Using Current Transformers with the 78M661x

Similar documents
Current and Temperature Ratings

Digital Energy ITI. Instrument Transformer Basic Technical Information and Application

Basic RTD Measurements. Basics of Resistance Temperature Detectors

CT Application Guide for the 489 Generator Management Relay

Selecting Current Transformers Part 1 By Darrell G. Broussard, P.E.

VOLTAGE REGULATOR AND PARALLEL OPERATION

Tamura Closed Loop Hall Effect Current Sensors

DS 600. A contact free flux gate based current measurement sensor 600A rms

0.84" x 2.00" Z-TRAUQ INC. Tel.: (450) Fax: (450) z-trauq@qc.aira.com SPLIT CORE CURRENT TRANSFORMER MODEL 1SP.

DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION

CURRENT TRANSFORMERS FOR ELECTRONIC WATTHOUR METERS ADVANCED MATERIALS THE KEY TO PROGRESS

High Voltage Current Shunt Monitor AD8212

Input and Output Capacitor Selection

Push-Pull FET Driver with Integrated Oscillator and Clock Output

Agilent AEDB-9140 Series Three Channel Optical Incremental Encoder Modules with Codewheel, 100 CPR to 500 CPR Data Sheet

Inductors in AC Circuits

Spread-Spectrum Crystal Multiplier DS1080L. Features

AS A Low Dropout Voltage Regulator Adjustable & Fixed Output, Fast Response

Current-Transformer Phase-Shift Compensation and Calibration

Section 3. Sensor to ADC Design Example

Chapter 16. Current Transformer Design. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Earth Fault Detection Basics in Theory

Current transformers (CT) & Shunts

STLQ ma, ultra low quiescent current linear voltage regulator. Description. Features. Application

Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)

AVR127: Understanding ADC Parameters. Introduction. Features. Atmel 8-bit and 32-bit Microcontrollers APPLICATION NOTE

SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS

WHY DIFFERENTIAL? instruments connected to the circuit under test and results in V COMMON.

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

Measurement of Capacitance

Digital Clamp-on DMMs with uncompromising performance

Symbol Parameters Units Frequency Min. Typ. Max. 850 MHz

Transformer circuit calculations

CURRENT TRANSFORMER MODEL 546 UL1015 #16 AWG LEAD WIRE, STANDARD LENGTH IS 24" 1 X

SYNCHRONOUS MACHINES

Current Transformers

Current Probes. User Manual

ε: Voltage output of Signal Generator (also called the Source voltage or Applied

Depletion-Mode Power MOSFETs and Applications Abdus Sattar, IXYS Corporation

Application Notes FREQUENCY LINEAR TUNING VARACTORS FREQUENCY LINEAR TUNING VARACTORS THE DEFINITION OF S (RELATIVE SENSITIVITY)

CS4525 Power Calculator

Resistors. Some substances are insulators. A battery will not make detectible current flow through them.

S112-XHS. Description. Features. Agency Approvals. Applications. Absolute Maximum Ratings. Schematic Diagram. Ordering Information

Application Guide. Power Factor Correction (PFC) Basics

Chapter 11. Inductors ISU EE. C.Y. Lee

71M6521 Energy Meter IC. Real Time Clock Compensation. The Challenge. The RTC in the 71M6521D/F. Theory of Operation APPLICATION NOTE

APPLICATION NOTES DEFINITIONS NTC Thermistor 101

Using NTC Temperature Sensors Integrated into Power Modules

Lecture - 4 Diode Rectifier Circuits

Application Note. So You Need to Measure Some Inductors?

CMR Series Isolated 0.75W Single and Dual Output Isolated DC/DC Converters

Line Reactors and AC Drives

Voltage Output Temperature Sensor with Signal Conditioning AD22100

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS

Efficient and reliable operation of LED lighting is dependent on the right choice of current-limiting resistor

MC Low noise quad operational amplifier. Features. Description

Selection Guide to Clamp-On Current Probes

Current Ripple Factor of a Buck Converter

PI734D - Technical Data Sheet

PI734B - Technical Data Sheet

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)

BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN )

Current Transformers Ratio / Polarity / Types

THE STRAIN GAGE PRESSURE TRANSDUCER

9. Force Measurement with a Strain gage Bridge

2N6056. NPN Darlington Silicon Power Transistor DARLINGTON 8 AMPERE SILICON POWER TRANSISTOR 80 VOLTS, 100 WATTS

ICS514 LOCO PLL CLOCK GENERATOR. Description. Features. Block Diagram DATASHEET

Thermistor Calculator. Features. General Description. Input/Output Connections. When to use a Thermistor Calculator 1.10

SIGNAL GENERATORS and OSCILLOSCOPE CALIBRATION

INDUCTION REGULATOR. Objective:

UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES

AC Generators. Basic Generator

LM1036 Dual DC Operated Tone/Volume/Balance Circuit

HTM2500LF Temperature and Relative Humidity Module

SPREAD SPECTRUM CLOCK GENERATOR. Features

Line to Ground Voltage Monitoring on Ungrounded and Impedance Grounded Power Systems

Low Noise, Matched Dual PNP Transistor MAT03

45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?

High Common-Mode Rejection. Differential Line Receiver SSM2141. Fax: 781/ FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection

handbook, 2 columns handbook, halfpage 085 CS

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

Application Note 142 August New Linear Regulators Solve Old Problems AN142-1

SECTION 2 Transmission Line Theory

Vario-Series Accessories


PC BASED PID TEMPERATURE CONTROLLER

Description. 5k (10k) - + 5k (10k)

CHAPTER 5 PHOTOVOLTAIC SYSTEM DESIGN

UCI274C - Technical Data Sheet

SELECTION GUIDE. Nominal Input

28 Volt Input - 40 Watt

Design of an Auxiliary Power Distribution Network for an Electric Vehicle

Chapter 12 Driven RLC Circuits

LM135-LM235-LM335. Precision temperature sensors. Features. Description

Application Note 58 Crystal Considerations for Dallas Real-Time Clocks

Precision, Unity-Gain Differential Amplifier AMP03

UCI274H - Technical Data Sheet

ATE-A1 Testing Without Relays - Using Inductors to Compensate for Parasitic Capacitance

Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore. Lecture phase System 4

Transcription:

A Maxim Integrated Products Brand Using Current Transformers with the 78M661x APPLICATION NOTE AN_661x_021 April 2010 Introduction This application note describes using current transformers (CT) with the Teridian 78M661x family in a measurement system. The following topics are discussed: Current Transformer Background Burden Resistor Selection Phase Error and Compensation Selecting a Current Transformer System Calibration Measurement Results A design example is included to itemize the design process followed with calibration considerations and performance test data. Current Transformer Background A current transformer is a device that produces a reduced current in its secondary winding accurately proportional to the current flowing in its primary winding. The secondary (output) current flows into the secondary load, usually called the burden resistor. The primary winding is usually the primary (input) current conductor passing through an aperture in the current transformer core. Other implementations utilize two or more turns of the primary circuit wound on the core together with the secondary winding. CTs are used when the current in the circuit is too high to directly apply to the measuring instrument. There are two basic CT construction types. The first type is commonly referred to as a ring type or solid core CT because the core is usually annular. These tend to be more accurate and compact. The second type, usually known as a wound primary type, split core or clamp on CT, which has core designs with square or rectangular shapes. These can be installed without interrupting the circuit. Figure 1: Examples of CT Construction Types The primary and secondary currents are expressed as a ratio such as 500:1, 1000:1, etc. With a 500:1 ratio CT, 5 A flowing in the primary winding will result in 10 ma flowing in its secondary winding. Similarly, for lesser primary currents, the secondary currents are proportionately lower. The principal requirements of a measuring CT are that, for primary currents up to 125% of its rated current, its secondary current is proportional to the exciting primary current. The specified accuracy and specified maximum phase angle displacement applies up to a maximum load current. Load currents above this maximum value will saturate the core resulting in non-linear transfer characteristics. Rev. 1.0 2010 Teridian Semiconductor Corporation 1

Using Current Transformers with the 78M661x AN_661x_021 Increasing the value of the burden resistor (across the secondary winding of the CT) will result in an increase in the CT s secondary output voltage. This behavior is used to calculate the value of the burden resistor for an optimum current-to-voltage relationship. Conversely, a reduction in the value of the burden resistor results in a reduction in the CT s secondary output voltage. This rise in secondary voltage output with an increase in burden resistor value means that, theoretically, with an open circuit secondary, an infinitely high voltage appears across the secondary terminals. For practical reasons, this voltage is not infinitely high, but can be high enough to cause a breakdown in the insulation between the primary and secondary windings or between either or both windings and the core. An open circuit secondary winding presents a high voltage safety condition. The secondary leads must be connected to the burden resistor at all times when current flows through the primary. For this reason, primary current should never be allowed to flow with no load or with a high resistance load connected across the secondary winding. I Load I Secondary RBurden Vout The general specifications for a CT are: RATIO: input / output current ratio. VA: burden resistor value. CLASS: Accuracy required for operation. DIMENSIONS: maximum and minimum limits. CT Classes: Figure 2: CT with Burden Resistor 0.1 or 0.2 for precision measurements. 0.5 for high grade kilowatt hour meters for commercial grade kilowatt hour meters. 3 for general industrial measurements. 3 or 5 for lower accuracy commercial measurements. Teridian recommends use of class 0.5 or better for energy measurement. Burden Resistor Selection A CT with a turns ratio of 2000:1 yields a secondary current of 1/2000 of the primary current. In a typical application, the secondary current is applied to a resistor (usually defined as the burden resistor ) of a few ohms in order to generate a voltage signal (see Figure 2). Following Ohm s law, the resulting voltage V across the burden resistor R is: Vout = ILoad N RBurden In this formula, N is the turns ratio and ILoad is the primary load current. The optimum burden resistor value is specified by the CT manufacturer. If the burden resistor value is too high, the output becomes non-linear. When used with a 78M661x energy measurement device, it is important to dimension the burden resistor value for optimum signal magnitude. At maximum load current (IMAX), the voltage built up across the burden resistor should not exceed 176 mvrms (±250 mvpp). It is useful to provide a voltage margin in order to accommodate transients above IMAX. For various systems considerations, it may be necessary to select a burden resistor value lower than the manufacturer s recommended value. For most CTs, this will not pose a problem. 2 Rev 1.0

AN_661x_021 Using Current Transformers with the 78M661x Phase Error and Compensation All current transformers include an inherent phase shift relative to the current measurement. This phase shift introduces an error in the power measurement. The error in the power measurement introduced by phase error is illustrated with the following equations. Power is calculated as P = V I cosθ Where V is the LINE voltage, I is the load current and cosθ is the power factor. The measured power is calculated from Pmeas = (V * Kv) * (I*Ki) * cos(θ + α) Where Kv is the scaling factor for voltage and Ki is the scaling factor for current. The power measurement error introduced by the phase error is: Error = 1 Pmeas P = 1 cos (θ+α) cosθ When the power factor is high (close to 1), the influence of phase error to the measurement is almost negligible; however, a phase error of 1 degree at a power factor of 0.5 (θ = 60 ) introduces a power measurement error of 3%. The resultant phase error is generally unacceptable in energy measurement systems. Figure 3 shows the effects of phase error on measurement error across varying power factor. 25.000% Power Measurement Error vs. Power Factor 20.000% Power Measuremt Error % 15.000% 10.000% 5.000% 1 Deg phase error 2 Deg phase error 0.000% 0 0.2 0.4 0.6 0.8 1 1.2 Power Factor (PF) Figure 3: Power Measurement Error versus Power Factor Rev. 1.0 3

Using Current Transformers with the 78M661x AN_661x_021 Current Transformer Selection The selection of a current transformer includes factors such as range of current being measured, turns ratio and the class. The resultant accuracy depends on these parameters. Subjecting a current transformer to load currents above the manufacturer s rated current specification will saturate the core and may cause mechanical failures due to an excessive temperature rise. On the other hand, a current transformer that is rated much higher than the target load current might be restrictively too large and too expensive for its purpose. A typical rule of thumb is to select a current transformer which is rated approximately 20% above the expected maximum load current. This design example has a maximum load current of 20 Arms and utilizes the Oswell CT020P2A current transformer. This CT has a 1000:1 turns ratio terminated with a recommended burden resistor of 5 Ω. The higher the turns ratio (TurnRatio = Nsecondary/Nprimary), the higher the resolution of the load current measurement. Too high a turns ratio increases the distributed capacitance and leakage inductance reducing the current transformer s accuracy and capability to operate at higher frequencies. If the number of turns is too low, the output signal may distort or droop (for positively sloped unipolar input signal). Such distortion may cause measurement inaccuracies. Figure 4: Current Transformer (CT) Basic Connections The 78M661x input signal range is +/- 250 mvpp. The CT s secondary output voltage (Vout) must swing within this range. At the maximum load current of 20 A rms (28.28 A pk), a 1000:1 turns ratio current transformer will produce a secondary current of 28.3 mapp. Using the following equation, the Oswell CT020P2A produces 141.1 mvpp when attached to the recommended 5 Ω burden resistor. RBurden = Vout Iout This nominal maximum signal swing provides sufficient margin for transients while producing adequate signal swing at the minimum load current of 10 ma. 4 Rev 1.0

AN_661x_021 Using Current Transformers with the 78M661x System Calibration Any measurement system will achieve the highest accuracy levels by employing in-system calibration. The in-system calibration compensates for the CT s parasitic losses and phase error, LINE input voltage divider resistor network, current sensor tolerances, and 78M661x tolerances. The following table shows different accuracies depending on the type of calibration. The Current Only Calibration compensates for CT parasitic losses, the burden resistor tolerance and 78M661x tolerances. The Full Calibration compensates for the voltage divider plus the CT s parasitic losses and phase error plus the burden resistor tolerance. Calibration Time per Outlet Accuracy Full Calibration < 11 s < 0.5 % Current Only Calibration (1) < 4 s < 1.0 % No Calibration (fixed coeff.) (1) (2) 0 < 3 % Notes: 1. Use 0.1% tolerance resistors voltage divider. 2. Use 1% tolerance burden resistor. Accuracy Results The following table shows different accuracies depending on the type of calibration. Max Current (RMS) Load Watts at 120Vrms Burden Resistor (ohms) Volts Pk-pk across Rburden % of Input Range Full Calibration Current Only Calibration No Calibration 22 2640 4.99 0.15525 62 % -0.13% -1.05 % ±3 % 20 2400 4.99 0.14114 56 % -0.15 % -1.06 % ±3 % 18 2160 4.99 0.12702 51 % -0.12 % -1.04 % ±3 % 16 1920 4.99 0.11291 45 % -0.11 % -1.02 % ±3 % 10 1200 4.99 0.07057 28 % -0.09 % -1.01 % ±3 % 5 600 4.99 0.03528 14 % -0.05 % -0.98 % ±3 % 2 240 4.99 0.01411 5.6 % -0.04 % -0.94 % ±3 % 1 120 4.99 0.00706 2.8 % -0.04 % -0.96 % ±3 % 0.5 60 4.99 0.00353 1.4 % -0.02 % -0.99 % ±3 % 0.2 24 4.99 0.00141 0.56 % +0.004 % -0.92 % ±3 % 0.1 12 4.99 0.00071 0.28 % +0.02 % -0.91 % ±3 % 0.05 6 4.99 0.00035 0.14 % -0.02 % -0.96 % ±3 % 0.044 5.28 4.99 0.00031 0.12 % +0.1 % -0.72 % ±3 % 0.022 2.64 4.99 0.00016 0.06 % +0.1 % -0.99 % ±3 % 0.011 1.32 4.99 0.00008 0.03 % +0.03 % -0.58 % ±3 % Rev. 1.0 5

Using Current Transformers with the 78M661x AN_661x_021 Revision History Revision Date Description 1.0 4/2/2010 First publication. Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737- 7600 2010 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products.