AP Physics - Vector Algrebra Tutorial



Similar documents
One advantage of this algebraic approach is that we can write down

MAT 1341: REVIEW II SANGHOON BAEK

Figure 1.1 Vector A and Vector F

13.4 THE CROSS PRODUCT

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

1.3. DOT PRODUCT If θ is the angle (between 0 and π) between two non-zero vectors u and v,

Unified Lecture # 4 Vectors

Review A: Vector Analysis

Vector Math Computer Graphics Scott D. Anderson

VECTOR ALGEBRA A quantity that has magnitude as well as direction is called a vector. is given by a and is represented by a.

5.3 The Cross Product in R 3

6. Vectors Scott Surgent (surgent@asu.edu)

Section 1.1. Introduction to R n

The Dot and Cross Products

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z

Section 9.1 Vectors in Two Dimensions

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Section V.3: Dot Product

The Vector or Cross Product

Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product

Units, Physical Quantities, and Vectors

A vector is a directed line segment used to represent a vector quantity.

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

Vector Algebra CHAPTER 13. Ü13.1. Basic Concepts

Vectors and Scalars. AP Physics B

α = u v. In other words, Orthogonal Projection

Vector Algebra II: Scalar and Vector Products

v 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product)

2 Session Two - Complex Numbers and Vectors

Chapter 3 Vectors. m = m1 + m2 = 3 kg + 4 kg = 7 kg (3.1)

Trigonometric Functions and Triangles

Solutions to Practice Problems

The Geometry of the Dot and Cross Products

The Geometry of the Dot and Cross Products

v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors.

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.

Area and Arc Length in Polar Coordinates

Solving Simultaneous Equations and Matrices

Mathematics Notes for Class 12 chapter 10. Vector Algebra

Two vectors are equal if they have the same length and direction. They do not

Module 8 Lesson 4: Applications of Vectors

PHYSICS 151 Notes for Online Lecture #6

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product

Equations Involving Lines and Planes Standard equations for lines in space

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

(2,4,5).. ...

Solutions to old Exam 1 problems

Geometry and Measurement

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

THREE DIMENSIONAL GEOMETRY

Math 241, Exam 1 Information.

sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj

Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus

GCE Mathematics (6360) Further Pure unit 4 (MFP4) Textbook

Unit 11 Additional Topics in Trigonometry - Classwork

Vectors Math 122 Calculus III D Joyce, Fall 2012

Review of Vector Analysis in Cartesian Coordinates

Chapter 18 Static Equilibrium

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes

LINES AND PLANES IN R 3

Linear Algebra: Vectors

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

Example SECTION X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

In order to describe motion you need to describe the following properties.

Mechanics 1: Vectors

4. How many integers between 2004 and 4002 are perfect squares?

ex) What is the component form of the vector shown in the picture above?

ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

1 Symmetries of regular polyhedra

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

The Force Table Introduction: Theory:

Vectors VECTOR PRODUCT. Graham S McDonald. A Tutorial Module for learning about the vector product of two vectors. Table of contents Begin Tutorial

SAT Subject Math Level 1 Facts & Formulas

Algebra Geometry Glossary. 90 angle

9 Multiplication of Vectors: The Scalar or Dot Product

Introduction to Matrix Algebra

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.

Review Sheet for Test 1

x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

3.1 Solving Systems Using Tables and Graphs

State of Stress at Point

Chapter 6 Circular Motion

3. KINEMATICS IN TWO DIMENSIONS; VECTORS.

SAT Subject Math Level 2 Facts & Formulas

x R 2 x = (x 1, x 2 ) or p = (x, y) R 3

Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi

F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below.

C relative to O being abc,, respectively, then b a c.

Geometric Transformations

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

Vectors and Index Notation

Rotation Matrices and Homogeneous Transformations

Section 10.4 Vectors

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus

LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL

Transcription:

AP Physics - Vector Algrebra Tutorial Thomas Jefferson High School for Science and Technology AP Physics Team Summer 2013 1

CONTENTS CONTENTS Contents 1 Scalars and Vectors 3 2 Rectangular and Polar Form 3 3 Vector Operations 5 3.1 Vector Addition.............................. 5 3.2 Multiplication of a Scalar and a Vector................. 6 3.3 Multiplication of two Vectors...................... 6 3.3.1 Dot Product........................... 6 3.3.2 Cross Product.......................... 7 4 Problems and Exercises 10 2

2 RECTANGULAR AND POLAR FORM 1 Scalars and Vectors In our study of Physics this year it will be important to always keep track of the types of quantities we are discussing. Aside from units or intrinsic error, understanding if a quantity is a scalar or a vector fundamental. Both scalars and vectors can be constants, variable, or even functions, but the key difference is that vectors also denote a direction. The table below shows examples of both vector and scalar quantities. Data Types Examples Physical Quantities constants 2, 3, π Scalar variables x, y, t, T time, temperature functions e x2 constants 2î + 3ĵ Vector variables xî + yĵ velocity, force functions cos(ωt)î + sin(ωt)ĵ 2 Rectangular and Polar Form A two dimensional vector can be represented by either a rectangular form (x, y), or a polar form (r, θ). Figure 1: A 2D vector can be represent in rectangular or polar form In general, a 2D vector can be represented by a linear combination of two unit vectors î and ĵ that are orthogonal to each other, have length of one, and point in the x and y directions respectively. v = v x î + v y ĵ 1 (1) It is very important to note that in AP Physics C, and generally in all Physics courses, vectors are always written as the linear sum of unit vectors î, ĵ rather than 1 Bold face letters are vectors and normal typeface are scalars 3

2 RECTANGULAR AND POLAR FORM as an ordered pair (n-tuple) as in (2) below which is taught in some mathematics courses at TJ. v =< v x, v y > (2) Writing vectors using the ordered pair (or triplet) notation will not be considered correct and will result in a loss of points on that question in this course. We can use figure 1 and basic right triangle trigonometry to form relationships between the magnitude of a vector and the angle the vector makes to the x-axis to the horizontal and vertical components of the vector. v x = v cos θ (3) v y = v sin(θ) (4) Equations (3) and (4) now provide us with the polar to rectangular conversions. Conversely, this equation can be inverted to obtain the corresponding rectangular to polar conversation. We can then generalize this concept for vectors in 3D. θ = arctan( v y ) v x (5) v = vx 2 + vy 2 (6) Figure 2: A vector in 3D 4

3 VECTOR OPERATIONS From figure 2 is can be seen that α is the angle form the x axis to the vector, β is the angle from the y axis to the vector, and γ is the angle from the z axis to the vector. Consequently we can decompose the vector A into: A = A [cos(α)î + cos(β)ĵ + cos(γ)ˆk] (7) It is also worth noting that the Pythagorean relationship that defines equation (6) also holds true in higher dimensions. Therefore we can also write down the magnitude (or length) of any dimension vector as: A = n A i (8) Where n is the dimension of the vector and A i are the lengths of the projections of the vector A onto the basis (or unit) vectors. 3 Vector Operations In general, we should consider 3D vectors, but it is important to recognize that all but one of these definitions apply to 2D vectors as well. To begin, let us define two generalized, three dimensional vectors that we will use for all of the following definitions. i A = A x î + A y ĵ + A zˆk (9) 3.1 Vector Addition B = B x î + B y ĵ + B zˆk (10) When adding vectors we must take care to only add components of vectors that are in the same(or exactly opposite) direction. Therefore we must define the addition of two vectors as: A + B = (A x + B x )î + (A y + B y )ĵ + (A z + B z )ˆk (11) If we have the subtraction of two vectors we can apply equation (11) as long as we recognize that subtraction is simply the addition of a negative. A B = A + ( B) = (A x B x )î + (A y B y )ĵ + (A z B z )ˆk (12) To help you visualize the process of vector addition or subtraction we suggest you play around with the vector addition applet: http://phet.colorado.edu/sims/vector-addition/vector-addition_en.html It is best viewed with style 3 selected. 5

3.2 Multiplication of a Scalar and a Vector 3 VECTOR OPERATIONS 3.2 Multiplication of a Scalar and a Vector The product of a vector and a scalar maintains the direction of the vector, but the has the magnitude scaled(hence the name scalar) by the scalar value. This provides us with the definition: where s can be any real number. 3.3 Multiplication of two Vectors sa = (sa x )î + (sa y)ĵ + (sa z)ˆk (13) Any vector operation must account for both the magnitude and the direction of the vectors being operated on. This is no where more apparent than with the multiplication of two vectors with each other. We must define two different ways of multiplying vectors in order to fully define both the scalar (i.e. length) and the directional nature of vector products. Following from basic algebra, the multiplication of two trinomials by each other is given by: (A)(B) = (A x î + A y ĵ + A zˆk)(b x î + B y ĵ + B zˆk) (14) = A x B x î(î) + A x B y î(ĵ) + A x B z î(ˆk) +A y B x ĵ(î) + A y B y ĵ(ĵ) + A y B z ĵ(ˆk) +A z B xˆk(î) + A z B yˆk(ĵ) + A z B zˆk(ˆk) Equation (14) provides us with a structure in which to explore vector multiplication, however we need to further define the product of unit vectors with other unit vectors. There are two ways to interpret this multiplication - one that results in a scalar, the other a vector. 3.3.1 Dot Product The Dot Product (A B) of two vectors results in a scalar, and thus is called the Scalar Product. This type of vector multiplication is governed by the Kronecker delta function given by: { 1 : a = b û a û b = δ ab 0 : a b Where û a and û b are any unit vectors. If we apply the Kronecker delta function to equation (14) we can define the dot product. A B = A x B x + A y B y + A z B z (15) What is the physical interpretation of the dot product? nonzero, non-parallel vectors as in the figure below, If we consider two 6

3.3 Multiplication of two Vectors 3 VECTOR OPERATIONS Figure 3: the magnitude of the dot product can be interpreted by noting that the projection of A onto B is A cos(θ AB ) = A B (16) B Which provides us with a second definition for the dot product. A B = A B cos(θ AB ) (17) To help you visualize the dot product and the projection of one vector onto another, we suggest you explore this process further using the following website: 3.3.2 Cross Product http://www.falstad.com/dotproduct/ The cross product of two vectors results in a vector, and thus is called the Vector Product. The rule that governs the vector product is the right hand rule. Looking at figure 4 below, and starting with your right hand with your palm flat, point your fingers towards the x-axis. The curl your fingers (except your thumb) around toward the y-axis making a closed fist. Your thumb should be pointing in the z-direction. This operation can be expressed as: î ĵ = ˆk (18) Using this procedure, you should also be able to confirm (THIS MEANS DO THIS NOW!): It is also conventional to define î ˆk = ĵ (19) ĵ î = ˆk (20) ĵ ˆk = î (21) ˆk î = ĵ (22) ˆk ĵ = î (23) û a û a = 0 (24) 7

3.3 Multiplication of two Vectors 3 VECTOR OPERATIONS Figure 4: A right handed coordinate system for any unit vector û a which then directly leads to A A = 0 (25) for any vector A. If we apply the cross product rules to equation (14) we come upon the definition of the cross product. A B = (A y B z A z B y )î (A xb z A z B x )ĵ + (A xb y A y B z )î (26) One way to remember this definition is to consider it to be the determinate of the matrix shown below. While this is a useful and easy to remember memory device, it has no physical meaning or interpretation. A B = î ĵ ˆk A x A y A z B x B y B z Besides the right hand rule definition, and the determinate based memory aid, there is another memory device for the cross product. Looking at figure 5 below, if you start at u x and move around the circle in a clockwise direction (+) towards u y you next come to u z. This represents equation. If you start at u y and move clockwise through u z you get u x. This represents equation (21). Reversing your direction on the circle by moving counter-clockwise inserts a negative into your answer. Like the Dot Product, we should explore the physical interpretation of the cross product. The magnitude of the cross product A B can be shown (i.e. you should do this now) to be equal to the area of the parallelogram formed by the two vectors as in figure 6 below. This provides us with a final definition of the cross product.. A B = A B sin(θ AB )û AB (27) 8

3.3 Multiplication of two Vectors 3 VECTOR OPERATIONS Figure 5: Go around the circle to find the cross product Figure 6: 9

4 PROBLEMS AND EXERCISES Where θ AB is the angle between the two vectors and û AB is a unit vector that is perpendicular to both original vectors in accordance with the right hand rule. If we are only concerned with the magnitude of the cross product, then we can drop the unit vector, resulting in: A B = A B sin(θ AB ) (28) To further explore the nature of the cross product we suggest that you investigate the website: http://www.surendranath.org/applets/math/vectorproduct/vp.html 4 Problems and Exercises Using the definitions of vector operations in three dimensions, PROVE the following vector identities. 1. Scalar multiplication factors over vector addition s(a + B) = (sa) + (sb) 2. Association of scalar multiplication in the dot product s(a B) = (sa) B = A (sb) 3. Associtivity of scalar multiplication in the cross product s(a B) = (sa) B = A (sb) 4. Dot product distributes over vector addition A (B + C) = A B + A C 5. Community of vector addition A + B = B + A 6. Community of the dot product A B = B A 7. Anti-commutivity of cross product A B = B A 8. Perpendicular nature of cross product A (A B) = B (A B) = 0 9. Cyclic Identity A (B C) = C (A B) = B (C A) 10. BAC - CAB Identity A (B C) = B(A C) C(A B) 11. Magnitude of a vector in terms of dot product A = A A 10

4 PROBLEMS AND EXERCISES 12. Orthogonal vectors using dot product Given two non-zero vectors u and v which are not proportional by some scalar (i.e. don t point in the same or opposite direction) (a) Find an expression for the projection of v onto u in terms of ONLY the vector dot product and a multiplication of a vector by a scalar. (b) Find an expression for the component of v that is perpendicular to u in terms of ONLY the vector dot product, multiplication of a vector by a scalar, and vector addition. (c) Find an expression for the component of v that is perpendicular to u using only the vector cross product, multiplication by a scalar, and vector dot products 13. Tetrahedron Vectors A tetrahedron is constructed from 4 equilateral triangles arranged in a pyramid. One vertex of the tetrahedron is located at the origin of a right-handed coordinate system. 11

4 PROBLEMS AND EXERCISES r is defined from the vertex A to the intersection of the three medians of the base triangle and is the horizontal projection of S 2 onto the x-y plane. S 1 points along the x-axis and has magnitude S 1 = S2 (a) Write a vector expression for r using unit vectors. (b) Write a vector expression for S 2 using unit vectors. S 1 = a (c) Prove that the angle between S 1 and S 2 is 60 degrees. (d) Determine the angle between r and S 2. 12