SULFUR COMPOUNDS IN PETROLEUM HYDROCARBON STREAMS



Similar documents
GC METHODS FOR QUANTITATIVE DETERMINATION OF BENZENE IN GASOLINE

1.1 This test method covers the qualitative and quantitative determination of the content of benzene and toluene in hydrocarbon wax.

An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols.

Pesticide Analysis by Mass Spectrometry

Analyzing Small Molecules by EI and GC-MS. July 2014

CHROMOCTANE O N LINE ANALYZER

Multi-elemental determination of gasoline using Agilent 5100 ICP-OES with oxygen injection and a temperature controlled spray chamber

AMD Analysis & Technology AG

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Application Requirement

Intelligent use of Relative Response Factors in Gas Chromatography-Flame Ionisation Detection

A Comparison between EPA Compendium Method TO- 15 and EPA Method 8260B for VOC Determination in Soil Gas

23 The Thermal Conductivity Detector

Lecture Chromo-3: Gas Chromatography. CHEM 5181 Fall 2004 Mass Spectrometry & Chromatography. Jessica Gilman and Prof. Jose-Luis Jimenez CU-Boulder

Enhancing GCMS analysis of trace compounds using a new dynamic baseline compensation algorithm to reduce background interference

MINERAL OIL (MEDIUM VISCOSITY)

Graphite Furnace AA, Page 1 DETERMINATION OF METALS IN FOOD SAMPLES BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY (VERSION 1.

The Use of Hydrogen Carrier Gas for GC/MS

AC DHA Solutions. Detailed Hydrocarbon Analysis of Light Petroleum Streams & Light End in Crude Oils. ASTM D 5134, D 6729, D 6730, D 6733 Compliance

DMA-1 Direct Mercury Analyzer

G8 GALILEO. Innovation with Integrity. High-End Melt-extraction Analyzer. Inert Gas Method

Shimadzu Simulated Distillation Gas Chromatograph System C184-E030

Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography

ACETALDEHYDE and ISOVALERALDEHYDE (Gas Chromatography)

Chemical Analysis. Natural Gas Analyzer. A Family of optimized GC Solutions. Gas Chromatography. think forward

Halogen Free: What, Why and How. Presented by : Jim Cronin Environmental Monitoring and Technologies, Inc.

MILESTONE H E L P I N G C H E M I S T S

Fast, Reproducible LC-MS/MS Analysis of Dextromethorphan and Dextrorphan

Gas Chromatography. Let s begin with an example problem: SPME head space analysis of pesticides in tea and follow-up analysis by high speed GC.

# LCMS-35 esquire series. Application of LC/APCI Ion Trap Tandem Mass Spectrometry for the Multiresidue Analysis of Pesticides in Water

EPA Method RSK 175 Dissolved Gasses in Water Matrices using the Teledyne Tekmar HT3 Headspace Analyzer. HT3 Application Note.

Process gases for analytical applications

Method development for analysis of formaldehyde in foodsimulant. melamine-ware by GC-MS and LC-MS/MS. Internal Technical Report

LC-MS/MS Method for the Determination of Docetaxel in Human Serum for Clinical Research

PLOT Columns. Top: Bob Langford, GC Column Manufacturing Technician Bottom: Stephanie Sunner, Customer Service Representative

SIMULTANEOUS DETERMINATION OF NALTREXONE AND 6- -NALTREXOL IN SERUM BY HPLC

Background Information

Ferda ORHUN Mineral Research and Exploration Institute of Turkey

Addressing the World Helium Shortage For Gas Chromatography

3 - Atomic Absorption Spectroscopy

Strategies for Developing Optimal Synchronous SIM-Scan Acquisition Methods AutoSIM/Scan Setup and Rapid SIM. Technical Overview.

The photoionization detector (PID) utilizes ultraviolet

The Characterization of Perfume Fragrances Using GC/MS, Headspace Trap and Olfactory Port

Fractional Distillation and Gas Chromatography

Diffusion and Fluid Flow

GUIDELINES ON THE USE OF MASS SPECTROMETRY (MS) FOR IDENTIFICATION, CONFIRMATION AND QUANTITATIVE DETERMINATION OF RESIDUES CAC/GL

Get the Right GC for Your Industry

IUCLID 5 COMPOSITION AND ANALYSIS GUIDANCE DOCUMENT: IRON ORES, AGGLOMERATES [EINECS NUMBER , CAS NUMBER ] IRON ORE PELLETS

Coal-To-Gas & Coal-To-Liquids

Analysis of Organophosphorus Pesticides in Milk Using SPME and GC-MS/MS. No. GCMS No. SSI-GCMS Shilpi Chopra, Ph.D.

Annex to the Accreditation Certificate D PL according to DIN EN ISO/IEC 17025:2005

ASimple Guide to Oil Refining

Expectations for GC-MS Lab

BTU ANALYSIS USING A GAS CHROMATOGRAPH

Process Instrumentation

Elemental analyzer multi EA 5000

HEXANES. Insoluble in water, soluble in ether, alcohol, and acetone. Neutral to methyl orange (ph indicator) Not more than 0.

Determination of Food Dye Concentrations in an Unknown Aqueous Sample Using HPLC

CRYOCOOLER CONTAMINATION STUDY. S.W.K. Yuan, D.T.Kuo, and A.S. Loc. BEI Technologies, Cryocooler Group Sylmar, CA ABSTRACT

Transformer Oil Gas Analysis

Analysis of Free Bromate Ions in Tap Water using an ACQUITY UPLC BEH Amide Column

FP628. Nitrogen / Protein Determination by Combustion. Rev 1-6/8/11

New drugs of abuse? A case study on Phenazepam & Methoxetamine

How To Use Gc-Ms

MATHESON REFINERY PROGRAM for Specialty Gas Supply. Experience the MATHESON Commitment to Supply Chain Excellence

Molecular Spectroscopy

Application Note. Determination of Nitrite and Nitrate in Fruit Juices by UV Detection. Summary. Introduction. Experimental Sample Preparation

Series 2. Air Server. Options for UNITY 2. A robust, cryogen-free solution for round-the-clock on-line air monitoring

Technical Report. Automatic Identification and Semi-quantitative Analysis of Psychotropic Drugs in Serum Using GC/MS Forensic Toxicological Database

SUCRALOSE. White to off-white, practically odourless crystalline powder

Reversed Phase High Presssure Liquid Chromatograhphic Technique for Determination of Sodium Alginate from Oral Suspension

Modern approaches to determination of toxic metals in marine environmental objects. Atomic absorption and inductively coupled plasma, advantages and

Molecular Sieve Adsorbents

Gas Chromatography. Gas Chromatograph

INTEGRATED TECHNOLOGY TO SEE THE WHOLE PICTURE. AxION iqt GC/MS/MS

CHAPTER 7 THE DEHYDRATION AND SWEETENING OF NATURAL GAS

Thermo Scientific ConFlo IV Universal Interface

Quantitation of Drugs in Dried Bloodstains. Thomas Meyer Anna Gomenyuk Nadiah Lester

Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Fast and Accurate Analysis of Vitamin D Metabolites Using Novel Chromatographic Selectivity and Sample Preparation

Determination of polyols derived from sugars and residual sugars found in dry wines by means of gas chromatography (Resolution Oeno 9/2006)

Technique of Monitoring Dioxins in Flue Gas from MSW Incinerators using Dioxin Precursor Analyzer

Fipronil Analysis By GC/XSD following Post-Extraction Gel Permeation Chromatography Cleanup

Electrospray Ion Trap Mass Spectrometry. Introduction

HS 1003 Part 2 HS 1003 Heavy Metals Test

THERMAL DESORPTION. Introduction and Principles. Focusing on Volatiles

Dew-Point Measurement Solutions

Theory and Instrumentation of GC Introduction

Bringing Innovations to Standards AC Analytical Controls by PAC All In One Biodiesel Analyzer

Analysis of Polyphenols in Fruit Juices Using ACQUITY UPLC H-Class with UV and MS Detection

Simultaneous qualitative and quantitative analysis using the Agilent 6540 Accurate-Mass Q-TOF

OIL CONDITION MONITORING: AUTOMOTIVE ANALYSIS

How Sensors Work. How Oxygen, Electrochemical Toxic, and Metal Oxide Semiconductor Sensors Work *

IB Chemistry. DP Chemistry Review

Process gas chromatographs. Measurement made easy. Compliance Solutions for 40CFR60 Subpart Ja

Air Sampling for Gases and Vapors. Patrick N. Breysse, PhD, CIH Peter S.J. Lees, PhD, CIH Johns Hopkins University

Transcription:

Petroleum & Coal ISSN 1337-7027 Available online at www.vurup.sk/petroleum-coal Petroleum & Coal 54 (1) 9-13, 2012 SULFUR COMPOUNDS IN PETROLEUM HYDROCARBON STREAMS Antoaneta Pavlova, Pavlina Ivanova, Teodora Dimova Research Laboratory, LUKOIL NEFTOCHIM BOURGAS JSC, Bourgas 8104, Bulgaria E-mail: Pavlova.Antoaneta.I@neftochim.bg Received August 10, 2011, Accepted December 15, 2011 Abstract Determination of concentrations of sulfur compounds in different petroleum samples is a true analytical challenge. Only analytical procedures based on gas chromatography can meet the sensitivity and accuracy requirements dictated by up-to-date petroleum industry. The objective of this work is to develop the method for the quantifying of sulfur compounds in petroleum hydrocarbon streams. The optimum parameters for the GC-SCD method are found in order to determine of sulfur compounds in petroleum fractions. The present study is limited to fractions with final boiling point up to 100 C from the refining unit. Twelve petroleum samples are analyzed. The total sulfur contents of these samples are determined by GC-SCD and UV fluorescence detection. The data obtained are agreement. Key words: sulfur compounds; GC-SCD; UV fluorescence detection; petroleum hydrocarbon streams. 1. Introduction There are many reasons for the considerable interest that is focused on determining sulfur compounds. In petrochemical sulfur compounds are of concern because they poison catalysts and cause corrosion. In particular, thiols, sulfides and disulfides are toxic and therefore potentially harmful to humans and even trace levels of these substances give rise to odor problems that constitute an important public health issue. Numerous difficulties are associated with analyses for sulfur compounds, since they can occur in very complex matrices and often in widely varying concentrations. Moreover, they are highly reactive and have absorptive, adsorptive, photooxidative and metal catalytic properties [1, 2]. Many approaches are proposed to carry out a selective detailed analysis of sulfur compounds in petroleum samples. Gas chromatographs equipped with specific detectors are widely used for the quantitative analysis of sulfur compounds. Gas chromatographic detectors available for the selective determination of sulfur compounds often use the optical intensity of characteristic emission line as their sensing property. The atomic emission detector (AED) utilizes the characteristic sulfur atom lines, but the flame photometric detector (FPD) and the sulfur chemiluminescence detector (SCD) focus on some molecular emission lines of sulfur-containing molecules produced by chemical reactions involving the effluent [3-5]. The SCD is known as an excellent device for sulfur compound analysis. Many laboratories have worked with this detector. In comparison to the other detectors, hydrocarbon interferences are negligible and it has an equimolar sulfur response [6]. In this report, we demonstrate a fast method for the analysis of sulfur compounds in petroleum fractions. In this work, we try to assess the content the individual sulfur compounds in petroleum hydrocarbon fractions based on gas chromatographic analysis with sulfur selective detection. 2. Experimental 2.1 Reagents and samples Merck and Fluka analytical grade reagents are used. SCD certified standard of sulfur compounds is purchased from Supelco Inc (Agilent Part Number G2933-85001). The certified organic standard, tri-element (ERT-037, Tekmar part number 511-945) containing sulfur (100.7±0.6 ng.µl -1 ) is obtained from Cerilliant Corporation, TX, USA. The standards are used for optimization of sulfur detector selectivity. Light petroleum hydrocarbon streams samples are produced of Loukoil Neftochim Bourgas JSC, Bulgaria.

2.2 GC-SCD analysis The gas chromatograph is a model 7890A coupled to a sulfur chemiluminescence detector series model 355 (Agilent Technologies, Inc., USA). A 30 m HP-1 capillary column 320 μm id with 4 μm film thickness is used. The GC separation is performed under the following conditions: helium as carrier gas, column temperature programmed from 50ºC 4 min to 120 C at a rate of 20 C.min -1, hold 4 min and to 220 C at a rate of 10 C.min -1, hold 4 min. Injector in split mode at a temperature of 240 C (split vent 131.7 ml.min -1, column 2.6 ml.min -1, purge vent 3 ml.min -1, split ratio 50:1) is used. The SCD detector is set to the following conditions: burner temperature 800 C, vacuum of burner 370 torr, vacuum of reaction cell 7 torr, hydrogen 40 ml.min -1, air 60 ml.min -1. The injection volume is 1.0 μl. 2.3. GC-MS analysis GC-MS analysis is performed on a model 7890A gas chromatograph equipped with model 5975C Inert XL EI/CI mass selective detector (Agilent Technologies, Inc., USA). Analytes are separated with a PONA (Cross linked Methyl Silicone Gum) capillary column, 50 length m 199 μm id 0.5 μm film thickness. The column temperature program is as follows: held at 35 C for 0 min and then increased at 2 C.min -1 to 200 C. All injections are performed in the split mode, split ratio 60:1. The injector temperature is held at 200 C. The carrier gas is helium at a flow rate of 0.8ml.min -1. When operated in the full-scan mode, masses of 10-300 m/z are monitored and ionization is carried out in the electron ionization (EI) mode. The ion source temperature is maintained at 230 C and the transfer line temperature is 150 C. 2.4 Total sulfur analysis Elemental Analyzer model Multi EA3100 (Analytik Jena AG, Germany) is used for determining the sulfur content in samples by fluorescence s detection. The aliquot of sample is dosed directly into combustion tube. Argon, high-purity grade is used as carrier gas at a flow rate of 100ml.min -1. There, the sample is subjected to pyrolysis in the stream of argon. Oxygen, high-purity grade is used for oxi-combustion and ozone generation. The gases from the pyrolysis are completely oxidised in the stream of oxygen (300ml.min -1 ). The furnace oxidative temperature is kept at 1050ºC. The gas to be analysed is dried and then passes to the reaction chamber of the UV fluorescence detector. The wavelength with is used to excite the SO 2 molecules with the UV fluorescence detector is 220 nm. 3. Results and discussion A. Pavlova, P. Ivanova, T. Dimova/Petroleum & Coal 54(1) 9-13, 2012 10 The gas chromatographic method is developed to enable determination of the concentration of sulfur compounds in light hydrocarbon fractions and methyl tertiary-butyl ether. Sulfur compounds existing in these samples are very involved analytes. The volatility, polarity and reactivity of the sulfur compounds logically lead to the choice of a non polar thick-film column for their separation. The main stationary phases used for separation of sulfur compounds are non polar phases based on polydimethylsiloxanes. A column with a low phase ratio will give sufficient retention to the volatile sulfur compounds. A HP-1 column s phase ratio is 20 and the column gives satisfactory separations of sulfur compounds in investigated samples [7]. Figure1. Gas chromatogram of the sulfur compounds in the methyl tertiary-butyl ether sample.

A. Pavlova, P. Ivanova, T. Dimova/Petroleum & Coal 54(1) 9-13, 2012 11 Figure 1 shows a chromatogram of the sulfur compounds in methyl tertiary-butyl ether. It can be concluded that the column is the best choice for the separation of sulfur compounds and gives good peak shapes for all compounds of interest. For this purpose the experimental conditions are varied systematically. The sulfur containning compounds are identified by comparison of their retention times with those of reference standards and by gas chromatography-mass spectrometry (Table 1). Table 1. Sulfur compounds identification Compound Retention time, Ion m/z (relative Other ions min abundance) m/z 1. Hydrogen sulfide 1.018 34 (100%) 32, 33, 36, 35 2. Carbonyl sulfide 1.115 60 (100%) 32, 28, 44, 62 3. Methanethiol 1.704 47 (100%) 48, 45, 46, 50 4. Ethanethiol 2.699 62 (100%) 29, 47, 27, 28 5. Dimethyl sulfide 3.004 62 (100%) 47, 45, 46, 61 6. Carbon disulfide 3.494 76 (100%) 44, 32, 78, 38 7. 2-Propanethiol 3.844 43 (100%) 27, 76, 61, 27 8. 2-Methyl-2-propanethiol 4.838 57 (100%) 41, 90, 29, 75, 9. 1-Propanethiol 5.157 43 (100%) 27, 76, 61, 27 10. Methyl-ethyl sulfide 5.294 61 (100%) 76, 48, 47, 27 11. 2-Methyl-1-propanethiol 6.632 57 (100%) 41, 90, 29, 75 12. Diethyl sulfide 7.391 90 (100%) 47, 75, 62, 61 13. tert-methyl-buthyl 7.683 61 (100%) 56, 41, 104, 27 sulfide 14. 1-Pentanethiol 9.548 42 (100%) 55, 41, 70, 104 15. Methyl-ethyl-disulfide 10.054 80 (100%) 108, 29, 27, 45 16. Diethyl disulfide 13.605 122 (100%) 66, 29, 94, 27 Equimolar response of a detector refers to the property of the detector that yields equal responses to equal amounts of analytes on a molar basis. This property is a direct consequence of the conversion step employed in SCD. Relying on the equimolarity of the SCD, one can determine the mass of sulfur present in the sample. This is reasonably the most important characteristic of the chemiluminescence detector because it allows the detector to quantitative the sulfur content of each analyte present in the sample with a single standard calibration. The GC-SCD is calibrated with a SCD certified standard of sulfur compounds. In order to establish its linear response and its detection limits, SCD certified standard of sulfur compounds with various sulfur contents from 13 to 56 ppm are analyzed. Quantitative results are obtained from measured areas sulfur compounds peaks. The quantification of each peak of SCD certified standard is used as data to determine the calibration curves. The amount of each compound is obtained by correcting the GC-SCD data by the molecular weight of the molecule, number of sulfur atomic and atomic weight of sulfur. It can be noticed that the calibration coefficients are different and they are of the same order of magnitude for sulfide and tiophene type compounds. Direct chromatographic analysis of sulfur compounds is favoured because it can reduce the analysis time by eliminating time-consuming procedures of samples preparation, which can additionally cause contamination or loss of analytes. The developed method is applied to the analysis of several light hydrocarbon streams and methyl tertiary-butyl ether samples. The fractions are obtained from two different technology installations. Results from samples analysis are summarized in Tables 2 and 3. Detector stability and precision are measured over one week period by tracking the total sulfur measured in a sample of the petroleum product and the calibration standard. The variation in the total sulfur response over the period studied is 3 % relative. Accuracy is evaluated by comparing of total sulfur results from the analysis of ten samples with total sulfur as determined by UV fluorescence detection [8]. Results of this comparison are summarized in Table 4. It is apparent that values from the proposed method and the reference method are comparable for analysis of samples.

Table 2. Sulfur compounds contents (in ppm) in methyl tertiary-butyl ether samples Compound MTBEsample 1 MTBEsample 2 3 4 5 6 7 8 Carbonyl sulfide, 1.8 3.0 0.1 0.3 0.6 0.2 nd 0.3 Methanethiol 2.0 2.3 2.1 2.7 2.1 3.7 23.7 3.3 Ethanethiol 3.5 20.0 25.9 24.8 21.4 28.7 252.3 22.4 Dimethyl sulfide 2.0 2.3 1.3 1.2 1.2 1.5 15.1 1.2 2-Methyl-2- propanethiol, nd nd nd nd nd nd 0.7 0.2 Carbon disulfide 18.0 3.8 nd nd nd nd nd nd Diethyl sulfide 1.9 1.7 1.1 0.4 0.6 0.7 7.0 0.5 tert-methylbuthyl sulfide 3.1 8.9 7.7 7.9 6.1 8.2 98.9 11.2 Dimethyl disulfide 25.5 27.7 12.7 8.0 13.2 9.5 43.8 9.0 Methyl-ethyldisulfide 6.0 5.6 2.5 1.7 2.4 1.5 50.5 2.6 Diethyl disulfide 9.5 7.6 1.9 nd 4.3 0.9 50.0 2.5 Table 3. Content of sulfur compounds in C 4 -hydrocarbon fractions samples Samples Compound Feed to caustic wash, ppm Top DIB, ppm Bottoms DIB, ppm Effluent caustic to DIB, ppm Methanethiol 15 22 <1 <1 Ethanethiol 124 84 293 <1 1-Propanethiol 2 <1 8 <1 2-Propanethiol 24 <1 83 <1 2-Methyl-2-1 <1 4 <1 propanethiol 2-Methyl-1-3 <1 11 <1 propanethiol Dimethyl sulfide 16 8 40 5 Methyl-ethyl sulfide 6 <1 18 <1 Carbon disulfide 2 <1 3 <1 Dimethyl disulfide 1 3 <1 3 Methyl-ethyldisulfide 2 3 <1 5 Diethyl disulfide 1 2 13 4 Unknown sulfur compounds 3 33 Table 4. Determination of sulfur content in different petroleum hydrocarbon fractions Samples Sulfur content, ppm Method developed UV fluorescence method MTBE-sample 1 81.5 79.4 MTBE-sample 2 79.9 60.0 MTBE-sample 3 55.2 62.0 MTBE-sample 4 46.7 42.0 MTBE-sample 5 51.3 56.0 MTBE-sample 6 54.7 48.0 MTBE-sample 7 542 500 MTBE-sample 8 53.2 59.0 Feed to caustic wash 197 190 installation Top DIB 125 138 Bottoms DIB 506 480 Effluent caustic to DIB 17 23.4 4. Conclusion A. Pavlova, P. Ivanova, T. Dimova/Petroleum & Coal 54(1) 9-13, 2012 12 A method is developed for the simultaneous determination of sixteen sulfur compounds in petroleum hydrocarbon stream samples. Our results show that the development method is well suited for analyzing petroleum hydrocarbon samples for sulfur compounds with a broad range of boiling points. A detailed identification and quantitative compound analysis is

carried out using GC-SCD. The development of the method and comparison of results between GC-SCD and UV fluorescence detector are presented. The method is an important tool for the study of the effect of caustic wash conditions on the production of sulfur in petroleum hydrocarbon streams. References A. Pavlova, P. Ivanova, T. Dimova/Petroleum & Coal 54(1) 9-13, 2012 13 [1] Song, C., Ma, X.: New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization, Applied Catalysis B: Environmental, vol. 41, pp.207-238, 2003. [2] Johansen,N., Hutte,R.S, Plam,M.: Simultaneous analysis of sulfur compounds and hydrocarbons in petroleum by high temperature gas chromatography and sulfur chemiluminescence detection, Prep. Am. Chem. Sic., Div. Pet. Chem, vol.36, 2, pp.212-224, 1991. [3] Chawla, B., Sanzo,F.Di.: Determination of sulfur components in light petroleum streams by high-resolution gas chromatography with chemiluminescence detection, J. Chromatogr., vol. 589, pp.271-279, 1992. [4] Yang,Y., Wang,Z., Zong,B., Yang,H.: Determination of sulfur compounds in fluid catalytic cracking gasoline by gas chromatography with a sulfur chemiluminescence detector, Se Pu, vol.22, 3, pp.216-219, 2004. [5] Albro, T.G., Dreifuss,P.A., Wormshbecher, R.F.: Quantitative Determination of sulfur compounds in FCC gasolines by AED, J. High. Resolut. Chromatogr., vol. 16, pp.13-17, 1993. [6] ASTM D 5326-94 (Reapproved 2004) Standard Test Method for Sulfur Compounds in Light Petroleum Liquids by Gas Chromatography and Sulfur Selective Detection, www.astm.org [7] Lui, W., Morales, M.: Detection of Sulfur Compounds According to ASTM D 5623 in Gasoline with Agilent s Dual Plasma Sulfur Chemiluminescence Detector (G6603A) and an Agilent 7890A Gas Chromatograph, Agilent Technologies publication 5989-9233EN. [8] EN ISO 20846 Petroleum products-determination of sulfur content of automotive fuels-ultraviolet fluorescence method, CEN European Committee for Standardization, 2004, Brussels.