TAMARISK MAPPING & MONITORING USING HIGH RESOLUTION SATELLITE IMAGERY. Jason W. San Souci 1. John T. Doyle 2

Similar documents
Nature Values Screening Using Object-Based Image Analysis of Very High Resolution Remote Sensing Data

Weed Survey and Mapping

Remote Sensing in Natural Resources Mapping

Prioritizing Riparian Restoration at the Watershed, Reach and Site Scales. Richard R. Harris University of California, Berkeley Cooperative Extension

STANDARDS FOR RANGELAND HEALTH ASSESSMENT FOR SAGEHEN ALLOTMENT #0208

JACIE Science Applications of High Resolution Imagery at the USGS EROS Data Center

WEED MANAGEMENT PLAN FOR. (NAME of PROPERTY or MANAGED AREA) (TOWN or COUNTY, STATE) (TIME PERIOD; e.g )

2002 URBAN FOREST CANOPY & LAND USE IN PORTLAND S HOLLYWOOD DISTRICT. Final Report. Michael Lackner, B.A. Geography, 2003

Wildlife Habitat Conservation and Management Plan

Image Analysis CHAPTER ANALYSIS PROCEDURES

Remote Sensing and Land Use Classification: Supervised vs. Unsupervised Classification Glen Busch

U.S. Geological Survey Earth Resources Operation Systems (EROS) Data Center

AERIAL PHOTOGRAPHS. For a map of this information, in paper or digital format, contact the Tompkins County Planning Department.

The Teton Creek Restoration Project Summary:

Buffelgrass Growth within Urban Sub-Habitats Using High Resolution Aerial Photography

ANGORA FIRE RESTORATION PROJECT

Using Aerial Photography to Measure Habitat Changes. Method

Experience Summary. KINA MURPHY, M.S. Ecologist / Community Planner 9 Stone Ridge Road, Santa Fe, NM Cell: Education / Training

Colorado Natural Heritage Program

Revision of Land and Resource Management Plan for the Santa Fe National Forest;

CIESIN Columbia University

.FOR. Forest inventory and monitoring quality

Understanding Raster Data

Spectral Response for DigitalGlobe Earth Imaging Instruments

SANTA BARBARA COUNTY COMPREHENSIVE PLAN LOMPOC AREA

VCS REDD Methodology Module. Methods for monitoring forest cover changes in REDD project activities

'Developments and benefits of hydrographic surveying using multispectral imagery in the coastal zone

Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images

Natural Resources and Landscape Survey

Waterway Technote Planning

WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS

WHAT IS GIS - AN INRODUCTION

Passive Restoration 101: Framework and Techniques Overview. Amy Chadwick, Great West Engineering August 26, 2015 Butte, America

Post-Wildfire Clean-Up and Response in Houston Toad Habitat Best Management Practices

MAPPING MINNEAPOLIS URBAN TREE CANOPY. Why is Tree Canopy Important? Project Background. Mapping Minneapolis Urban Tree Canopy.

The Wildland-Urban Interface in the United States

Bruce Orr and Zooey Diggory S T I L L W A T E R S C I E N C E S. Tom Dudley U C S A N T A B A R B A R A

Questions and Answers: Scoping for Southwestern Willow Flycatcher Critical Habitat Proposal

Increasing water availability through juniper control.

First Annual Centennial Strategy for. Yucca House National Monument

LEAGUE NOTES ON APPROVED COMMUNITY WATER SUPPLY PLAN

6. NATURAL AREAS FIRE MANAGEMENT

Wildfires pose an on-going. Integrating LiDAR with Wildfire Risk Analysis for Electric Utilities. By Jason Amadori & David Buckley

Angora Fire Restoration Activities June 24, Presented by: Judy Clot Forest Health Enhancement Program

Wildlife Habitat Conservation and Management Program

The premier software for extracting information from geospatial imagery.

Section 5: Conserve to Enhance Program Goals What is Conserve to Enhance All About?

Resolutions of Remote Sensing

San Francisco Bay Area Wetlands Restoration Program Design Review Group. Project Summary Outline

Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California

The Albert J. and Mary Jane Black Institute for Environmental Studies

Management Plan Template For Conservation Easements Held by CPW

RESOLUTION MERGE OF 1: SCALE AERIAL PHOTOGRAPHS WITH LANDSAT 7 ETM IMAGERY

2.3 Spatial Resolution, Pixel Size, and Scale

How To Plan A Buffer Zone

Landsat Monitoring our Earth s Condition for over 40 years

Wetland Mapping using High resolution Satellite Images in the Jaffna Peninsula

ENDANGERED AND THREATENED

Project Title: Project PI(s) (who is doing the work; contact Project Coordinator (contact information): information):

PHOTO: Jon Waterman THE COLORADO RIVER DELTA, CIRCA NOW OPEN BOOKLET TO SEE CHANGE

UGIP Technical Committee Key Principles of Grazing Management

March Prepared by: Irvine Ranch Water District Sand Canyon Avenue. Irvine, CA Contact: Natalie Likens (949)

Urban Ecosystem Analysis Atlanta Metro Area Calculating the Value of Nature

GIS MAPPING FOR IRRIGATION DISTRICT RAPID APPRAISALS Daniel J. Howes 1, Charles M. Burt 2, Stuart W. Styles 3 ABSTRACT

United States Depmiment of the Interior Bureau of Reclamation Western Colorado Area Office Grand Junction, Colorado

Digital image processing

USE OF REMOTE SENSING FOR MONITORING WETLAND PARAMETERS RELEVANT TO BIRD CONSERVATION

UPPER COLUMBIA BASIN NETWORK VEGETATION CLASSIFICATION AND MAPPING PROGRAM

Lentic Riparian Monitoring Focused on Objectives. Sherman Swanson University of Nevada Reno

Imagery. 1:50,000 Basemap Generation From Satellite. 1 Introduction. 2 Input Data

Revising the Nantahala and Pisgah Land Management Plan Preliminary Need to Change the Existing Land Management Plan

Geospatial Software Solutions for the Environment and Natural Resources

Haynes Recreation Center, Laredo, TX. Data Matrix and Sustainability Benchmarks

FORESTED VEGETATION. forests by restoring forests at lower. Prevent invasive plants from establishing after disturbances

CHAPTER I: INTRODUCTION. Background

Recommended Land Use Guidelines for Protection of Selected Wildlife Species and Habitat within Grassland and Parkland Natural Regions of Alberta

Floodplain Connectivity in Restoration Design

Controlling Invasive Plants and Animals in our Community

Remote Sensing and GIS Application In Change Detection Study In Urban Zone Using Multi Temporal Satellite

Climate Change: A Local Focus on a Global Issue Newfoundland and Labrador Curriculum Links

Comparison of Satellite Imagery and Conventional Aerial Photography in Evaluating a Large Forest Fire

TerraColor White Paper

Field Techniques Manual: GIS, GPS and Remote Sensing

Monitoring Riparian Areas With a Camera

Mission Reach Self-Guided Tour Mission Concepción Portal Loop and Mission Reach Phase II Embayment Loop

GLOSSARY OF TERMS CHAPTER 11 WORD DEFINITION SOURCE. Leopold

Applying High-resolution Satellite Imagery and Remotely Sensed Data to Local Government Applications

GIS: Geographic Information Systems A short introduction

River Friendly Landscape Program Frequently Asked Questions (FAQs) February 2016

Water Resources Review Committee

Executive Director s Recommendation Commission Meeting: July 11, 2013

Summary of Pre- and Post-Project Vegetation Survey Results

APPLICATION OF TERRA/ASTER DATA ON AGRICULTURE LAND MAPPING. Genya SAITO*, Naoki ISHITSUKA*, Yoneharu MATANO**, and Masatane KATO***

An Assessment of the Effectiveness of Segmentation Methods on Classification Performance

As stewards of the land, farmers must protect the quality of our environment and conserve the natural resources that sustain it by implementing

Supervised Classification workflow in ENVI 4.8 using WorldView-2 imagery

River Restoration Activities in the Rio Grande Canalization Flood Control Project. Upper Rio Grande Citizens Forum Elizabeth Verdecchia July 19, 2012

Introduction to Imagery and Raster Data in ArcGIS

SP-472 AUGUST Feral Hog Population Growth, Density and Harvest in Texas

VEGETATION FIRE FUELS MAPPING IN THE SAN DIEGO CITY CANYONS A METHOD COMPARISON

Transcription:

TAMARISK MAPPING & MONITORING USING HIGH RESOLUTION SATELLITE IMAGERY Jason W. San Souci 1 John T. Doyle 2 ABSTRACT QuickBird high resolution multispectral satellite imagery (60 cm GSD, 4 spectral bands) and calibrated products from DigitalGlobe's AgroWatch program were used as inputs to Visual Learning System's Feature Analyst automated feature extraction software to map localized occurrences of pervasive and aggressive Tamarisk (Tamarix ramosissima), an invasive species found along riparian corridors throughout the Western United States. Mapping was carried out along two major river systems known for widespread tamarisk invasions (Colorado River near Grand Junction, CO & Rio Grande River near Albuquerque, NM) using imagery acquired in late Fall, 2003. Mapped tamarisk occurrences were conservative, because only tamarisk vegetation with spatial areas greater than 10 square meters were classified and senesced tamarisk were not taken into account. Classification accuracies were greater than 80% based on ground verified data. Overall, these results confirm that high spatial but low spectral resolution remote sensing data coupled with machine learning classifiers can be used effectively for local precision mapping of tamarisk in dominant environments found in riparian landscapes. INTRODUCTION Tamarisk is a deciduous shrub/small tree that was introduced to the western U.S. in the early nineteenth century from Central Asia and the Mediterranean for use as an ornamental, in windbreaks, and for erosion control. Tamarisk, also known as salt cedar, is well suited to the 1 J.W. San Souci is the Director of Remote Sensing Applications, Native Communities Development Corporation, 1235 Lake Plaza Drive, Suite 221, Colorado Springs CO 80906. Email: jsansouci@ncdcimaging.com. 2 J.T. Doyle is a Sales Manager, DigitalGlobe, Inc., 815 Bend in the Trail Road, Monument CO 80132. jdoyle@digitalglobe.com 1

western U.S., and has displaced much of the native vegetation along low-elevation river and stream banks from Mexico to Canada. Tamarisk is now estimated by some researchers to cover between 1 and 1.5 million acres of land in the western U.S. Tamarisk is a tenacious plant that has a deep root system (up to 100 feet) and leaves a salt residue in the soil. These characteristics enable it to quickly displace native cottonwoods and willows as well as adjacent upland plant communities; such as bunch grasses, sage and rabbit brush. The resulting tamarisk thickets crowd out streams and rivers; provide poor habitat for livestock, animals, and birds; increase fire hazards; and limit human use of the waterways. While each of these points is important to one or more constituencies, the single most critical problem is that tamarisk steals water by using more water than native vegetation that it displaces. This non-beneficial user of the West's limited water resources dries up springs, wetlands, and riparian areas by lowering water tables. Based on average water use values for tamarisk and the native plant species it has replaced, a rough estimate of the non-beneficial consumption of water by tamarisk throughout the West ranges from 2.0 to 4.5 million acre-feet of water per year. These values are above and beyond what the native riparian vegetation would have consumed and represent enough water to supply upwards of 20 million people or the irrigation of over 1,000,000 acres of land. And every year, the problem only continues to get worse. A key requirement for the effective management of invasive plants is the ability to identify, map, and monitor invasions as well as the invaded plant communities. Hand-mapping in the field or from aerial photos are techniques commonly used in support of eradication efforts, but these methods are labor intensive and limited. Hand-mapping from field observation requires access to the site from the ground, a prospect that is not always practical, safe, or timely, especially on an active military base. Interpretation of aerial photos is extremely time-intensive and often necessitates interpretation of large numbers of photographs. In addition, it can be difficult to distinguish the weed species in the photos even with magnification, making the interpretation process highly subjective and likely to differ from one analyst to another. Because of these constraints, weed mapping is usually done on an as-needed basis, and comprehensive maps that would support time-series evaluation are not generally made. There is the need, therefore, to 2

develop repeatable and reliable automated techniques for monitoring the spread of weeds and the effects of eradication efforts as well as changes in the habitats being managed. DigitalGlobe has developed a unique set of algorithms that have advanced the capabilities of remote sensing technologies for vegetation assessment. Specifically, they have discovered a method to calibrate the imagery to reflectance at the earth s surface. DigitalGlobe has also developed the capability to remove variation in vegetative indexes caused by differences in soil brightness. This processing step potentially allows for mapping of the invader and surrounding plant communities, which cannot be accomplished using more conventional multispectral imagery. Feature Analyst, the flagship automated feature extraction tool of Visual Learning Systems, Inc., is used in this study to exploit the strengths of the high resolution digital imagery while reducing the extreme variability effects inherent to high resolution imagery classification. This study tested the suitability of AgroWatch data and Feature Analyst algorithms for improved mapping of a riparian plant community invaded by Tamarisk. This work will be useful in future decisions about methods for mapping Tamarisk and associated riparian vegetation in other regions. TECHNICAL OBJECTIVES 1. Develop methodology to accurately, repetitively, and consistently map tamarisk invasions using: Pan-Sharpened QuickBird Imagery Calibrated AgroWatch Products Advanced COTS Software 3

2. Test methodology in two study areas along separate riparian corridors within the Southwest Leaf-on and multiple dates Target size ranging from single tree to dense monoculture 3. Assess the accuracy of the classification Collect reference data within each study area PROJECT AREAS The first study area was a 3.5 mile stretch of the Rio Grande River in Sandoval County, NM. This area recently underwent a tamarisk eradication and riparian restoration project completed by the Santa Ana Pueblo. The riparian vegetation in the area was characterized by individual tamarisk plants and monotypic cottonwood stands. The second study area focused on a 5 mile section of the Colorado River in Mesa County, CO. This area is characterized by dense monotypic stands of tamarisk intermixed with native vegetation such as willow and cottonwoods, as well as non-native russian olive. Table 1 compares the QuickBird image parameters for the two project areas. Table 1: Project Area Imagery Comparison River System Colorado River Rio Grande River Acquisition Date October 25, 2003 September 27, 2003 Off Nadir Viewing Angle 12.7 14.3 Image Quality Excellent Excellent Cloud Cover 0.0% 0.0% 4

CLASSIFICATION METHODS Regions of interest (ROIs) were created for use as training sets using a combination of field data, field notes and hand-mapped polygons. ROI polygons were created on an un-georeferenced true-color display of the image data using the field notes as reference by visually matching features in the un-georeferenced and georeferenced images. The high spatial resolution of these data sets seemed to fit perfectly with the Feature Analyst workflow and analytical capabilities. Feature Analyst allows for a simplified, intuitive classification workflow: Train Learner, Remove Clutter, and Add Missed. The ROIs generated in the field were used to train the Feature Analyst learner on the spectral and spatial characteristics of tamarisk. Using Feature Analyst s Learning Explorer feature and AgroWatch s calibrated vegetation products allowed the learner derived during the first project area to be used directly on the second project area, with only slight modifications regarding the average tamarisk stand size in the latter project area. After a single iteration, results were very promising for tamarisk delineation in both project areas. The results of the accuracy assessment are illustrated in Tables 2 and 3. Table 2: NM Accuracy Assessment Results Reference # Plots Tamarisk Other Totals User s Accuracy Classification Tamarisk 17 2 19 89% Other 3 18 21 86% Totals 20 20 40 Producer s Accuracy 85% 90% 88% 5

Table 3: CO Accuracy Assessment Results Reference # Plots Tamarisk Other Totals User s Accuracy Classification Tamarisk 25 6 31 81% Other 7 22 29 76% Totals 32 28 60 Producer s Accuracy 78% 79% 78% CONCLUSIONS This study shows that the invasive plant Tamarisk and associated riparian vegetation types can successfully be mapped using QuickBird and AgroWatch data and with advanced machine learning techniques available in the commercial off-the-shelf software, Feature Analyst. These techniques show promise as useful tools for evaluating the status of important habitats and the advance (or eradication) of an invasive weed. This is especially applicable in the management of riparian systems because constituent habitat types can change significantly in their spatial extents and distribution in just a few years. More work is needed to discover if learners can be used in images from different years for the same region for development of a sequence of maps that would allow change analysis, since variations from year to year in the timing of plant phenological stages will certainly be a factor. 6

ACKNOWLEDGEMENTS The authors would like to thank the following people for their assistance in the field with various aspects of this project; without their contributions this project would not have been possible: Danna Rhodes, archaeobotanist and Glen Manley of the Adobe Creek Golf Course. 7