Magnetic moment g 2µ and new physics



Similar documents
A SUSY SO(10) GUT with 2 Intermediate Scales

FLAVOUR OVERVIEW. Luca Silvestrini. INFN, Rome. M. SUSY2013. Special thanks to D. Derkach & M. Bona

FINDING SUPERSYMMETRY AT THE LHC

Concepts in Theoretical Physics

Higgs and Electroweak Physics

Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15

Selected Topics in Elementary Particle Physics ( Haupt-Seminar )

How To Find The Higgs Boson

Highlights of Recent CMS Results. Dmytro Kovalskyi (UCSB)

Channels & Challenges New Physics at LHC

Bounding the Higgs width at the LHC

The Higgs sector in the MSSM with CP-phases at higher orders

Standard Model of Particle Physics

Real Time Tracking with ATLAS Silicon Detectors and its Applications to Beauty Hadron Physics

Weak Interactions: towards the Standard Model of Physics

Mass spectrum prediction in non-minimal supersymmetric models

How To Teach Physics At The Lhc

t th signal: theory status

Extensions of the Standard Model (part 2)

SUSY Breaking and Axino Cosmology

Search for Dark Matter at the LHC

From Jet Scaling to Jet Vetos

ffmssmsc a C++ library for spectrum calculation and renormalization group analysis of the MSSM

A Study of the Top Quark Production Threshold at a Future Electron-Positron Linear Collider

The Standard Model of Particle Physics - II

Lepton Flavour LHC?

FCC JGU WBS_v0034.xlsm

Axion/Saxion Cosmology Revisited

Ω I (JP ) = 0( ) Status:

Physik des Higgs Bosons. Higgs decays V( ) Re( ) Im( ) Figures and calculations from A. Djouadi, Phys.Rept. 457 (2008) 1-216

HIGH-ENERGY COLLIDER PARAMETERS: e + e Colliders (I)

GRAVITINO DARK MATTER

Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes

Alberta Thy Muonium hyperfine structure and hadronic effects Andrzej Czarnecki. Simon I. Eidelman. Savely G. Karshenboim

Vector-like quarks t and partners

Masses in Atomic Units

Gauge theories and the standard model of elementary particle physics

STRING THEORY: Past, Present, and Future

Implications of CMS searches for the Constrained MSSM A Bayesian approach

Perfect Fluidity in Cold Atomic Gases?

Feynman diagrams. 1 Aim of the game 2

Introduction to Elementary Particle Physics. Note 01 Page 1 of 8. Natural Units

Testing the In-Memory Column Store for in-database physics analysis. Dr. Maaike Limper

The Higgs Boson. Linac08 Victoria BC, Canada CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS

arxiv:hep-ph/ v2 2 Nov 2004

Mini-Split. Stanford University, Stanford, CA USA. and Institute for Advanced Study, Princeton, NJ USA

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

Cross section, Flux, Luminosity, Scattering Rates

1 Introduction. 1 There may, of course, in principle, exist other universes, but they are not accessible to our

arxiv:hep-ph/ v1 17 Oct 1993

REALIZING EINSTEIN S DREAM Exploring Our Mysterious Universe

Mathematicians look at particle physics. Matilde Marcolli

Middle East Technical University. Studying Selected Tools for HEP: CalcHEP

Perfect Fluids: From Nano to Tera

Particle Physics. The Standard Model. A New Periodic Table

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions

Periodic Table of Particles/Forces in the Standard Model. Three Generations of Fermions: Pattern of Masses

arxiv:hep-ph/ v2 4 Oct 2003

arxiv:hep-ph/ v1 31 Dec 2001

ASACUSA: Measuring the Antiproton Mass and Magnetic Moment

Quark Model. Quark Model

Chapter 15 Collision Theory

Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 7

Nuclear Magnetic Resonance Spectroscopy

Status Report on WHIZARD

Open access to data and analysis tools from the CMS experiment at the LHC

EQUATION OF STATE. e (E µ)/kt ± 1 h 3 dp,

Nuclear Magnetic Resonance (NMR) Spectroscopy

A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant

Calorimetry in particle physics experiments

CHI-SQUARE: TESTING FOR GOODNESS OF FIT

The Compact Muon Solenoid Experiment. CMS Note. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. D. J. Mangeol, U.

Transcription:

Dominik Stöckinger, TU Dresden Heidelberg, November 2012

Muon magnetic moment H magnetic 2 1 a µe 2m B S e circular motion: c m B spin precession: s 2 1 a µe 2m B

Muon magnetic moment H magnetic 2 1 a µe 2m B S Quantum field theory: a 2m q a u pµ u p¼µ F1 i Operator: m L q R

Outline 1 a SM status? a 2 Impact on New Physics in general 3 SUSY Can explain the deviation a constraints LHC vs Subleading contributions 4 Alternatives to SUSY 5 Conclusions

Outline 1 a SM status? a 2 Impact on New Physics in general 3 SUSY Can explain the deviation a constraints LHC vs Subleading contributions 4 Alternatives to SUSY 5 Conclusions a SM status?

Three Fermions g Electron: g 2 002 319 304 361 46 56µ Muon: Proton: g 5 585 694 713 46µ g 2 1 a µ a SM status?

Three Fermions 3µ Electron: g 2 002 319 304 361 46 56µ Muon: g 2 002 331 841 8 1 Proton: g 5 585 694 713 46µ g 2 1 a µ a SM status?

«2 (Pre)history 49 Schwinger: QED 1L: 57 Garwin et al: g 2µMuon=Dirac particle! a SM status?

«2 (Pre)history 49 Schwinger: QED 1L: 57 Garwin et al: g 2µMuon=Dirac particle! 68 78 CERN exp.: hadronic cont. needed, confirmed! a SM status?

«2 (Pre)history 49 Schwinger: QED 1L: 57 Garwin et al: g 2µMuon=Dirac particle! 68 78 CERN exp.: hadronic cont. needed, confirmed! 83 12: QED 4L,5L (numerically) [Kinoshita] 85 12 Had light-by-light: difficult! 96-05 e.w. contributions: 2L full a SM status?

«2 (Pre)history 49 Schwinger: QED 1L: 57 Garwin et al: g 2µMuon=Dirac particle! 68 78 CERN exp.: hadronic cont. needed, confirmed! 83 12: QED 4L,5L (numerically) [Kinoshita] 85 12 Had light-by-light: difficult! 96-05 e.w. contributions: 2L full 01 06 BNL exp.: weak cont. needed, not confirmed! a SM status?

SM prediction a SM 10 10 [Miller, de Rafael, Roberts, DS 12] QED: 11 658 471.8 (0.0) had Had vp: 682.5 (4.2) had W Had lbl: 10.5 (2.6) G Weak: 15.3 (0.1) a SM status?

SM prediction a SM 10 10 [Miller, de Rafael, Roberts, DS 12] QED: 11 658 471.8 (0.0) had Had vp: QED: complete 5-loop result [Aoyama, Hayakawa, Kinoshita, Nio 12] QED uncertainty 10 12 dominated by«had W Had lbl: G Weak: a SM status?

SM prediction a SM 10 10 [Miller, de Rafael, Roberts, DS 12] Hadronic vacuum polarization: QED: had Had vp: had W Had lbl: G Weak: 682.5 (4.2) e e hadrons depends on exp data (e e, also -decays) ÁSND, CMDII (energy scan) ÁKLOE08, KLOE10, Babar (rad return) convergence of theoretical determinations most recent: EFT induced interpolation slightly lower result [Benayoun, David, DelBuono, Jegerlehner 12] a SM status?

SM prediction a SM 10 10 [Miller, de Rafael, Roberts, DS 12] Hadronic vacuum polarization: QED: had Had vp: had W Had lbl: G Weak: 682.5 (4.2) [Benayoun, David, DelBuono, Jegerlehner 12] τ + PDG Prediction (A+B+C)(PDG) [38.10 ± 6.80] [4.1 σ] scan all ISR τ data DHMZ10 (e + e + τ) [19.5 ± 5.4] [2.4 σ] JS11 (e + e + τ) [29.2 ± 6.0] [3.4 σ] Full BHLS (e + e + τ) [32.54 ± 4.98] [4.1 σ] scan KLOE10 τ data BHLS::B (e + e + τ) [39.91 ± 5.21] [4.9 σ] BHLS::A (e + e + τ) [38.44 ± 5.18] [4.7 σ] scan τ data DHea09 (e + e ) [30.1 ± 5.8] [3.5 σ] Full BHLS(e + e + τ) [35.43 ± 5.23] [4.3 σ] scan τ data BHLS::B (e + e + τ) [36.88 ± 5.28] [4.5 σ] BHLS::A (e + e + τ) [35.43 ± 5.23] [4.3 σ] scan all ISR & excl. τ data DHMZ10 (e + e ) [28.7 ± 4.9] [3.6 σ] HLMNT11(e + e ) [26.1 ± 4.9] [3.3 σ] Full BHLS (e + e ) [33.62 ± 5.06] [4.2 σ] scan KLOE10 & excl. τ BHLS::B (e + e ) [41.91 ± 5.45] [5.0 σ] BHLS::A (e + e ) [40.31 ± 5.42] [4.9 σ] experiment 6.3] BNL-E821(avrg) [0 ± 0 50 100 (a exp µ a th µ ) 1010 a SM status?

SM prediction a SM 10 10 [Miller, de Rafael, Roberts, DS 12] Hadronic light-by-light: QED: had Had vp: had W Had lbl: G Weak: 10.5 (2.6) not from first principles models 10 0 4 0 13 6 2 5 11 4 3 8 11 6 4 0 10 5 2 6 [Bijnens, Prades 07] [Melnikov, Vainshtein 03] [Jegerlehner 08] [Jegerlehner, Nyffeler 09] [Prades, Vainshtein, de Rafael 08] Glasgow consensus: combine methods, inflate errors Promising new approaches: lattice, Dyson-Schwinger a SM status?

SM prediction a SM 10 10 [Miller, de Rafael, Roberts, DS 12] QED: had Had vp: Weak: 2-loop result (M H ½) [Czarnecki, Krause, Marciano 95] with full Higgs mass dependence [Heinemeyer, DS, Weiglein 04][Czarnecki, Gribouk 05] µcurrent M H constraints fix a weak had W Had lbl: G Weak: 15.3 (0.1) a SM status?

Current status: SM prediction HMNT (06) JN (09) Davier et al, τ (10) Davier et al, e + e (10) JS (11) HLMNT (10) HLMNT (11) BNL experiment BNL (new from shift in λ) a µ 10 10 11659000 170 180 190 200 210 largest uncertainty from e e data smaller from lbl both will improve in future Full SM: a 10 10 11659000 JN09: HLMNT09: 177 3 4 8µ 4 0 µ 179 0 6 5µ 3 2 µ Detal09: 183 4 4 9µ 3 2 µ JS11: HLMNT11: 182 8 4 9µ 3 3 µ 179 7 6 0µ 3 3 µ BDDJ11: MdRRS12: 180 1 4 9µ 3 6 µ 175 4 5 3µ 4 1 µ BDDJ12: 170 8 5 2µ 4 7 µ Exp: BNL06: 208 9 6 3µ a SM status?

Muon g 2 experiment at Brookhaven a 11 exp 10 659 208 9 5 4µstat 3 3µsyst 6 3µtotµ 10 (error statistics dominated! agreement, ) a SM status?

Theory confronts experiment 68 78 CERN measurement: hadronic cont. needed, confirmed! 01 06 BNL measurement: weak cont. needed, not confirmed! Legacy of the CERN experiment a SM status?

Theory confronts experiment 68 78 CERN measurement: hadronic cont. needed, confirmed! 01 06 BNL measurement: weak cont. needed, not confirmed! Legacy of the BNL experiment a SM status?

Theory confronts experiment 68 78 CERN measurement: hadronic cont. needed, confirmed! 01 06 BNL measurement: weak cont. needed, not confirmed! Legacy of the BNL experiment a SM status?

Theory confronts experiment 68 78 CERN measurement: hadronic cont. needed, confirmed! 01 06 BNL measurement: weak cont. needed, not confirmed! Legacy of the BNL experiment a SM status?

Discrepancy SM prediction too low by 30 8µ 10 10 Note: discrepancy twice as large as a SM weak but we expect: a NP a SM weak M W M NP 2 couplings a SM status?

Future experiments at Fermilab and JParc (N. Saito) a SM status?

The Opportunity µ a SM status?

The Opportunity a SM status?

Photo from 29/09/12 Official CD-0 approval September 2012 a SM status?

Advantages of Fermilab decay length 900m vs 88m 6 12 times more stored muons per initial proton 4 times fill frequency 20 times reduced hadronic-induced background at injection a SM status?

Complementary experiment at JParc (N. Saito) a SM status?

Complementary experiment at JParc (N. Saito) a SM status?

a Goal of both new g 2µexperiments a exp SM 30 1 6 Exp 3 4 Th µ 10 Data in 4 5 years 10 Useful complement of LHC (and flavour physics experiments), independent of final value [Hertzog, Miller, de Rafael, Roberts, DS 07] a SM status?

Outline 1 a SM status? a 2 Impact on New Physics in general 3 SUSY Can explain the deviation a constraints LHC vs Subleading contributions 4 Alternatives to SUSY 5 Conclusions Impact on New Physics in general

Why is a special? R L b s B e CP- and Flavour-conserving, chirality-flipping, loop-induced compare: EDMs, EWPO Impact on New Physics in general

Why is a special? R L b s B e CP- and Flavour-conserving, chirality-flipping, loop-induced compare: EDMs, EWPO Note relation to m R L Impact on New Physics in general

C Æm N P µ Æa N P µ Ç Cµ m a Very different contributions to generally: classify new physics: C very model-dependent M 2 Impact on New Physics in general

C Æm N P µ Æa N P µ Ç Cµ m a Very different contributions to Ç 1µ generally: classify new physics: C very model-dependent Ç «4 µ Ç «4 µ Z¼, M 2 W¼, UED, Littlest Higgs (LHT)... Impact on New Physics in general

C Æm N P µ Æa N P µ Ç Cµ m a Very different contributions to generally: Ç 1µ M 2 classify new physics: C very model-dependent Ç «4 µ supersymmetry (tan ), unparticles [Cheung, Keung, Yuan 07] Ç «4 µextra dim. (ADD/RS) (n c )... [Davioudasl, Hewett, Rizzo 00] [Graesser, 00][Park et al 01][Kim et al 01] Z¼, W¼, UED, Littlest Higgs (LHT)... Impact on New Physics in general

C Æm N P µ Æa N P µ Ç Cµ m a Very different contributions to generally: Ç 1µ M 2 classify new physics: C very model-dependent radiative muon mass generation... Ç «4 µ [Czarnecki,Marciano 01] [Crivellin, Girrbach, Nierste 11][Dobrescu, Fox 10] supersymmetry (tan ), unparticles [Cheung, Keung, Yuan 07] Ç «4 µextra dim. (ADD/RS) (n c )... [Davioudasl, Hewett, Rizzo 00] [Graesser, 00][Park et al 01][Kim et al 01] Z¼, W¼, UED, Littlest Higgs (LHT)... Impact on New Physics in general

C Æm N P µ Æa N P µ Ç Cµ m a Very different contributions to generally: Ç 1µ classify new physics: C very model-dependent Very useful constraints on new physics radiative M 2 muon mass generation... Ç «4 µ [Czarnecki,Marciano 01] [Crivellin, Girrbach, Nierste 11][Dobrescu, Fox 10] supersymmetry (tan ), unparticles [Cheung, Keung, Yuan 07] Ç «4 µextra dim. (ADD/RS) (n c )... [Davioudasl, Hewett, Rizzo 00] [Graesser, 00][Park et al 01][Kim et al 01] Z¼, W¼, UED, Littlest Higgs (LHT)... Impact on New Physics in general

Outline 1 a SM status? a 2 Impact on New Physics in general 3 SUSY Can explain the deviation a constraints LHC vs Subleading contributions 4 Alternatives to SUSY 5 Conclusions SUSY

SUSY and the MSSM MSSM: free parameters: p masses and mixings, and tan SUSY

W g 2 in the MSSM: chirality flips,, and H u Each diagram H u», some u vev H d R Note tan H d, H H u H d transition Hence, some u m tan 2 terms» H a SUSY»tan sign µm MSUSY 2 potential enhancement»tan 1 50 (and»sign( )) W L SUSY

g 2 in the MSSM numerically a SUSY 12 10 10 tan sign µ 100GeV M SUSY 2 SUSY could be the origin of the observed 30 8µ 10 10 deviation! positive, large tan /small M SUSY preferred however, beware of the fine print... Precise analysis justified! SUSY

a central complement for SUSY parameter analyses SPS benchmark points [v.weitershausen,schäfer, Stöckinger-Kim,DS 10] LHC Inverse Problem (300fb 1 ) can t be distinguished at LHC [Sfitter: Adam, Kneur, Lafaye, Plehn, Rauch, Zerwas 10] a sharply distinguishes SUSY models helps measure parameters [Hertzog, Miller, de Rafael, Roberts, DS 07] SUSY

a central complement for SUSY parameter analyses SPS benchmark points [v.weitershausen,schäfer, Stöckinger-Kim,DS 10] LHC Inverse Problem (300fb 1 ) can t be distinguished at LHC [Sfitter: Adam, Kneur, Lafaye, Plehn, Rauch, Zerwas 10] [Hertzog, Miller, de Rafael, Roberts, DS 07] vision: test universality of tan, like for cos W M W MZ t µa t µlhc masses t µh t µb? in the SM: SUSY

The tension is increasing LHC: m q g 1TeV a m 700GeV m h 126 GeV(?) m t 1TeV finetuning m t small also: dark matter, b-physics, FCNC/CP-constraints SUSY

Constrained models I a vs LHC-bounds on squarks/gluinos vs potential m h -measurement CMSSM, LHC, m =126 GeV h CMSSM: link m q m m h incompatible SM a µ - a µ (2.9 ± 0.8 ± 0.2)E-9 0.3E-9 BR(b sγ) (3.55 ± 0.26 ± 0.23)E-4 2.88E-4 BR(B τν) (1.67 ± 0.39)E-4 0.99E-4 BR(B µ + µ - ) s <(4.50 ± 0.30)E-9 3.61E-9-1 m s (ps ) 17.78 ± 0.12 ± 5.20 20.58 2 l sin θ eff 0.23113 ± 0.00021 0.23138 m W (GeV) 80.385 ± 0.015 ± 0.010 80.386 m h (GeV) 126.0 ± 2.0 ± 3.0 124.4 LHC 2 Ω CDM h 0.1123 ± 0.0035 ± 0.0112 0.1112 SI σ (pb) 2.44E-11 0 1 2 3 Meas.-Fit / σ NUHM1, LHC, m =126 GeV h NUHM1: mh soft independent marginally compatible finetuning? SM a µ - a µ (2.9 ± 0.8 ± 0.2)E-9 1.8E-9 BR(b sγ) (3.55 ± 0.26 ± 0.23)E-4 3.12E-4 BR(B τν) (1.67 ± 0.39)E-4 0.91E-4 - BR(B µ + µ ) s <(4.50 ± 0.30)E-9 4.59E-9-1 m s (ps ) 17.78 ± 0.12 ± 5.20 20.88 2 l sin θ eff 0.23113 ± 0.00021 0.23148 m W (GeV) 80.385 ± 0.015 ± 0.010 80.367 m h (GeV) 126.0 ± 2.0 ± 3.0 118.8 LHC 2 Ω CDM h 0.1123 ± 0.0035 ± 0.0112 0.1094 σsi (pb) 1.81E-10 0 1 2 3 Meas.-Fit / σ SUSY

Constrained models II m q increase m h, lower Natural SUSY [Barger, Huang, Ishida, Keung 12]... 1st, 2nd generation very heavy, light t FCNC, finetuning ok a 0, would need m m q Gauge-mediated SUSY breaking (FCNC ok) + extra matter reconcile a, m h a, LHC-bounds [Endo, Hamaguchi, Iwamoto, Yokozaki 11]... Compressed SUSY [Martin, LeCompte 11] hidden at LHC for m q g 600GeV compatible with Still tension/models might be be ruled out soon! SUSY

Alternative: radiative muon mass in SUSY tan ½ 1 0 2 v d 0, generate m via A¼ L RH m v tree d u [Borzumati et al 99][Crivellin et al 11] generate m via coupling to v u [Dobrescu, Fox 10][Altmannshofer, Straub 10] SUSY

»tan m 1-Loop 2-Loop (SUSY 1L) 2-Loop (SM 1L) e.g.»log M SUSY e.g.»tan m t t H Status of SUSY prediction 0 0 f f [Fayet 80],... [Kosower et al 83],[Yuan et al 84],... [Lopez et al 94],[Moroi 96] [Degrassi,Giudice 98] [Marchetti, Mertens, Nierste, DS 08] [Schäfer, Stöckinger-Kim, v. Weitershausen, DS 10] [Chen,Geng 01][Arhib,Baek 02] [Heinemeyer,DS,Weiglein 03] [Heinemeyer,DS,Weiglein 04] complete photonic complete tan µ2 aim: full calculation (65000 diagrams) SUSY

Physics of subleading contributions (examples) L» for ½ 1-loop bino B B L R R L H 1 1-loop R H 2 B R»other sign! B R large -parameter Use if M 2 0, light R SUSY

Physics of subleading contributions (examples) L» for ½ 1-loop bino B B L R R L H 1 1-loop R H 2 B R»other sign! B R large -parameter radiative muon mass, 0 Use if M 2 0, light R SUSY

W tan 1 tan µ 2 W 2-loop H 2 H 1 R 1 L 2-loop t t H m t M m t H log MSUSY m µ Photonic 2-loop Important for drawing precise conclusions from confronting SUSY-prediction with a Exp SM SUSY

W tan 1 tan µ 2 W 2-loop H 2 H 1 R 1 Allows limit tan ½! Wrong sign! L 2-loop t t H m t M m t Dominant for heavy smuons! H log MSUSY m µ Photonic 2-loop Important for drawing precise conclusions from confronting SUSY-prediction with a Exp SM SUSY

Outline 1 a SM status? a 2 Impact on New Physics in general 3 SUSY Can explain the deviation a constraints LHC vs Subleading contributions 4 Alternatives to SUSY 5 Conclusions Alternatives to SUSY

EWSB Models Large a possible? Randall Sundrum Littlest Higgs + T-Parity ( Bosonic SUSY ) 2-Higgs doublet model + 4th generation Alternatives to SUSY

EWSB Models Large a possible? Randall Sundrum Littlest Higgs + T-Parity ( Bosonic SUSY ) 2-Higgs doublet model + 4th generation Randall Sundrum KK-gravitons large [Kim, Kim, Song 01] However, challenged by electroweak precision data [Hewett et al 00] and unitarity [Kim,Kim,Song 01] non-graviton contributions small [Beneke, Dey, Rohrwild 12] Alternatives to SUSY

EWSB Models Large a possible? Randall Sundrum Littlest Higgs + T-Parity ( Bosonic SUSY ) 2-Higgs doublet model + 4th generation Littlest Higgs + T-Parity [Cheng, Low 03] [Hubisz, Meade, Noble, Perelstein 06] Tiny a from Z H, W H contributions [Blanke et al 07] Alternatives to SUSY

EWSB Models 5e-09 4e-09 Large a possible? Randall Sundrum Littlest Higgs + T-Parity ( Bosonic SUSY ) 2-Higgs doublet model + 4th generation a µ 3e-09 2e-09 M H + = 500 GeV m ν =100 GeV (black) 1e-09 =200 GeV (red) =400 GeV (blue) 0 0 0.008 0.016 0.024 0.032 0.04 δ Σ2.δ U2 2-Higgs doublet model + 4th generation [Bar-Shalom, Nandi, Soni 11] Large contributions from ¼ H possible in agreement with LFV, FCNC constraints Alternatives to SUSY

Other types of new physics What if the LHC does not find new physics? Hide new particles at colliders large L L a possible Dark force? [Pospelov, Ritz... ] 3 very light, weakly interacting 10 C»10 8, M 1GeV κ 2 4 10 Excluded by electron g-2 vs α Light Z¼ from gauged 5 10 [Ma, Roy, Roy 02][Heeck, Rodejohann 11] muon g-2 <2σ Excluded by muon g-2 flavour-dependent couplings, hidden at LEP C C SM weak, M Z¼ M Z 6 10 [Pospelov 08] 10 MeV 100 MeV 500 MeV m V Alternatives to SUSY

Outline 1 a SM status? a 2 Impact on New Physics in general 3 SUSY Can explain the deviation a constraints LHC vs Subleading contributions 4 Alternatives to SUSY 5 Conclusions Conclusions

Currently a Exp a SM 30 8µ 10 10 reliable, tantalizing New measurements within next 5 years very promising! Conclusions N P a very model-dependent, typicallyç 1 50µ 10 10 Áconstraints, model discriminator, unique properties Ábreak degeneracies measure central parameters complementary to LHC If large a -deviation is real: tension rising between LHC-bounds, a, finetuning, Higgs mass; difficult to find alternatives to SUSY Promising future!! Conclusions