Sieve Analysis of Aggregates
|
|
|
- Ira Bell
- 9 years ago
- Views:
Transcription
1 Revised 2007, WKS Datasheet No. 30 MOHAWK COLLEGE OF APPLIED ARTS AND TECHNOLOGY BUILDING AND CONSTRUCTION SCIENCES DEPARTMENT Sieve Analysis of Aggregates INTRODUCTION The evaluation of the distribution of particle sizes or gradation is a very important step in the process of developing mix designs for Portland cement concrete. Different communities will require the use of local aggregate sources to keep the price of the concrete mix reasonable. Since the raw materials and even the crushing equipment used at the source (pit) will be different in each community, there are no absolute recipes for producing concrete mixes. Usually, concrete mixes are manufactured using a coarse and fine aggregates coming from different sources, all bound together by a paste of Portland cement. The physical properties of the concrete mix can also be affected by the inclusion of additives in the mix. In this laboratory procedure a sieve analysis will be conducted on the stock aggregates that will be used to manufacture Portland Cement Concrete (PCC) mixtures. The resulting gradations for each material, i.e., coarse aggregate (CA) and fine aggregate (FA) will then be compared to standards set by the Canadian Standards Association (CSA). The fine aggregate (sand) will be evaluated (pass or fail) based on the CSA grading criteria for air-entrained concrete (FA1) and non-air-entrained concrete (FA2) shown in Table 1. The fineness modulus (a parameter used in some mix design methods) will also be evaluated using the range specified in the Ontario Provincial Standards 1. For the coarse aggregate (stone) the nominal size will be determined by comparing the gradation results to the CSA grading specifications for various sizes of coarse aggregate shown in Table 2. One of the most critical stages in the process is to acquire samples of the materials that truly represent the materials (i.e., representative samples). If 1 and select Online Standards or click on the OPS link on the instructor s homepage. 1
2 the material has been exposed to extensive rainfall or vibration, certain sizes of particles can be segregated or can collect together in pockets. The samples selected for analysis must be produced by the proper use of sample splitters. If the original sample is not representative of the material that will ultimately be used to manufacture the concrete mixtures, all the care in the world in carrying out the sieve analyses will not make the results valid. Every mistake made from this point on in the process will affect the quality of the concrete mix. Table 1: Grading Limits for Fine Aggregate (FA) after CPCA Acceptable Ranges of % Sieve Size Passing by Mass FA1 FA2 10 mm mm mm mm µm µm µm Table 2: CSA Grading Specifications for Selected Sizes of Coarse Aggregate Percent of Sample Mass Passing Sieves Sieve Sizes Nominal Size of Aggregate (mm) mm mm mm mm mm mm
3 EQUIPMENT 1. balances sensitive to 0.1 and 1 gram, 2. Coarse Sieves: 20 mm, 14 mm and 10 mm, 3. Fine Sieves: 5 mm, 2.5 mm, 1.25 mm, 630 µm, 315 µm and 160 µm 4. Sample splitters, 5. Gilson Screen Shaker 6. Miscellaneous pans, brushes, scoops, etc. PROCEDURE A: Sieve Analysis of Fine Aggregate 1. From the air dry sand select a representative sample of about 4 kg and, using the small splitter, reduce this to 500 ±50 g. The sample should be weighed to the nearest 0.1 g. 2. Nest a 10 mm sieve in a sieve pan and place the sample in the sieve. In all probability all the material will pass through it with little or no agitation. If any material is retained on the sieve, weigh it, record the mass and set it aside. 3. Repeat the previous step using a 5, 2.5, 1.25 mm, 630, 315, and 160 µm sieve, recording the masses of the material retained on each sieve. As the sieves become finer, more and more effort will be required to insure that all the material that will pass a sieve actually does. The recommended procedure is as follows: The sieve is nested in the pan and a lid is placed on the sieve. It is held, slightly inclined, in one hand. Then strike the side of the sieve sharply against the heel of the other had at a rate of about 150 times a minute. Turn the sieve about 1/6 of a revolution every 25 blows. This is continued until no more than 1% additional material passes in one minute of sieving. Usually about one minute of such sieving is adequate with the finest two sieves and somewhat less with the others. 4. Total the masses retained on the sieves and pan. This mass should agree within ±1% of the original mass of the sample. If it does not, it will be necessary to repeat the test. 3
4 B: Sieve Analysis of Coarse Aggregate 1. Select about 12 kg of the coarse, air dried aggregate. 2. Using the large or medium sample splitters, reduce the sample to 3 ± 0.5 kg and record the mass. 3. Arrange the 20, 14, 10, 5, 2.5 mm screens in the Gilson shaker and shake for 4 to 5 minutes. Weigh the residue retained on each sieve to the nearest gram. Continue sieving the material from the pan of the Gilson with the brass 1.25 mm, 630, 315, and 160 µm sieves. 4. The total of the material retained on the sieves and the pan should agree within ±1% of the original mass of the sample. If it does not, it will be necessary to repeat the test. CALCULATIONS: Dry Sieve Analysis 1. Calculate the cumulative mass retained on each sieve and the pan. 2. Calculate the cumulative percent retained on each sieve and on the pan as a percent of the original sample mass. NOTE: The % retained on the pan would work out to 100% if there was no sieving error. The value calculated should equal 100% plus the % sieving error.) 3. Calculate the percent passing each sieve by subtracting the % Retained from 100%. 4. Calculate the fineness of each material by summing the % Retained values (excluding the pan) and dividing by 100% REPORT: 1. Visit the website for the Ontario Provincial Standards: and select Online Standards or click on the OPS link on the instructor s homepage. Using the standards indicated on the Report Form, fill in the required information for the report and evaluate the suitability of the aggregate tested for the applications indicated. 4
5 2. Evaluate the fine aggregate according to the FA1 and FA2 grading specification shown in Table 1. Plot the FA gradation curve on the semilogarithmic paper provided with the datasheets on the website or use Excel to plot a scatter type chart (instructions are posted under Graphing Standards ). Also plot the grading specification(s) that the material passes (or comes closest to passing) on the same graph, labeling each curve. 3. Evaluate the coarse aggregate according to the grading specifications shown in Table 2 for 4 different Nominal Sizes. Select the Coarse Aggregate Nominal Size that the CA meets or comes closest to meeting. Plot the CA gradation curve on the semi-logarithmic paper provided with the datasheets on the website or use Excel to plot a scatter type chart (instructions are posted under Graphing Standards ). Also plot the grading specification that the material passes (or comes closest to passing) on the same graph, labeling each curve. 4. Report the fineness modulus of each aggregate and evaluate its suitability as indicated by the OPS Spec
SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES FOP FOR AASHTO T 27 (11)
SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES FOP FOR AASHTO T 27 (11) MATERIALS FINER THAN 75 µm (No. 200) SIEVE IN MINERAL AGGREGATE BY WASHING FOP FOR AASHTO T 11 (11) Scope Sieve analysis determines
Standard Test Procedures Manual
STP 206-1 Standard Test Procedures Manual Section: 1. SCOPE 1.1. Description of Test 2. APPARATUS This method describes the procedure for determining the relationship between the particle size distribution
NOTE: FOR PROJECTS REQUIRING CONTRACTOR MIX DESIGN, THE DESIGN PROCEDURES ARE SPECIFIED IN THE SPECIAL PROVISIONS OF THE CONTRACT.
September 1, 2003 CONCRETE MANUAL 5-694.300 MIX DESIGN 5-694.300 NOTE: FOR PROJECTS REQUIRING CONTRACTOR MIX DESIGN, THE DESIGN PROCEDURES ARE SPECIFIED IN THE SPECIAL PROVISIONS OF THE CONTRACT. 5-694.301
SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES
Test Procedure for SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES TxDOT Designation: Tex-200-F Effective Date: January 2016 1. SCOPE 1.1 Use this test method to determine the particle size distribution of
The University of Toledo Soil Mechanics Laboratory
1 Grain Size Distribution Sieve Analysis The University of Toledo Soil Mechanics Laboratory Introduction The grain size distribution is a representation of the approximate distribution of soil grain sizes
Apr 17, 2000 LAB MANUAL 1302.0. 1302 PARTICLE SIZE ANALYSIS OF SOILS AASHTO Designation T 88 (Mn/DOT Modified)
Apr 17, 2000 LAB MANUAL 1302.0 1302 PARTICLE SIZE ANALYSIS OF SOILS AASHTO Designation T 88 (Mn/DOT Modified) 1302.1 SCOPE This method describes a procedure for the quantitative determination of the distribution
GRADATION OF AGGREGATE FOR CONCRETE BLOCK
GRADATION OF AGGREGATE FOR CONCRETE BLOCK Although numerous papers have been written concerning the proper gradation for concrete mixes, they have generally dealt with plastic mixes, and very little published
PART I SIEVE ANALYSIS OF MATERIAL RETAINED ON THE 425 M (NO. 40) SIEVE
Test Procedure for PARTICLE SIZE ANALYSIS OF SOILS TxDOT Designation: Tex-110-E Effective Date: August 1999 1. SCOPE 1.1 This method covers the quantitative determination of the distribution of particle
PROPERTIES AND MIX DESIGNATIONS 5-694.200
September 1, 2003 CONCRETE MANUAL 5-694.200 5-694.210 PROPERTIES OF CONCRETE PROPERTIES AND MIX DESIGNATIONS 5-694.200 Inspectors should familiarize themselves with the most important properties of concrete:
Chapter 8 Design of Concrete Mixes
Chapter 8 Design of Concrete Mixes 1 The basic procedure for mix design is applicable to concrete for most purposes including pavements. Concrete mixes should meet; Workability (slump/vebe) Compressive
Erosion Resistance Performance Comparison Of Natracil, Stabilizer And Envirobond s Organic-Lock
Erosion Resistance Performance Comparison Of Natracil, Stabilizer And Envirobond s Organic-Lock Testing conducted at the Envirobond Test Laboratory, Mississauga, ON Canada Erosion Resistance Performance
Florida Method of Test for TESTING OF GROUND TIRE RUBBER Designation: FM 5-559
Florida Method of Test for TESTING OF GROUND TIRE RUBBER Designation: FM 5-559 1 SCOPE 1.1 This method is used to determine the physical requirements of ground tire rubber for use in asphalt rubber using
Shotcrete Quality Control and Testing for an Underground Mine in Canada
Shotcrete Quality Control and Testing for an Underground Mine in Canada By Dudley R. (Rusty) Morgan and Mazin Ezzet AMEC Earth & Environmental, a division of AMEC Americas Limited SHOTCRETE FOR AFRICA
Standard Test 1. SCOPE. 1.1. Description of Test
STP 206-9 Standard Test Section: Procedures Manual 1. SCOPE 1.1. Description of Test This test covers the determination of the approximate percentage of lightweight pieces in aggregate by means of sink-float
Effect of basalt aggregates and plasticizer on the compressive strength of concrete
International Journal of Engineering & Technology, 4 (4) (2015) 520-525 www.sciencepubco.com/index.php/ijet Science Publishing Corporation doi: 10.14419/ijet.v4i4.4932 Research Paper Effect of basalt aggregates
The Basic Principles of Sieve Analysis
The Basic Principles of Sieve Analysis Introduction Many natural and manufactured materials occur in a disperse form, which means that they consist of differently shaped and sized particles. The particle
ATT-72/94, SALT SIEVE ANALYSIS. This method describes the procedure for determining the gradation of salt.
1.0 Scope ATT-72/94, SALT SIEVE ANALYSIS 1.0 SCOPE This method describes the procedure for determining the gradation of salt. 2.0 EQUIPMENT sieves: 80 µm, 160 µm, 315 µm, 630 µm, 1 250 µm, 2 500 µm, 5
Standard Test Procedures Manual
STP 205-13 Standard Test Procedures Manual Section: 1. SCOPE 1.1. Description of Test This method describes the procedure for determining the relationship between the moisture and density of fine-grained
METHOD A7 THE DETERMINATION OF THE MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE CONTENT OF GRAVEL, SOIL AND SAND
SCOPE METHOD A7 THE DETERMINATION OF THE MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE CONTENT OF GRAVEL, SOIL AND SAND Definition The maximum dry density and optimum moisture content, as defined below, is
Standard Test Procedures Manual
STP 206-4 Standard Test Procedures Manual Section: 1. SCOPE 1.1. Description of Test This method describes the procedure for determining the liquid limit, plastic limit and the plasticity index of coarse-grained
CHAPTER 2 AGGREGATE TECHNICIAN TRAINING AND QUALIFICATION PROGRAM
Topic No. 700-000-001 Construction Training and Qualification Manual Effective: July 1, 2002 Aggregate Technician Training and Qualification Program Revised: DRAFT May 6September 3, 2008 CHAPTER 2 AGGREGATE
METHOD A10 (a) THE DETERMINATION OF THE IN-PLACE DRY DENSITY OF SOIL OR GRAVEL BY THE SAND REPLACEMENT METHOD
METHOD A10 (a) THE DETERMINATION OF THE IN-PLACE DRY DENSITY OF SOIL OR GRAVEL BY THE SAND REPLACEMENT METHOD 1 SCOPE The in-place dry density of compacted soil or gravel, as defined below, is determined
METHOD OF TEST FOR SAMPLING AND TESTING CRUMB RUBBER MODIFIER
STATE OF CALIFORNIA BUSINESS, TRANSPORTATION AND HOUSING AGENCY DEPARTMENT OF TRANSPORTATION DIVISION OF ENGINEERING SERVICES Transportation Laboratory 5900 Folsom Boulevard Sacramento, California 95819-4612
LABORATORY CLASSIFICATION OF SOILS FOR ENGINEERING PURPOSES
Test Procedure for LABORATORY CLASSIFICATION OF SOILS FOR ENGINEERING PURPOSES TxDOT Designation: Tex-142-E Effective Date: August 1999 1. SCOPE 1.1 This method is a system for classifying disturbed and
Designing a Zero-Waste Concrete Mix Testing Lab
Designing a Zero-Waste Concrete Mix Testing Lab James A. Lee 1 Michael J. D Agostino 2 Abstract A zero waste laboratory to mix and test the engineering and performance properties of concrete was designed
Area No. 8 Test Pit No. 191
Area No. 8 Test Pit No. 191 Area Sierra-Yoyo-Desan Road Excavator Cat 322 B Photographs Location 43 m @ 40 degrees from TP-189 Northing 6571912 Date 03 March 2003 R4-7 Easting 0568784 Weather -17 C, Snow
AGREGADOS RECICLADOS MITOS Y REALIDADES
The Production and Use of Recycled Concrete in the USA Thomas Van Dam, Ph.D., P.E., FACI Principal Engineer CTL Group Introduction In the United States, concrete is the most commonly used recycled material
FIELD SAMPLING AND TESTING MANUAL TESTING PROCEDURES FOR ALL TESTS
FIELD SAMPLING AND TESTING MANUAL TESTING PROCEDURES FOR ALL TESTS Intentionally Left Blank TESTING PROCEDURES FOR ALL TESTS TABLE OF CONTENTS ND T 2 ND T 11 ND T 23 ND T 27 ND T 84 ND T 85 ND T 87 ND
Strength and Workability Characteristics of Concrete by Using Different Super Plasticizers
International Journal of Materials Engineering 12, 2(1): 7-11 DOI: 1.923/j.ijme.11.2 Strength and Workability Characteristics of Concrete by Using Different Super Plasticizers Venu Malagavelli *, Neelakanteswara
AGGREGATE TECHNICIAN TRAINING MANUAL
AGGREGATE TECHNICIAN TRAINING MANUAL Developed by Multi-Regional Aggregate Training and Certification Group Revised 2006 AGGREGATE SAMPLING AND TESTING FOR TRANSPORTATION ENGINEERING TECHNICIANS PREFACE
The Standard & Modified Proctor Density Tests
Revise 2003, WKS Datasheet No. 7 OHAWK COLLEGE OF APPLIED ARTS AND TECHNOLOGY BUILDING AND CONSTRUCTION SCIENCES DEPARTENT The Stanar & oifie Proctor Density Tests INTRODUCTION: In placing fill, it is
SPECIFIC GRAVITY OF COARSE AGGREGATE AASHTO T 85
SPECIFIC GRAVITY OF COARSE AGGREGATE AASHTO T 85 GLOSSARY Absorption: The increase in weight due to water contained in the pores of the material. Bulk Specific Gravity (also known as Bulk Dry Specific
:: ARTIFICIAL SAND :: Zone One Sand : Zone Two Sand :
:: ARTIFICIAL SAND :: Natural sand are weathered and worn out particles of rocks and are of various grades or size depending on the accounting of wearing. The main natural and cheapest resource of sand
CW 3110 SUB-GRADE, SUB-BASE AND BASE COURSE CONSTRUCTION TABLE OF CONTENTS
December 2014 CW 3110 SUB-GRADE, SUB-BASE AND BASE COURSE CONSTRUCTION TABLE OF CONTENTS 1. DESCRIPTION... 1 1.1 General... 1 1.2 Definitions... 1 1.3 Referenced Standard Construction Specifications...
POWDER PROPERTIES LABORATORY
Ground Rules POWDER PROPERTIES LABORATORY You will work as a team of no more than 6 students. At the end of this laboratory session each team will turn in a single report. The report will be reviewed,
PHYSICAL AND PLASTICITY CHARACTERISTICS
0 PHYSICAL AND PLASTICITY CHARACTERISTICS EXPERIMENTS #1-5 CE 3143 October 7, 2003 Group A David Bennett 1 TABLE OF CONTENTS 1. Experiment # 1: Determination of Water Content (August 26, 2003) pp. 1-3
LABORATORY DETERMINATION OF CALIFORNIA BEARING RATIO
LABORATORY DETERMINATION OF CALIFORNIA BEARING RATIO STANDARD IS: 2720 (Part 16) 1979. DEFINITION California bearing ratio is the ratio of force per unit area required to penetrate in to a soil mass with
Standard Test Procedures Manual
STP 204-2 Standard Test Procedures Manual Section: 1. SCOPE 1.1. Description of Test The method described is a procedure used to determine the asphalt content of asphaltaggregate mixtures. 1.2. Application
APPENDIX 2 MIX DESIGNS. Chapter 4: mix design calculation sheet for 40 N/mm 2 strength)
APPENDIX 2 MIX DESIG All mixes in this study were designed in accordance with the Building Research Establishment (BRE 1992) method, recommended by the UK Department of the Environment. Reference should
Analysis of M35 and M40 grades of concrete by ACI and USBR methods of mix design on replacing fine aggregates with stone dust
Analysis of M35 and M40 s of concrete by and methods of mix design on replacing fine aggregates with stone dust Satwinder Singh 1, Dr. Hemant Sood 2 1 M. E. Scholar, Civil Engineering, NITTTR, Chandigarh,
EXPERIMENT NO.1. : Vicat s apparatus, plunger
EXPERIMENT NO.1 Name of experiment:to determine the percentage of water for normal consistency for a given sample of cement Apparatus : Vicat s apparatus with plunger of 10mm dia, measuring cylinder, weighing
Math Matters: Dissecting Hydrometer Calculations
Math Matters: Dissecting Hydrometer Calculations By Jonathan Sirianni, Laboratory Assessor In the 16th century Galileo and the Tower of Pisa made famous the fact that two objects, no matter their mass,
DETERMINING ASPHALT CONTENT FROM ASPHALT PAVING MIXTURES BY THE IGNITION METHOD
Test Procedure for DETERMINING ASPHALT CONTENT FROM ASPHALT PAVING MIXTURES BY THE IGNITION METHOD TxDOT Designation: Tex-236-F Effective Date: March 2016 1. SCOPE 1.1 Use this test method to determine
Particle size measurement of lactose for dry powder inhalers
Particle size measurement of lactose for dry powder inhalers MCC Starch Lactose Inhalation Superdisintegrants 1 Introduction The particle size of lactose has been shown to be important for dry powder
1.5 Concrete (Part I)
1.5 Concrete (Part I) This section covers the following topics. Constituents of Concrete Properties of Hardened Concrete (Part I) 1.5.1 Constituents of Concrete Introduction Concrete is a composite material
Bailey Tool for Gradation Control in Superpave Mix Design
What is the Bailey Method? Bailey Tool for Gradation Control in Superpave Mix Design 48 th Annual Idaho Asphalt Conference The Bailey Method will Evaluate individual s Determine what is Coarse and Fine
STATE OF OHIO DEPARTMENT OF TRANSPORTATION SUPPLEMENTAL SPECIFICATION 888 PORTLAND CEMENT CONCRETE PAVEMENT USING QC/QA.
STATE OF OHIO DEPARTMENT OF TRANSPORTATION SUPPLEMENTAL SPECIFICATION 888 PORTLAND CEMENT CONCRETE PAVEMENT USING QC/QA October 21, 2011 888.01 General 888.02 Materials 888.03 Concrete Proportioning 888.04
PROJECT PROFILE ON CEMENT CONCRETE HOLLOW BLOCKS
PROJECT PROFILE ON CEMENT CONCRETE HOLLOW BLOCKS PRODUCT : Cement Concrete Hollow Blocks NIC CODE : 26959 (based on NIC 2004) PRODUCT CODE : 94459 (based on ASICC 2000) PRODUCTION CAPACITY : Quantity :
THE DETERMINATION OF THE MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE CONTENT OF MATERIALS USING THE VIBRATORY HAMMER COMPACTION
THE DETERMINATION OF THE MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE CONTENT OF MATERIALS USING THE VIBRATORY HAMMER COMPACTION 1. SCOPE The maximum dry density and optimum moisture content, as defined below,
1. Grain Size Distribution Documentation of Calculations
1. Grain Size Distribution Documentation of Calculations The calculations used in the program are fairly simple and for the most part follow ASTM D 422. The following sections present the equations used.
CHAPTER 2 AGGREGATE TECHNICIAN TRAINING AND QUALIFICATION PROGRAM
CHAPTER 2 AGGREGATE TECHNICIAN TRAINING AND QUALIFICATION PROGRAM 2.1 PURPOSE... 2-1 2.2 BACKGROUND.. 2-1 2.3 QUALIFICATION REQUIREMENTS BY JOB FUNCTION.. 2-1 2.3.1 Aggregate Testing Technician. 2-1 2.3.2
The AASHO Road Test site (which eventually became part of I-80) at Ottawa, Illinois, was typical of northern climates (see Table 1).
Página 1 de 12 AASHO Road Test The AASHO Road Test, a $27 million (1960 dollars) investment and the largest road experiment of its time, was conceived and sponsored by the American Association of State
DESIGN, FABRICATION AND TESTING OF A LABORATORY SIZE HAMMER MILL
DESIGN, FABRICATION AND TESTING OF A LABORATORY SIZE HAMMER MILL AJAKA E.O. and ADESINA A. Department of Mining Engineering School of Engineering and Engineering Technology The Federal University of Technology,
SOIL-LIME TESTING. Test Procedure for. TxDOT Designation: Tex-121-E 1. SCOPE 2. APPARATUS 3. MATERIALS TXDOT DESIGNATION: TEX-121-E
Test Procedure for SOIL-LIME TESTING TxDOT Designation: Tex-121-E Effective Date: August 2002 1. SCOPE 1.1 This method consists of three parts. 1.1.1 Part I determines the unconfined compressive strength
Quantifying Bacterial Concentration using a Calibrated Growth Curve
BTEC 4200 Lab 2. Quantifying Bacterial Concentration using a Calibrated Growth Curve Background and References Bacterial concentration can be measured by several methods, all of which you have studied
Pavement Thickness. esign and RCC-Pave Software. Roller-Compacted Concrete Pavement: Design and Construction. October 24, 2006 Atlanta, Georgia
Roller-Compacted Concrete Pavement: Design and Construction Pavement Thickness esign and RCC-Pave Software Gregory E. Halsted, P.E. Pavements Engineer Portland Cement Association October 24, 2006 Atlanta,
THEORETICAL MAXIMUM SPECIFIC GRAVITY OF BITUMINOUS MIXTURES
Test Procedure for THEORETICAL MAXIMUM SPECIFIC GRAVITY OF BITUMINOUS TxDOT Designation: Tex-227-F Effective Date: March 2016 1. SCOPE 1.1 Use this test method to determine the theoretical maximum specific
No allowance will be made for classification of different types of material encountered.
PROJECT : Repair/ Maintenance of Flood Control and Drainage Structures Along Butuan City Cagayan de Oro City Iligan City Road LOCATION : San Antonio, Jasaan, Misamis Oriental SUBJECT : General Notes and
5.2.7.4 CONCRETE: CONTRACTOR S QUALITY CONTROL PLAN
5.2.7.4 CONCRETE: CONTRACTOR S QUALITY CONTROL PLAN NOTE: This document is generally written in the imperative mood. The subject, "the Contractor" is implied. Also implied in this language are "shall",
SPECIFICATION FOR CONSTRUCTION OF UNBOUND GRANULAR PAVEMENT LAYERS
TNZ B/02:2005 SPECIFICATION FOR CONSTRUCTION OF UNBOUND 1. SCOPE This specification shall apply to the construction of unbound granular pavement layers. The term pavement layer shall apply to any layer
MINIMUM QUALITY CONTROL PLAN FOR FIELD PLACEMENT OF LATEX MODIFIED MORTAR OR CONCRETE WEARING SURFACE
CS-1042 (8-13) www.dot.state.pa.us MINIMUM QUALITY CONTROL PLAN FOR FIELD PLACEMENT OF LATEX MODIFIED MORTAR OR CONCRETE WEARING SURFACE State Route (SR) Section County ECMS# Prime/Sub Contractor Latex
FLEXURAL AND TENSILE STRENGTH PROPERTIES OF CONCRETE USING LATERITIC SAND AND QUARRY DUST AS FINE AGGREGATE
FLEXURAL AND TENSILE STRENGTH PROPERTIES OF CONCRETE USING LATERITIC SAND AND QUARRY DUST AS FINE AGGREGATE Joseph. O. Ukpata 1 and Maurice. E. Ephraim 2 1 Department of Civil Engineering, Cross River
All sediments have a source or provenance, a place or number of places of origin where they were produced.
Sedimentary Rocks, Processes, and Environments Sediments are loose grains and chemical residues of earth materials, which include things such as rock fragments, mineral grains, part of plants or animals,
Quality Assurance Program. June 2005 2005 by Texas Department of Transportation (512) 416-2055 all rights reserved
Quality Assurance Program June 2005 2005 by Texas Department of Transportation (512) 416-2055 all rights reserved Quality Assurance Program June 2005 Manual Notices Manual Notice 2005-1To: Users of the
Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston
Chemistry 118 Laboratory University of Massachusetts, Boston STOICHIOMETRY - LIMITING REAGENT -----------------------------------------------------------------------------------------------------------------------------
Division 2 Section 32 14 13.19 Section 02795
Note: The text must be edited to suit specific project requirements. It should be reviewed by a qualified civil or geotechnical engineer, or landscape architect familiar with the site conditions. Edit
HIGHWAYS DEPARTMENT GUIDANCE NOTES ON SOIL TEST FOR PAVEMENT DESIGN
HIGHWAYS DEPARTMENT GUIDANCE NOTES ON SOIL TEST FOR PAVEMENT DESIGN Research & Development Division RD/GN/012 August 1990 HIGHWAYS DEPARTMENT GUIDANCE NOTES (RD/GN/012) SOIL TEST FOR PAVEMENT DESIGN Prepared
Soils and Aggregates Division
Dan Sajedi, Division Chief 443-572-5162 George Hall, Assistant Division Chief Field Operations 443-572-5271 Eric Frempong, Assistant Division Chief Laboratory 443-572-5055 Aggregate Materials, Controlled
10 20 30 40 50 60 Mark. Use this information and the cumulative frequency graph to draw a box plot showing information about the students marks.
GCSE Exam Questions on Frequency (Grade B) 1. 200 students took a test. The cumulative graph gives information about their marks. 200 160 120 80 0 10 20 30 50 60 Mark The lowest mark scored in the test
Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System) 1
Designation: D 2487 06 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System) 1 This standard is issued under the fixed designation D 2487; the number
Determination of Thermal Conductivity of Coarse and Fine Sand Soils
Proceedings World Geothermal Congress Bali, Indonesia, - April Determination of Thermal Conductivity of Coarse and Fine Sand Soils Indra Noer Hamdhan 1 and Barry G. Clarke 2 1 Bandung National of Institute
Apr 17, 2000 LAB MANUAL 1811.0
Apr 17, 2000 LAB MANUAL 1811.0 1811 BULK SPECIFIC GRAVITY (GMB) AND DENSITY OF COMPACTED BITUMINOUS SPECIMENS USING PARAFFIN OR PARAFILM ASTM Designation D 1188 (MN/DOT Modified) 1811.1 SCOPE This test
QUALITY ASSURANCE PROGRAM (QAP) City Rohnert Park
QUALITY ASSURANCE PROGRAM (QAP) City Rohnert Park The purpose of this program is to provide assurance that the materials incorporated into the construction projects are in conformance with the contract
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for
To measure the solubility of a salt in water over a range of temperatures and to construct a graph representing the salt solubility.
THE SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES 2007, 1995, 1991 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included. OBJECTIVE To measure
VOLUME AND SURFACE AREAS OF SOLIDS
VOLUME AND SURFACE AREAS OF SOLIDS Q.1. Find the total surface area and volume of a rectangular solid (cuboid) measuring 1 m by 50 cm by 0.5 m. 50 1 Ans. Length of cuboid l = 1 m, Breadth of cuboid, b
Otta Seal BACKGROUND GENERAL DESCRIPTION DESIGN ASPECTS. Category : Technical Information/On-carriageway/
Otta Seal Category : Technical Information/On-carriageway/ BACKGROUND An Otta seal is a thin bituminous seal comprising graded gravel or crushed aggregate containing all sizes and either a cut-back or
DryWeight BulkVolume
Test Procedure for BULK SPECIFIC GRAVITY AND WATER ABSORPTION OF AGGREGATE TxDOT Designation: Tex-201-F Effective Date: January 2016 1. SCOPE 1.1 Use this method to determine the bulk specific gravity
SPECIFICATIONS. INTERLOCKING CONCRETE POROUS PAVING UNITS or Permeable Interlocking Concrete Pavers (PICP)
SPECIFICATIONS INTERLOCKING CONCRETE POROUS PAVING UNITS or Permeable Interlocking Concrete Pavers (PICP) Part 1 General 1.1 CONFORMITY Conforms to the requirements of the general conditions of the contract.
Commonwealth of Pennsylvania PA Test Method No. 632 Department of Transportation October 2013 5 Pages LABORATORY TESTING SECTION. Method of Test for
Commonwealth of Pennsylvania PA Test Method No. 632 Department of Transportation 5 Pages LABORATORY TESTING SECTION Method of Test for TIME OF SETTING OF CONCRETE MIXTURES BY PENETRATION RESISTANCE 1.
Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur
Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur Lecture No. # 28 Last lecture we have covered this Atterberg limit,
SCG / SELF CONSOLIDATING GROUT
SCG SELF CONSOLIDATING GROUT U. S. A. DIVISION MASONRY PRODUCTS 04 Structurally Sound. Highly Fluid. SPEC MIX Self Consolidating Grout (SCG) is a dry preblended grout specifically designed to be highly
Construction Specification for Concrete Curb and Concrete Curb and Gutter
Engineering & Construction Services Division Standard Specifications for Road Works TS 3.50 April 2015 for Concrete Curb and Table of Contents TS 3.50.01 SCOPE... 3 TS 3.50.02 REFERENCES... 3 TS 3.50.03
SECTION 334 (Pages 243-266) is deleted and the following substituted: SECTION 334 SUPERPAVE ASPHALT CONCRETE
334 SUPERPAVE ASPHALT CONCRETE. (REV 12-20-04) (FA 1-6-05) (7-05) SECTION 334 (Pages 243-266) is deleted and the following substituted: SECTION 334 SUPERPAVE ASPHALT CONCRETE 334-1 Description. 334-1.1
HIGHWAYS DEPARTMENT GUIDANCE NOTES ON ROAD SURFACE REQUIREMENTS FOR EXPRESSWAYS AND HIGH SPEED ROADS
HIGHWAYS DEPARTMENT GUIDANCE NOTES ON ROAD SURFACE REQUIREMENTS FOR EXPRESSWAYS AND HIGH SPEED ROADS Research & Development Division RD/GN/032 June 2007 1. Purpose ROAD SURFACE REQUIREMENTS FOR EXPRESSWAYS
GUIDE SPECIFICATIONS FOR CONSTRUCTION OF AQUAPAVE PERMEABLE STORMWATER MANAGEMENT SYSTEM
GUIDE SPECIFICATIONS FOR CONSTRUCTION OF AQUAPAVE PERMEABLE STORMWATER MANAGEMENT SYSTEM SECTION 32 14 13.19 AquaPave Permeable Interlocking Concrete Pavement Note: This guide specification is for the
SELECTING THE ELECTRIC VIBRATOR
SELECTING THE ELECTRIC VIBRATOR Vibration systems and methods The systems that use the vibration technique can be divided into the following categories: freely oscillating systems, which will be described
METHOD OF TEST FOR UNIT WEIGHT OF FRESH CONCRETE
STATE OF CALIFORNIA BUSINESS, TRANSPORTATION AND HOUSING AGENCY DEPARTMENT OF TRANSPORTATION DIVISION OF ENGINEERING SERVICES Transportation Laboratory 5900 Folsom Blvd. Sacramento, California 95819-4612
Evaluation of M35 and M40 grades of concrete by ACI, DOE, USBR and BIS methods of mix design
Evaluation of M35 and M40 grades of concrete by ACI, DOE, USBR and BIS methods of mix design Sharandeep Singh 1, Dr.Hemant Sood 2 1 M. E. Scholar, CIVIL Engineering, NITTTR, Chandigarh, India 2Professor
1.3 Properties of Coal
1.3 Properties of Classification is classified into three major types namely anthracite, bituminous, and lignite. However there is no clear demarcation between them and coal is also further classified
Evaluation of Initial Setting Time of Fresh Concrete
Evaluation of Initial Setting Time of Fresh Concrete R R C Piyasena, P A T S Premerathne, B T D Perera, S M A Nanayakkara Abstract According to ASTM 403C, initial setting time of concrete is measured based
Asphalt Institute Technical Bulletin. Laboratory Mixing and Compaction Temperatures
ASPHALT INSTITUTE EXECUTIVE OFFICES AND RESEARCH CENTER Research Park Drive P.O. Box 14052 Lexington, KY 40512-4052 USA Telephone 859-288-4960 FAX No. 859-288-4999 Asphalt Institute Technical Bulletin
LAYING BLOCK AND BRICK
LAYING BLOCK AND BRICK Products highlighted in this section: SAKRETE Type N Mortar Mix SAKRETE Type S Mortar Mix Brick And Block Laying Basics The first step in building a brick or block wall is to construct
Stone crusher dust as a fine aggregate in Concrete for paving blocks
Stone crusher dust as a fine aggregate in Concrete for paving blocks Radhikesh P. Nanda 1, Amiya K. Das 2, Moharana.N.C 3 1 Associate Professor, Department of Civil Engineering, NIT Durgapur, Durgapur
STANDARD INSPECTION & TEST PLAN (ITP) FOR CIVIL WORKS :
CONSTRUCTION OF BG RAILAY SIDING AT KADAPA IRD (ITP) F CIVIL KS : 1.0 GENERAL NOTES: Inspection & Test Plan (ITP) given herein is indicative only. Contractor shall prepare and submit ITP for all activities.
