Mauritius

Specification Guidelines: Allan Block Modular Retaining Wall Systems

The Influence of Porosity & Aspect Ratio on the Compressive Behavior of Pervious Concrete. Alexander Hango

SECTION EARTH MOVING

PVC PIPE PERFORMANCE FACTORS

Bailey Tool for Gradation Control in Superpave Mix Design

TECHNICAL SPECIFICATIONS CEMENT-BENTONITE SLURRY TRENCH CUTOFF WALL

LAYING BLOCK AND BRICK

NAPCA BULLETIN APPLICATION PROCEDURES FOR CONCRETE WEIGHT COATING APPLIED BY THE COMPRESSION METHOD TO STEEL PIPE

CONCRETE SEGMENTAL RETAINING WALL SYSTEM

SECTION 4Aggegate Subbase

METHOD OF TEST FOR UNIT WEIGHT OF FRESH CONCRETE

SECTION PERMEABLE INTERLOCKING CONCRETE PAVEMENT

METHOD A7 THE DETERMINATION OF THE MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE CONTENT OF GRAVEL, SOIL AND SAND

SECTION 334 (Pages ) is deleted and the following substituted: SECTION 334 SUPERPAVE ASPHALT CONCRETE

CONCRETE SEGMENTAL RETAINING WALL SYSTEM

SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES FOP FOR AASHTO T 27 (11)

Installation PowerPoint for Grasscrete Formers

Evaluation of M35 and M40 grades of concrete by ACI, DOE, USBR and BIS methods of mix design

The AASHO Road Test site (which eventually became part of I-80) at Ottawa, Illinois, was typical of northern climates (see Table 1).

STANDARD SPECIFICATIONS FOR PRIVATE BUILDING SEWER LINES IN PUBLIC RIGHT-OF-WAY

Advancements in Permeable Pavements

SPECIFICATION FOR CONSTRUCTION OF UNBOUND GRANULAR PAVEMENT LAYERS

Lesson 3. Portland Cement and Concrete

APPRAISAL ON THE STRENGTH OF CONCRETE PRODUCED WITH VARYING AGGREGATE SIZE

CHAPTER 4 CONCRETE TRAINING AND QUALIFICATIONPROGRAM

SUSTAINABLE CONCRETE MADE FROM RECYCLED AGGREGATES

SPECIAL NOTE FOR ASPHALT WATERPROOFING MIX FOR BRIDGE-DECK OVERLAYS AND ADJACENT APPROACHES

SECTION 36 - CAST-IN-PLACE CONCRETE PIPE (CIPCP) TABLE OF CONTENTS

Otta Seal BACKGROUND GENERAL DESCRIPTION DESIGN ASPECTS. Category : Technical Information/On-carriageway/

Dubai Municipality Standard DMS 1: Part 5: 2004

MeltonStone Cast Stone Product Specifications

Technical Manual - Section 1 Introduction to Lytag lightweight aggregate

Division 2 Section Section 02795

EFFECT OF NANO-SILICA ON CONCRETE CONTAINING METAKAOLIN

NorthEast Transportation Training and Certification Program (NETTCP) Course Registration Form

Understanding BS EN 771-3: Aggregate concrete masonry units

The University of Toledo Soil Mechanics Laboratory

PROJECT PROFILE ON CEMENT CONCRETE HOLLOW BLOCKS

SPECIFIC GRAVITY OF COARSE AGGREGATE AASHTO T 85

Construction Materials Testing. Classes of Test

Choosing the Right Mortar for the Job

UNIFIED FACILITIES GUIDE SPECIFICATIONS

Transcription:

GRADATION OF AGGREGATE FOR CONCRETE BLOCK Although numerous papers have been written concerning the proper gradation for concrete mixes, they have generally dealt with plastic mixes, and very little published information is available on the subject dealing specifically with the minus zero slump mix as used in concrete block production. Other pertinent data have been reported at various time, but usually as incidental comments in studies directed primarily to other factors of block mix composition and manufacturing details. The ideas presented in this discussion are based on commonly accepted good plant practices and review of applicable technical literature on aggregate gradation in both dry and plastic mixes. Factors which enter into a discussion of aggregate gradation are: 1. Strength The influence of aggregate gradation on the compressive strength of finished concrete block will determine the necessary cement content to produce block which meet specified strength requirements. Since cement is the most costly ingredient in the concrete mix, the selection of a properly graded aggregate assumes an economic aspect. 2. Texture The surface texture of the finished block depends to a great extent upon the gradation of the aggregate. Coarse grading tends to produce rough or coarse textured block, while fine gradations generally yield block with smooth texture. The block surface desired will depend upon the use for which the block is intended and the preferences of the buying public. Regardless of which texture is made. It is always desirable to produce a uniform textured unit. 3. Porosity In much the same way that aggregate gradation is related to texture, it is likewise related to porosity. Desired porosity will sometimes depend upon block use, but it should be noted that improvements in strength and resistance to moisture and sound transmission usually accompany an increase in density regardless of type of aggregate. 4. Workability Workability of the concrete block mix is influenced by the gradation, as well as the surface and shape characteristics of the aggregate. Workability affects green block stability, breakage, the speed at which the block can be molded, and consequently production costs. This is another way aggregate gradation may be an economic factor.

5. Availability Final aggregate selection is dependent upon availability and in many cases this will be the determining factor. The availability of plant facilities for separate storage of fine and coarse sizes and their recombining in proper proportions at time of batching is beneficial where a suitable and uniform combined grading cannot be consistently obtained. AGGREGATE GRADATION AND BLOCK STRENGTH For a given cement aggregate ratio, block strengths theoretically should increase with an increase in the top size of the aggregate provided the aggregate is well graded and mix can be thoroughly consolidated in the machine. Almost all concrete block producers today use aggregate smaller than ½ inch although scattered reports have indicated the feasibility of using an aggregate with some material of larger size. The maximum size possible will depend on the minimum section thickness of the concrete block. Obviously the diameter of the largest particle must be less than the thickness of the web of face shells. One recommendation for combined aggregate specifies 100% passing the 3/8 inch sieve with from 20 to 30% retained on the No. 4. The work of wilk and others indicates that for each particular aggregate there is an optimum fineness modulus (F.M)*. The curve in Fig. 1 was drawn from Wilk and Grants 2 table of values published in rock products in February, 1948. The compressive strengths shown were obtained from 3 X 6 inch cylinders made from a dry (concrete block) mix, cured in water 21 days and dried to constant weight before testing. Each point is and average of three test cylinders. The aggregate for these cylinders was blended from roofing gravel (3/8 inch to No. 8), coarse sand (no. 8 to 0) and fine sand (No.28 to 0). The amounts of roofing gravel and coarse sand were held constant while the fine sand quantity was varied to give combined aggregate F.M. s of from 3.02 to 4.30. Results indicated in Fig. 1 show a gain in compressive strength from 1462 psi at an F.M. of 3.02 to 3462 psi at an F.M. of 3.88. As the F.M. was increased further strength showed a slight decline, indicating an optimum valve of F.M. for this particular aggregate near 3.88. Taking into account the necessity for producing a product that does not have a rough appearance led Wilk to suggest a desirable F.M. for this aggregate would be 3.70. Fig. 2 is a copy of a set of four curves from a PCA paper by Menzel 3. Values are for 8 X 8 X 16 inch. Concrete block, of 37.5% core space, made on a power tamping block machine at a yield of 21.0 to 22.4 block per bag of cement. The aggregate was blended from fine (No. 4 to 0) and coarse (3/8 inch to No. 4) materials in proportions to yield the desired fineness modulus. It should be noted that the strengths given in Fig. 2 are on a gross area basis. The effect of grading of aggregate is shown in the bottom set of curves. From the curves it would appear that an optimum fineness modulus existed for each aggregate type and that there was a sharp decline in compressive strength when the fineness modulus was varied in either direction from this optimum valve for three of the four aggregates. The corresponding air dry block weights are shown in the top portion of Fig. 2 and show, in general, that maximum compressive strength occurred at the same

fineness modulus as maximum block weight. Menzel attributed the wide differences in the shapes of these curves to the void characteristics of the aggregate which in turn are affected by the shape and surface characteristics, particularly the angularity and roughness of the aggregate particles themselves. * Fineness Modulus An empirical factor obtained by adding the total percentages of a sample of the aggregate retained on each of a specified series of sieves, and dividing the sum by 100. Sieve sizes applicable are: 3/8, 4, 8, 16, 30, 50, and 100. A consideration of the minimum void theory may be used to best explain this relationship between block strength, weight, and aggregate gradation. Consider the internal structure of a piece of concrete which has been completely dried. It will consist of graded aggregate particles bound together by a cement binder, and vast number of small inter-particle void spaces, the number of which will depend upon the workability of the original mix and the amount of compaction used in manufacture. The strength developed by this concrete is proportional to the inherent strength of the aggregate, the strength of the cement binder and the bond developed between binder and aggregate. The void spaces contribute nothing to the development of strength. Voids also contribute no weight to the concrete, and the relationship between block strength and weight as shown in Fig. 2 becomes apparent. Most of the voids present in the concrete originate in the aggregate. Few will doubt that a solid piece of stone, of certain volume, will weigh more than an equal volume of sand crushed from the same material. The volume of this interparticle void space in an aggregate may be measured by the standard method of test for voids in aggregate for concrete (ASTM Designation: C30), and this test, used in conjunction with the standard method of test for unit weight of aggregate (ASTM Designation C29) is helpful in the selection of an aggregate blend when working with a new aggregate in which the fine and coarse sizes have similar bulk specific gravities. As a starting point the weight per cubic foot of various mixtures, of the fine and coarse aggregates, can be determined. The blend yielding the highest unit weight will serve as a starting blend for a block mix. This method is usable only with aggregates in which the fine and coarse sizes have the same, or nearly the same, bulk specific gravities. Excessive inter-particle voids will be present in a concrete block, even if produced from an optimum graded aggregate, if the mix is made too dry. Usually, excessively dry mixes will be harder to compact, give higher block porosity, poorer green block stability and lower compressive strength. For a particular block mix maximum block density (minimum voids) and strength are obtained by using the maximum water content will be limited by the tendency to produce a smeared block surface. Compressive strength, block weight and green block stability are also affected by the amount of fine- fines (finer than No. 50) present in the graded aggregate. A recommendation of 12 to 15% of total aggregate bulk volume passing the No. 50 mesh screen will usually give satisfactory results. Percentages appreciably less than the

suggested range will tend to increase porosity, permeability and absorption and may also result in poorer green block stability. Larger percentages may be detrimental as to the strength of block. The amount of fine-fines also affects surface texture. The recommended limits are given in percentage of total bulk volume rather than by weight because some lightweight aggregates have fines with higher bulk specific gravities than the coarse aggregate sizes. This is due to the difference in cellular structure of the fine and percentage of internal voids than the smaller sizes. In dealing with such materials a correction must be made in the limits if sieve analyses are run by weight. The influence of aggregate gradation on workability of the mix is of concern because of its effect on the finished block properties and it further effect on the speed of production. An excess of fine-fines (crusher dust) in some aggregate will frequently produce a sticky mix which is slow in feeding into the mold box while a harsh mix will slow production by requiring extra care in proportioning, to avoid bleeding, and may require a longer cycle to secure compaction. The only means of correcting an excessively fine aggregate are by the addition of coarse material or by the removal of a portion of the fine sizes. Harsh mixes may be corrected by the addition of fines, removal of coarse material or use of air entrainment. Proper control of the water content in a harsh mix is more difficult because of the tendency of such a mix to bleed. This bleeding of water to the surface will result in a smeared block face if bleeding occurs during molding. Harsh mixes tend to have poor mold ability and green block stability unless measures are taken to correct them. To avoid harshness the combined aggregates usually should contain between 12 and 15% of material passing a No. 50 mesh screen, by dry bulk volume, as given in the preceding section on strength. A mix may be harsh even though it possesses a normally adequate amount of minus 50 mesh material if there is an excess of on size or the absence of one or two sizes in the mix. Sometimes these deficiencies can be corrected by increasing the amount of fine-fines to 18 or 20%. Another method of reducing the harshness of an aggregate mix is by the use of an air entraining admixture or the use of air entraining Portland cement. Air entrained mixes have greater workability, bleed less and show improvement in green block stability. Sieve Size Percentage by Bulk Volume* Coarser Than for Various Block Textures Fine Medium Coarse 3/8 0 0 0 4 21 25 30 8 36 40 50 16 51 55 67 30 66 70 81 50 82 85 91 100 94 95 98 F.M. 3.50 3.70 4.17

Recommended gradations for fine, medium, and coarse textured surface blocks are presented in Table I. These values were obtained by plotting reasonably smooth curves on an aggregate gradation chart in such a manner as to give the desired amounts of material larger than the No. 4 sizes, smaller than the No. 50 size, and having the desired fineness modulus. The fine texture gradation and the coarse texture gradation it may be noted that the tolerance of the percentage between tine and coarse for any size is rather small. For comparison the grading requirements for combined fine and coarse aggregate (3/8 in. to 0) from the Tentative Specifications for Lightweight aggregates for Concrete Masonry Units (ASTM Designation: C331). It would seem that the producer desiring to maintain close control of lightweight aggregate gradation would encounter difficulty in a combined aggregate were used which merely met the ASTM requirements for combined (3/8 in. to 0) aggregate. The closer NCMA limits can, however, be complied with readily by using separate fine and coarse sizes of lightweight aggregate and recombining at time of batching. The gradation limits shown by dashed lines in Fig. 4 are taken from the grading requirements of the Tentative Specifications for Lightweight Aggregates for Concrete Masonry Units (ASTM Designation: C331) for both fine and coarse aggregate sizes. Curve A of Fig. 4 is a typical gradation falling between the ASTM limits for fine aggregate, and curve B is a typical gradation for the coarse aggregate. That these two typical gradation may be blended to yield a combined aggregate meeting the NCMA suggested limits is demonstrated by curve C which has been blended by proportioning 65% of the fine size material with 35% of the coarse size. Although there are no ASTM gradation requirements set forth for dense aggregate used in concrete masonry, the producer of dense aggregate concrete block must usually purchase aggregate material from sources normally producing to meet ASTM requirements. An examination of ASTM grading requirements indicates that no one grading falls within the NCMA suggested limits, and it is usually necessary for the dense aggregate block producer to purchase both coarse and fine aggregates and combine them when batching. Highway aggregate as given in Standard Specifications for Standard Sizes of coarse aggregate for Highway Construction (ASTM Designation: D448). Curve B is a typical grading of fine aggregate from the Tentative Specifications for Concrete Aggregate (ASTM Designation: C33). The two grading s have been blended to give Curve C which falls within the NCMA suggested grading limits. Undoubtedly similar results might have been obtained from other combinations of other ASTM dense aggregate grading s. The particular two used in this example were chosen merely to illustrate the procedure and emphasize the fact that a good gradation of aggregate can be accomplished with recombining of fine and coarse sizes. Summary: The amount of literature on the subject of proper aggregate gradation for concrete block is sparse. It is felt that research is needed on the subject particularly at the level of

production. From the limited amount of information available, aggregate grading appears to be a factor in many of the physical properties of the finished block. The fineness modulus of the aggregate grading is an excellent gage of the aggregate gradation. Some researchers have found that an optimum fineness modulus exists for any particular aggregate. A theory of inter-particle voids has been used in explanation of the optimum fineness modulus. Suggested aggregate gradations have been presented based on a volume bases. The use of a volume basis for sieve analyses makes it possible to combine fine and coarse size aggregates of different specific gravities to meet a selected fineness modulus. An example of the necessary computation for converting from a selected gradation by volume to the weight bases as actually used in sieve analyses is presented in I. The gradation limits suggested are more stringent than combined aggregate grading requirements in the ASTM Specifications. The desired grading can be obtained from aggregates meeting ASTM gradation requirements by combining of fine and coarse sizes. This procedure is illustrated with two examples. APPENDIX I Method of converting Aggregate Gradation Requirements from Percentage by Bulk Volume to Percentage by Weight. Assume that the bulk specific gravity of each individual size fraction of a particular aggregate is known from separate laboratory tests. It is desired to convert the bulk volume gradation requirements given in Table I in accordance with these known specific gravities in order that a sieve analysis can be run by weight on the entire sample. A method for making this conversion is shown in Table A. TABLE a Converting Gradation Requirements from Bulk Volume to Weight Basis Sieve Size Percent (By Vol.) Coarser than; for Medium Texture (From Table I) A Individual Percent Retained (By Vol.) B Bulk Specific Gravity (Assumed) C A x B Weighted Specific Gravity D Individual Percent Retained (By Wt.) Percent (By Wt.) Coarser than; for Medium Texture 3/8 0 0 2.3 0 0 0 4 25 25 2.3 57.5 22.3 22.3 8 40 15 2.5 37.5 14.5 36.8 16 55 15 2.6 39.0 15.1 51.9 30 70 15 2.7 40.5 15.7 76.6 50 85 15 2.8 42.0 16.2 83.8 100 95 10 2.8 28.0 10.8 94.6 Pan ----- 5 2.8 14.0 5.4 ----- F. M. 3.70 ---- 3.57 Total * = 258.5 *The weighted average bulk specific gravity of the sample may be obtained by dividing total by 100, (2.59)

Referring to Table A, the individual percentages by volume (Column A ) are calculated by subtracting from the total retained on any size fraction the total retained on the next succeeding larger size. The assumed bulk specific gravities are given in Column B by the individual percent retained A. The conversion to individual percent retained by weight is now made by dividing the individual values shown in Column C by the summation of these values (258.5). Last, the percent coarser than, by weight, is obtained as a summation of individual percentages retained. In this manner the gradation shown on a volume basis has been converted to a gradation on a weight basis which on a volume basis has been converted to a gradation on a weight basis which conforms to the differences in the specific gravities of the various size fractions. It may be noted in Table A that the total sum of the weighted specific gravities when divided by 100 gives the weighted average specific gravity of the combined sample. This value of 2.585 (or 2.59) is the value which might be used in a calculation of mix proportions in which bulk volume proportions were desired. It may also be noted in Table A that particle sizes having high specific gravities are increased in the conversion to a weight basis while those sizes having low specific gravities are decreased. The specific gravity of 2.8 which was assumed for the No. 50 size particles, in example, made it necessary to increase the amount of this size to 16.2 percent by weight in order to get the desired 15 percent by volume. This relationship is always true when blending aggregates by weight which have dissimilar specific gravities and the extra amount of the higher gravity aggregate which must be used to obtain a desired volumetric gradation depends on the difference between the specific gravities. Had the No.50 size particles specific gravity been assumed as 3.8 rather than 2.8 it would have been necessary to increase the percentage by weight to 19.7 percent to obtain the desired 15 percent by volume.

Fig. I Relation of F.M. to Compressive Strength of 3x6in. Concrete Cylinders.

Fig. 2 Relation of F.M. to Block Weight and Compressive Strength. From Reference No. 3 FINENESS MODUILUS S T R E N G T H G R O S S A R E A P S I W E I G H T A I R D R Y L B S