Scintillator Materials February 10, 2011 Funded by DHS/DNDO and DOE NA-22 N.J. Cherepy, cherepy1@llnl.gov S.A. Payne, B.W. Sturm, J.D. Kuntz, Z.M. Seeley, B.L. Rupert, R.D. Sanner, T.A. Hurst, N. Zaitseva, P. Thelin, S.E. Fisher, O.B. Drury, Livermore, CA 94550 K.S. Shah and team, Radiation Monitoring Devices A. Burger and team, Fisk University L.A. Boatner and team, Oak Ridge National Laboratory LLNL-PRES-468519 This work performed under the auspices of the U.S. Department of Energy by under Contract DE-AC52-07NA27344
Overview Applications: 1) RIBF - Accurate measurement of Doppler-shifted gammas produced in rare isotope beams during decay, fragmentation and nuclear reactions 2) CMS Calorimetry of multi-gev gammas Requirements for new detector materials: 1) High energy resolution to discriminate gamma spectra 2) High stopping for high rate of full energy events 3) Fast coincidence timing w/ low dead time observe correlated events 4) Radiation hardness high rate / long duration experiments 5) Low cost / maintenance starting materials, growth / ruggedness 6) Easy fabrication for close-packed segmented arrays and large sizes Our Directed Search Method has been used to discover: Single Crystals SrI 2 (Eu) Transparent Ceramics Garnet(Ce) Plastics Bi-loaded Polymer 2
Inorganic single crystal and ceramic scintillators are being developed for gamma ray spectroscopy Single crystals Ceramics Plastics SrI 2 (Eu) GYGAG(Ce), 1 in 3 2 inch Often hygroscopic/air-sensitive Fragile/brittle Complex to grow large crystals Can have gradients & nonuniformity All crystal structures possible Best energy resolution materials- LaBr 3 (Ce), SrI 2 (Eu) ~2.6% @ 662 kev Unreactive with air, water Mechanically durable Large sizes (100 cm 3 Nd:YAG ceramics commercially available) Increased activator uniformity Can form high melting point oxides Requires cubic material Good energy resolution- GYGAG(Ce) Gadolinium Garnet ~4.5% @ 662 kev Bi-loaded polymers, 1 cm 3 Unreactive with air, water Mechanically durable Large sizes, low cost Non-standard polymer required Bi-loading uniformity important Energy resolution so far ~7% @ 662 kev 3
Energy Resolution (%) Counts counts Counts Counts Counts counts For gamma ray spectroscopy, SrI 2 (Eu) comparable to LaBr 3 (Ce) and GYGAG(Ce) is better than NaI(Tl) 6000 5000 4000 3000 2000 1000 300 200 100 0 0 0 200 NaI(Tl) LaBr 3 (Ce) SrI 2 (Eu) x-rays 20 12.4% 40 Energy (kev) NaI(Tl) GYGAG(Ce) LaBr 3 (Ce) SrI 2 (Eu) 400 Energy (kev) 9.8% Am-241 600 7.7% 60 Cs-137 800 10 4 10 3 10 2 10 1 2500 2000 1500 1000 500 0 900 100 1000 NaI(Tl) GYGAG(Ce) LaBr 3 (Ce) SrI 2 (Eu) 200 Energy (kev) 6.4% NaI(Tl) GYGAG(Ce) LaBr 3 (Ce) SrI 2 (Eu) 3.5% 1100 1200 Energy (kev) 300 1300 Ba-133 6.1% 3.3% 2.0% 1.9% 400 Co-60 1400 20 10 Bi-loaded polymer NaI(Tl) GYGAG(Ce) LaBr 3 (Ce) SrI 2 (Eu) 0 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 100 1000 Energy (kev) 4
STRONTIUM IODIDE 5
counts Relative Light Yield Production of encapsulated SrI 2 (Eu) underway Property LaBr 3 (Ce) SrI 2 (Eu) Comparison Melting Point 783 º C 538 º C Less thermal stress Handling Easily cleaves Resists cracking Better processing Light Yield 60,000 Ph/MeV 90,000 Ph/MeV Higher Proportionality contribution ~2.0% ~2.0% Favorable Inhomogeniety 0% >1% (current) Impurities and surfaces being addressed Decay time 30 nsec 0.5-1.5 msec Fast enough to avoid deleterious signal pile-up Self-radioactivity La ~ 3x NORM None Less noise Hygroscopic / air sensitive? Very Very Similar absorption (2x3, 662 kev) 22% 24% Similar 300 1.15 250 200 150 100 50 0 100 200 300 400 500 Energy (kev) 2.9% at 662 kev 1 in 3 encapsulated crystal 600 700 1.10 1.05 1.00 0.95 0.90 3 4 5 6 7 SrI 2 (Eu): excellent LY proportionality 10 RMD SrI 2 (0.5%Eu) ORNL SrI 2 (4%Eu) ORNL SrI 2 (6%Eu) Encapsulated RMD SrI 2 (3%Eu) NaI(Tl) LaBr 3 (Ce) 2 3 4 5 6 7 100 2 3 4 5 6 7 1000 Electron Energy (kev) 6
Digital readout may be employed to improve energy resolution of large crystals Inverse correlation between decay time and pulse height Events may be corrected based on pulse shape, and energy histogram made more accurate 7
TRANSPARENT CERAMICS 8
Cubic oxides studied for transparent ceramic scintillators Structure type Illustrative Material Garnet Gd 3 Sc 2 Al 3 O 12 - GSAG Optical properties Activates with Ce? High transparency High LY High LY Activates with Eu? Perovskite SrHfO 3 - SHO High transparency Modest LY unknown Bixbyite Lu 2 O 3 High transparency no High LY Pyrochlore La 2 Hf 2 O 7 - LHO Moderate transparency no Modest LY Eulitine Bi 4 Ge 3 O 12 - BGO Unknown no unknown Defect Fluorite Y 3 TaO 7 Unknown no unknown Defect Fluorite HfO 2 -Y 2 O 3 Unknown no Low LY Simple Cubic BaO Hygroscopic -- -- 9
Ceramics fabrication requires multiple, optimized steps 10
Transparent ceramics fabrication economical for large size production of highly uniform optics LLNL Ceramics Facility: Production of 10 optics Industrial HIP, 66 diameter Other features of ceramics: Cladding, layers of different materials, integral light reflectors - as formed in net shape Single HIP run can process many samples Overall, process temperatures low, rapid completed optic in ~24 hrs Very high radiation hardness compared to halide single crystals Unbreakable, machinable, environmentally robust 11
We have been working to identify an optimal Gd-based garnet scintillator for the past five years 2006-7 2007-8 2008-9 Composition GAG GYAG GGG GSAG GYSAG GGAG GYGAG Phase Stability Poor Moderate Excellent Excellent Excellent Moderate Excellent -LY(Ph/MeV) 40,000 25,000 30,000 55,000 50,000 En. Res. (662 kev) 11% 11% 10% 9% 4-5% 2010-11 Scale-up of GYGAG(Ce) and GLuGAG(Ce) 1 in 3 Current status: 1 in 3 parts formed routinely To optimize performance: Photodetector matched to green scintillation Readout for decay which includes several components 12
PLASTICS 13
Counts (arb.) Recently we have developed polymer scintillators with enhanced scintillation characteristics Gamma Spectroscopy Plastic: Energy resolution similar to NaI(Tl) Bi organometallic, 40 wt% 1.4 1.2 1 0.8 0.6 0.4 0.2 0 Backscatter F1.9x0.17 cm 3 escape Backscatter R = 6.8% Escape peak Model 76 kev for Bismuth 0 200 400 600 800 Energy (kev) 662 kev Predicted 3 part w/ R= 8% Escape peaks in small parts eliminated when larger Pulse Shape Discrimination PSD Plastic: Neutron/gamma discrimination in new 2 PSD plastic scintillator similar to stilbene single crystal Natalia Zaitseva and team Neutron Gamma Neutron Gamma 14
Materials for future gamma spectrometers? Single crystals Gamma Spectroscopy Scintillator Z eff Light Yld (Ph/MeV) En Res, 662 kev Nonprop En Res, 662 kev S PP, 1 MeV, (15 mm x 15mm x 15 mm) NaI(Tl) 50 40,000 7% 5.0% 2.2% LaBr 3 (Ce) 44 63,000 3% 2.2% 2.8% SrI 2 (Eu) 49 90,000 3% 2.2% 3.0% Garnet ceramics (Gd,Y, Lu) 3 (Al,Ga) 5 O 12 (Ce) 47 50,000 4.5% 1.9% 3-9% Plastics Standard PVT 4.5 15,000 8% (Compton) Current LLNL Bi-loaded polymers 26 10,000-30,000 3.6% 0 7-9% 3.5% 0.3% 15
Scintillator invention and use in high energy physics Slide from A.Gektin R. Hofstadter 1961 Nobel Prize 1949 NaI(Tl) First synthetic scintillator. 1972 Crystal Ball ZnS:Ag CaWO 4 80-th L3, BGO Bi 4 Ge 3 O 12 BaF 2 (slow) CsI:Na CdS:In ZnO:Ga CaF 2 :Eu silicate glass:ce LiI:Eu CsI CsF CsI:Tl CdWO 4 NaI:Tl next? SrI 2 :Eu LuI 3 :Ce LaBr 3 :Ce LaCl 3 :Ce RbGd 2 Br+:Ce LuAlO 3 :Ce Lu 2 SiO 5 :Ce PbWO 4 CeF3 (Y,Gd) 2 O 3 :Eu BaF 2 ( fast) YAlO 3 :Ce 60-th Glasses, pre-crystal calorimeters 1992 PWO, LHC 90-th BaF 2 - SSC (-) CeF 3 - LHC (-) 1900 1920 1940 1960 1980 2000 2020 Years 16
Slide from P. Lecoq Crystal Ball Crystal calorimeters New generation of calorimeter new scintillator development CLEO II L3 BaBar Belle L* LoI GEM EoI GMS EoI L3P EoI ALICE Where SPEAR CESR LEP SLAC KEK SSC SSC LHC LHC LHC LHC When 1972 Late 1980 ' s 1999 2005 Beam e' e e' e e' e e' e e' e pp pp pp pp ion ion pp Crystal NaI(TI) CsI(Tl) BGO CsI(Tl) CsI(Tl) BaF2 BaF2 CeF3 CeF3 PbWO4 PbWO4 Number 7000 7800 11400 6800 8800 26000 15000 45000 100000 36000 82000 Length [X0] 16 16 21.5 16 16 24.5 24.5 25 25 22 25 CMS New! asymmetric b-factory The Rugby Ball Proposals LHC 480 BGO crystals 24 cm length ( 21 R.L.) 15 sectors in [25,155 ] 32 sectors in [0,360 ] 128 F = 1.5" PMT 352 F = 2.0" PMT = 11.25 = 6 10 = 0.9 x 4 32 NE102 scintillators l = 43 cm h = 5 mm Rugby Ball N. CHEREPY Official Use Feb. Only 4, 2011 SHOGUN symposium 17