SEMINARIUM GEOFIZYKI WIERTNICZEJ WELL LOGGING SEMINAR, Naukowa Sieć Tematyczna Metody Jądrowe dla Geofizyki IFJ PAN INiG ING PAN
Możliwo liwości symulacyjnych technik Monte Carlo na przykładach adach sondy NNTE i spng Possibilities of computer simulations techniques using Monte Carlo codes on examples of the NNTE and spng tools Teresa Cywicka-Jakiel, Andrzej Drabina, Urszula Woźnicka nicka
Experience and achievement of the Institute of Nuclear Physics in nuclear geophysics
In 1970 Professor Jan A. Czubek establish Department of Nuclear Physics Applications NUCLEAR GEOPHYSICS Analytical solutions of particle transport (gamma, neutron) Pulsed neutron generaor 14 MeV Numerical codes for particle transport Semi-empirical calibration method for neutron tools Sigma-a laboratory measurement method FLUKA, MORSE MCNP
Present status Department of Environmental and Radiation Transport Physics (NZ54) Head: : Prof. Dr.. hab. Urszula Woźnicka Neutron Transport Physics Laboratory Head: Assoc.. Prof. Krzysztof Drozdowicz Natural Radioactivity Laboratory Head: Dr.. Krzysztof Kozak
Neutron Transport Physics Laboratory organisation www.ifj.edu.pl/~nuwel Nuclear Well Logging Research & Development Centre (cooperation with AGH, Geophysics Dept.) budget Scientific Network: : Nuclear Methods for Geophysics IFJ PAN Oil and Gas Institute Institute of Geological Sciences PAN
Monte Carlo simulations of well logging problems Type of numerical codes (FLUKA, MCNP) and nuclear libraries (ENDF, Abagian) Modeling of the Zielona Góra Facilities Modeling of the the spectrometric neutron-gamma well logging probe, SO-5-90 90-SN Modeling of the neutron-neutron tool NNTE Monte Carlo contra semi-empirical empirical calibration NNTE response in the multi-layer system
Monte Carlo numerical codes and nuclear libraries A fully integrated particle physics Monte Carlo simulation package. FLUKA has many applications in high energy experimental physics and engineering, shielding, detector and telescope design, cosmic ray studies, dosimetry, medical physics and radio-biology. http://www.fluka.org/ MCNP - A General Monte Carlo N-Particle Transport Code MCNP is a trademark of Los Alamos National Security, LLC Los Alamos National Laboratory.
MCNPX is a general-purpose Monte Carlo radiation transport code for modeling the interaction of radiation with everything. MCNPX stands for Monte Carlo N-Particle extended. It extends the capabilities of MCNP4C3 to nearly all particle types, to nearly all energies, and to nearly all applications without additional computational time penalty. MCNPX is fully three-dimensional and time dependent. It utilizes the latest nuclear cross section libraries and uses physics models for particle types and energies where tabular data are not available. Applications range from outer space (the discovery of water on Mars) to deep underground (where radiation is used to search for oil) MCNPX is used for nuclear medicine, nuclear safeguards, accelerator applications, nuclear criticality, and much more.
Monte Carlo numerical codes and nuclear libraries Nuclear libraries Evaluated Nuclear Data Files (ENDFxx) Possible differences in the results: The same libraries BUT different method of use
Nuclear libraries Evaluated Nuclear Data Files (ENDFxx) Total neutron cross section [barn] 30 25 20 15 10 5 H 0 1 E-07 1 E-06 1 E-05 1 E-04 1 E-03 1 E-02 1 E-01 1 E+00 1 E+01 1 E+02 Energy [MeV]
x x x ENDF data x Calculated ( continuous ) data (MCNP) x x Group data (FLUKA) -02 1 E-01
Modeling of the material and geometry of the Zielona Góra Facilities Nuclear tool NNTE loggingl water Water block Standard block concrete Concrete
Modeling of the material and geometry of the Zielona Góra Facilities Nuclear tool (NNTE) KW Water L13 Ceramic block
Modeling of the the spectrometric neutronn eutron-gamma well logging probe, SO-5-90 90-SN Water pool Rock model n-gamma probe (SO-5-90-SN type) Detector (BGO) Aluminium Steel Lead Am-Be soure BGO detector Hole Am-Be source Concrete base
Modelling of the the spng (SO-5-90-SN) Problems: 1. Benchmark calculations: comparison of the tool responses obtained in realistic and simulated measurements at the Zielona Góra Facility 2. Calibration of the SO-5-90 90-SN tool: calculation of the tool respons in media inaccessible at Zielona Góra 3. Influence of side effects: presence of chlorine in borehole/rock
Modeling of the the spng Benchmarks (SO-5-90-SN) I-H-pom [imp/s] 700 650 600 550 500 450 800 SO-5-90-SN Pi2 850 900 Jo2 950 Mo2 BM2 Ra2 Li2 Mu2 Ze2 Br2 R 2 = 0.772 1000 1100 1200 1300 1050 1150 1250 1350 I-H-MCNP [imp/s] 95% p.uf ności I-Si-pom [imp/s] 750 700 650 600 550 500 450 400 SO-5-90-SN Pi2 Li2 Jo2 Ze2 BM2 Mo2 Ra2 Br2 Mu2 350 300 400 500 600 700 800 900 1000 I-Si-MCNP [imp/s] R 2 = 0.748 95% p.uf ności I-Ca-pom [imp/s] 300 280 260 240 220 200 180 160 140 120 SO-5-90-SN Mu2 Li2 Br2 Ra2 Pi2 Ze2 BM2 Mo2 Jo2 R 2 = 0.923 95% p.uf ności I-Fe-pom [imp/s] 120 110 100 90 80 70 60 50 40 SO-5-90-SN Li2 Jo2 Pi2 BM2 Mo2 Ra2 Ze2 Mu2 Br2 R 2 = 0.667 95% p.uf ności 100 100 150 200 250 300 350 400 450 500 I-Ca-MCNP [imp/s] 30 60 80 100 120 140 160 180 200 220 240 I-Fe-MCNP [imp/s]
Modeling of the the spng Benchmarks (SO-5-90-SN) Reasons: 1. The elemental composition of rock standards should be known in more detail
Modeling of the the spng (SO-5-90-SN) Benchmarks: elemental composition Mean concentrations of some important thermal neutron absorbents in the Zielona Góra blocks (laboratory measured,, 2005) Wzorzec skalny B (ppm) Cl (ppm) Gd (ppm) Sm (ppm) Eu (ppm) nazwa Mucharz 39.267 121.533 3.042 3,140 0.668 Brenna 36.846 92.455 2.990 3.246 0.724 Radków n.o (*). 81.800 0.658 0.720 0.196 Żerkowice ~16.000 ~50.000 0.573 0.667 0.107 Libiąż n.o (*). 370.000 0.086 n.o. (*) n.o. (*) Morawica n.o (*). 87.000 1.062 0.840 0.18 Pińczów n.o (*). 72.330 0.520 0.400 0.087 Józefów n.o (*). 73.000 0.693 0.567 0.137 Biała Marianna n.o (*). 76.500 0.408 0.400 0.085
Modeling of the the spng (SO SO-5-90 90-SN SN) Benchmarks: elemental composition Mucharz2 - simutation MCNP and measurement VII 2001 10000.0 TM2_2d1 - Mu2_GEB 0,187 XRAL - TMu2_4_GEB 0,187 Mu2 - BGW VII 2001 1000.0 100.0 10.0 1.0 H (2,01-2,521) MeV Si (2,625-5,228) MeV Ca (5,332-6,789) MeV Fe (6,893-8,975) MeV 1.064 1.480 1.897 2.313 2.729 3.146 3.562 3.979 4.395 4.811 5.228 5.644 6.061 6.477 6.893 7.310 7.726 8.143 8.559 8.975 9.392 Gamma energy (MeV) Counts rate (imp/s) Ca: 3,610 MeV Ca: 4,419 Ca:6,42 MeV Fe: 7,64 MeV; Al: 7,72 MeV Fe: 9,2981st esc MeV Si: 1,78 MeV H: 2,223 MeV Si: 3,539 MeV Si: 4,934 MeV
Modeling of the the spng Benchmarks (SO-5-90-SN) Reasons: 1. The elemental composition of rock standards should be known in more detail 2. ENDF libraries
30 25 20 15 10 5 0 Cl(n,γ)Cl - gamma ray lines Cl(n,γ)Cl - gamma ray lines endf60 0.08 1.14 1.60 1.96 2.47 2.68 3.00 3.56 4.54 5.01 5.58 5.90 6.11 6.62 7.41 8.58 100 10 1 0.1 0.01 0.001 Eγ (MeV) Iγ (per 100 captures) Iγ (per 100 captures) 0.09 0.3 4.73 0.44 0.53 0.66 0.83 0.96 1.13 1.5 1.7 1.95 2.11 2.28 2.49 2.68 2.87 3.14 3.36 3.59 3.83 4.13 4.42 5.11 5.78 6.95 Modeling of the the spng (SO SO-5-90 90-SN SN) Benchmarks: ENDF libraries ACTIA Eγ (MeV)
Modeling of the the spng (SO-5-90-SN) Benchmarks: ENDF libraries Al(n,γ )Al gam m a-ray lines 10000 1000 100 10 1 0.1 0.01 0.001 0.03 1.17 1.72 2.27 2.55 2.73 3.02 3.30 3.64 3.82 4.04 4.24 4.58 4.87 5.21 5.46 5.88 6.39 6.89 Iγ (per 100 captures) 1.779 M ev (delayed) ACTIA E γ (MeV)
Modeling of the the spng (SO-5-90-SN) Benchmarks: improvement I Si meas (cps) 750 700 650 600 550 500 450 400 Measurement vs. MCNP simulations (ENDF/BVI.2 neutron library) Si(n,γ)Si Eγ = 3.54 and 4.93 MeV R 2 =.7598 I Si meas (cps) 450 350 300 400 500 600 700 400 800 900 1000 750 700 650 600 550 500 I Si MCNP (cps) Measurement vs. MCNP simulations (ENDF/BVI.8 neutron library) Si(n,γ)Si Eγ = 3.54 and 4.93 MeV R 2 =.9076 95% conf. 350 400 500 600 700 800 900 1000 I Si MCNP (cps) 95% conf.
I H meas (cps) 680 660 640 620 600 580 560 540 520 500 480 460 Measurement vs. MCNP simulations (ENDF/BVI.2 neutron library) H(n,γ)H Modeling of the the spng (SO-5-90-SN) Benchmarks: improvement Eγ = 2.22 MeV R 2 =.7977 I H meas (cps) 680 660 640 620 600 580 560 540 520 Measurement vs. MCNP simulations (ENDF/BVI.8 neutron library) H(n,γ)H Eγ = 2.22 MeV R 2 =.9847 95% conf. 440 800 850 900 950 1000 1050 500 1100 1150 1200 1250 1300 1350 480 I H MCNP (cps) 460 800 900 1000 1100 1200 1300 1400 1500 I H MCNP (cps) 95% conf.
Modeling of the the spng (SO-5-90-SN) Benchmarks: improvement I Fe meas (cps) 120 110 100 90 80 70 60 50 Measurement vs. MCNP simulations (ENDF/BVI.2 neutron library) Measurement vs. MCNP simulations Fe(n,γ)Fe (ENDF/BVI.8 neutron library) Eγ = 7.63 and 7.64 MeV 120 R 2 =.6515 I Fe meas (cps) 60 40 95% conf. 50 30 60 80 100 120 140 160 180 40 200 220 240 260 110 100 90 80 70 I Fe MCNP (cps) Fe(n,γ)Fe Eγ = 7.63 and 7.64 MeV R 2 =.9084 30 40 60 80 100 120 140 160 180 I Fe MCNP (cps) 95% conf.
Calibration of the the spng (SO-5-90-SN) Counts rate [pulse/600 s] 100000 10000 H (1,71-2,35 MeV) H: 2,223 MeV Si:3,539 MeV Si:4,934 MeV Ca: 6,418MeV Si (2,67-5,03MeV) Ca (5,25-6,64MeV) Sandstone Piaskowiec Radków Limestone Wapień Józefów Sandstone Mucharz Fe: 7,631MeV 7,646 MeV Piaskowiec Mucharz Fe (6,85-10MeV) 1000 20 30 40 50 60 70 80 90 100 Number of channel Corelation: number of counts in the window and the concentration
Calibration of the the spng (SO-5-90-SN) Ca-pom [%] 40 35 30 25 20 15 10 C 5 0 BM2 Mo2 Ca-pom =,59759 +,96914 * Ca-chem Jo2 50 Korelacja: r =,98445 Si-pom =,32156 +,98013 1.8 * Si-chem Ra2 Li2 Pi2 40 Korelacja: r =,99002 Fe-pom =,04599 +,89471 * Fe-chem 1.6 Korelacja: r =,94589 Br2 Ze2 1.4 Si-pom [%] 30 el chem 20 = b el 0 i + = i= 4 Fe-pom [%] 1 1.2 el 1.0 i b i I 0.8 eli pom Mu2 el : H, Si, Br2 Mu2 0.6 Ze210 Ra2 Ra2 Li2 0.4 95% p.ufności Ze2 Jo2 Pi2 Jo2 BM2 Mo2 0.2 Mo2 Li2 0 0 5 10 15 20 25 30 35 4095% 45 p.ufności BM2 Pi2 Ca-chem 0.0 [%] 0 5 10 15 20 25 30 35 40 45 Mu2 Ca, Fe Br2 Si-chem 0.0 [%] 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Fe-chem [%] 95% p.ufności
Calibration of the the spng (SO-5-90-SN) Enlargement of the range of Fe variability 5 4 C-Fe-MCNP [wt.%] 3 2 R 2 = 0.973 (9 punktów) Mu2 Br2 R 2 = 0.988 (21 punktów) 1 0 Ra2 Ze2 BM2 Pi2 Jo2 Mo2 Li2 95% p.ufności 0 1 2 3 4 5 C-Fe-chem [wt.%]
Response of the the spng (SO-5-90-SN) Influence of the side effect: : a presence of chlorine in borehole. Interference of gamma ray from Cl(n,γ)Cl Mucharz2 sandstone (50 kppm NaCl in borehole) Gamma counts (cps) 150 120 90 60 30 0 Cl: 1.9511 MeV and 1.9594 MeV Al: 1.7791 MeV (delayed gamma) Cl: 1.9511 MeV and 1.9594 MeV measurement MCNP - ENDF60 for Cl and Al MCNP - ACTIA for Cl and Al (delayed gamma-ray included) 1 2 3 4 5 6 7 8 9 Eγ (MeV)
Modeling of the neutron-neutron well logging probe NNTE Near epithermal detector źródło Am-Be Far epithermal detector Near thermal detector
Modeling of the neutron-neutron well logging probe NNTE Problems: 1. Benchmark calculations 2. Calibration of the NNTE in Miocen standard 3. Test of infinity of Zielona Góra blocks 4. Test of the range of the detection 5. NNTE response in the ceramic block
Modeling of the NNTE probe: Benchmark measurement (cps) 2000 1800 1600 1400 1200 1000 800 600 Measurement vs. MCNP simulations (ENDF/BVI.0, BVI.1, BV.0) neutron data library measurement (cps) measurement vs. MCNP simulations (ENDF/BVI.6 neutron measurement library) vs. MCNP simulations "near" 2000 thermal detector (ENDF/BVI.8 neutron library) 1800 1600 R 2 =.9155 1400 1200 1000 "near" thermal detector measurement (cps) R 2 =.9734 1000 800 400 95% conf. 800 600 200 5.0E-07 1.0E-06 1.5E-06 2.0E-06 2.5E-06 3.0E-06 600 3.5E-06 4.0E-06 4.5E-06 400 95% conf. 2000 1800 1600 1400 1200 MCNP (neutron absorptions per source neutron) "near" thermal detector R 2 =.9765 200 400 95% conf. 5.0E-07 1.0E-06 1.5E-06 2.0E-06 2.5E-06 3.0E-06 3.5E-06 4.0E-06 4.5E-06 200 5.0E-07 1.0E-06 1.5E-06 2.0E-06 2.5E-06 3.0E-06 3.5E-06 4.0E-06 4.5E-06 MCNP (neutron absorptions per source neutron) MCNP (neutron absorptions per source neutron)
Calibration of the NNTE in Miocen standard porosity [%] The standard calibration curve for the near thermal detector NNTE logging-tool, Miocene Standard 216mm, 15 c.u.; MCNP simulation 120 y = -5.524674E-13x 5 + 2.509399E-09x 4-4.555558E-06x 3 + 4.193385E-03x 2-2.030597E+00x + 4.411456E+02 100 The standard calibration curve for the near epithermal detector NNTE logging-tool, Miocene Standard 216mm, 15 c.u.; 80 MCNP simulation 120 The standard calibration curve for the far epithermal detector 60 y = -4.671200E-10x near thermal 5 + 6.921092E-07x detector 4-4.059103E-04x 3 + NNTE 1.183625E-01x logging-tool, 2 - Miocene Standard 216mm, 15 c.u.; 100 1.737727E+01x + 1.056200E+03 MCNP simulation 120 40 80 y = 6.694375E-12x 6-8.422062E-09x 5 + 4.230040E-06x 4-1.082533E-03x 3 + 100 1.490667E-01x 2-1.063155E+01x + 3.260686E+02 20 60 near epithermal detector 80 0 40 60 far epithermal detector -20 200 400 20 600 800 1000 1200 1400 count rate [cps] 40 0 20 porosity [%] -20 100 150 200 250 300 0 350 400 450 count rate [cps] -20 porosity [%] 0 50 100 150 200 250 300 350 400 450 count rate [cps]
Test of infinity of the Zielona Góra blocks (NNTE tool) Assumptions: Rock models from the calibration facility BGW Zielona Góra: Morawica 141 (Mo1) limestone, borehole diameter 141mm Pińczów 220 (Pi2) limestone, borehole diameter 220 mm Rock model radius: from 0 to 80 cm every 10 cm Rock model surrounded by water Tool stand-off = 0 mm Criterion for infinity infinity of the rock model: 98% of the tool signal for the infinite model
Test of infinity of the Zielona Góra blocks (NNTE tool) Near detectors Morawica 141 por. 2.99 % Pińczów 220 por. 34.89 % NNTE logging-tool detector response as a function of the radius of the rock model. Limestone; porosity 2.99%; borehole diameter 141mm; stand-off 0mm. MCNP simulation. 7.E-06 NNTE logging-tool detector response as a function of the radius of the rock model. Limestone; porosity 34.89%; borehole diameter 220mm; stand-off 0mm. MCNP simulation. 2.3.E-06 MCNP (number of neutron absorptions per starting particle) 6.E-06 5.E-06 4.E-06 3.E-06 2.E-06 1.E-06 0.E+00 40 cm 40 cm near thermal detector near epithermal detector 0 10 20 30 40 50 60 70 80 90 MCNP (number of neutron absorptions per starting particle) 2.1.E-06 1.9.E-06 1.7.E-06 1.5.E-06 1.3.E-06 1.1.E-06 9.0.E-07 7.0.E-07 5.0.E-07 30 cm 30 cm near thermal detector near epithermal detector 0 10 20 30 40 50 60 70 80 radius of the rock model (cm) radius of the rock model (cm)
Test of infinity of the Zielona Góra blocks (NNTE tool) Far detector Morawica 141 por. 2.99 % Pińczów 220 por. 34.89 % NNTE logging-tool detector response as a function of the radius of the rock model. Limestone; porosity 2.99%; borehole diameter 141mm; stand-off 0mm. MCNP simulation. 3.E-07 NNTE logging-tool detector response as a function of the radius of the rock model. Limestone; porosity 34.89%; borehole diameter 220mm; stand-off 0mm. MCNP simulation. 2.6.E-08 MCNP (number of neutron absorptions per starting particle) 3.E-07 2.E-07 2.E-07 1.E-07 5.E-08 0.E+00 50 cm far epithermal detector 0 10 20 30 40 50 60 70 80 90 radius of the rock model (cm) MCNP (number of neutron absorptions per starting particle) 2.4.E-08 2.2.E-08 2.0.E-08 1.8.E-08 1.6.E-08 1.4.E-08 1.2.E-08 1.0.E-08 40 cm far epithermal detector 0 10 20 30 40 50 60 70 80 radius of the rock model (cm)
Test of infinity of the Zielona Góra blocks (NNTE tool) rock model Morawica 141 (por. 2.99 p.u.).) Pińczów 220 (por. 34.89 p.u.).) real rock model dimensions [cm] criteria 98% simulation criteria 100% φ 100 φ 100 φ 160 108 x 108 φ 80 φ 100
Test of the range of the detection in the Zielona Góra blocks (NNTE tool) Rock models from the calibration facility BGW Zielona Góra: Morawica 141 (Mo1) limestone, borehole diameter 141mm Pińczów 220 (Pi2) limestone, borehole diameter 220 mm Rock model diameter: : 200 cm Rock model surrounded by water Cylindrical zone 5 cm thick Outer radius of the zone: from 10 cm (Mo1) or 15 cm (Pi2) to 90 cm every 5 cm Tool stand-off = 0 cm Criterion for investigation range - 99,8% of the total signal
Test of the range of the detection (NNTE tool) Near detectors Morawica 141 por. 2.99 p.u. Pińczów 220 por. 34.89 p.u. 30 Rock model Mo1 (por. 2.99 p.u.); rock model diameter 200 cm; borehole diameter 141mm, stand-off 0mm; thickness of the cylindrical zone 5 cm 35 Rock model Pi2 (por. 34.89 p.u.); rock model diameter 200 cm; borehole diameter 220mm, stand-off 0mm; thickness of the cylindrical zone 5 cm contribution to detector signal (%) 25 20 15 10 5 50 cm near thermal detector near epithermal detector 60 cm contribution to detector signal (%) 30 25 20 15 10 5 35 cm near thermal detector near epithermal detector 35 cm 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 distance between the outer radius of the cylindrical zone and the borehole wall (cm) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 distance between the outer radius of the cylindrical zone and the borehole wall (cm)
Test of the range of the detection (NNTE tool) Far detector Morawica 141 por. 2.99 p.u. Pińczów 220 por. 34.89 p.u. 30 Rock model Mo1 (por. 2.99 p.u.); rock model diameter 200 cm; borehole diameter 141mm, stand-off 0mm; thickness of the cylindrical zone 5 cm 35 Rock model Pi2 (por. 34.89 p.u.); rock model diameter 200 cm; borehole diameter 220mm, stand-off 0mm; thickness of the cylindrical zone 5 cm contribution to detector signal (%) 25 20 15 10 5 far epithermal detector 60 cm contribution to detector signal (%) 30 25 20 15 10 5 45 cm far epithermal detector 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 distance between the outer radius of the cylindrical zone and the borehole wall (cm) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 distance between the outer radius of the cylindrical zone and the borehole wall (cm)
Response of the NNTE tool in the ceramic block MCNP calculation measurement 2005 1200 1100 Near thermal detector tool response [cps] 1000 900 800 700 600 500 400 300 tool response [cps] 350 325 300 275 250 225 200 200 175-10 40 90 140 190 position 150 of the tool [cm] 125 100 MCNP calculation measurement 2005-10 40 90 20 140 190 position of the tool [cm] 0 Near epithermal detector MCNP calculation measurement 2005 tool response [cps] 200 180 160 140 120 100 80 60 40 Far epithermal detector -10 40 90 140 190 position of the tool [cm]
Monte Carlo simulations contra Czubek s method Tool response Semi-empirical calibration method of the neutron tool: Base: Integral neutron parameters: General Neutron Parameter Porosity A B C A, B, C - Borehole diameter GNP = L map Pr m ap Σ n ap
Monte Carlo simulations contra Czubek s method Semi-empirical calibration method of the neutron tool: Base: Integral neutron parameters: Slowing down length Diffusion length Macroscopic absorption cross section ( ) etc. The integral (macroscopic) neutron parameters are calculated using the base nuclear data (i.e. using the nuclear libraries)
Monte Carlo simulations contra Czubek s method Semi-empirical calibration method of the neutron tool F Real measurement Simulated measurement (MCNP) F = b + a GNP n GNP SLOWN, NEROTH, LMBRIN (analytical solutions + Abagian library) as above + ENDF library or GNP calculated purely Monte Carlo
TRnum= Bl/Dal (z obliczeń MCNP) 3,5 3,0 2,5 2,0 1,5 1,0 0,5 Uogólniona krzywa kalibracji sondy PKNN3 (6), n=-0.0106 TR obliczone MCNP; GNP wyznaczone z MOM3 i SIGMA3- ośrodki dwu- i trójstrefowe; regresja wielokrotna dla ośrodka Uogólniona dwustrefowego; krzywa bloki kalibracji z B10 sondy PKNN3 (6), n=0.0229 TR obliczone MCNP; GNP wyznaczone z MORSE - ośrodki dwu-, trój- i czterostrefowe; regresja wielokrotna dla ośrodka dwustrefowego; y = 0,00026x 4-0,01805x 3 + 0,45898x 2 bloki z B10 3,5-5,21104x + 23,21963 R 2 = 0,99120 y = 0,00129x 3-0,00540x 2-0,80015x + 9,62829 TRnum= Bl/Dal (z obliczeń MCNP) 3,0 2,5 2,0 1,5 1,0 średnia odległość punktów od krzywej d śr = 0,62 GNP R 2 = 0,99142 średnia odległość punktów od krzywej d śr = 0,28 GNP 7 8 9 10 11 12 13 14 15 16 17 18 0,5 GNP anal = L map * n ap (MOM3 i SIGMA3) 8 9 10 11 12 13 14 15 16 17 ośrodek dwustrefowy (skała + otwór) GNP num = L map * n ap (MORSE ośr. dwu-, trój- i czterostrefowe) ośrodek trójstrefowy (skała + rura lub korek + otwór) uogólniona krzywa kalibracji ośrodek dla dwustrefowy ośrodka dwustrefowego (skała + otwór) ośrodek trój- (skała + korek + otwór) i czterostrefowy (skała + warstewka wody + rura + otwór) uogólniona krzywa kalibracji dla ośrodka dwustrefowego
Żerkowice 220; XIIIG Radków 216; XIV Pińczów 220; C Pińczów 145; B Mucharz 220; MV Mucharz 143; M81 Morawica 220; MII Morawica 141; MV Libiąż 216; III, I Libiąż 145; V Józefów 216; JII Brenna 215; B35 BIV BIVa Brenna 141 B29.8 B42 B40 Biała Marianna 220 BMG KAlSi3O8 (ORTOKLAZ) CaMg(CO3)2 por. 20% CaCO3 por. 20% SiO2 por. 20% CaMg(CO3)2 por. 0% CaCO3 por. 0% SiO2 por. 0% H2O SLOWN Ls cm Ls cm MORSE (pulely Monte-Carlo) 0 5 10 15 20 25 30 35 Slowing down length [cm]
Żerkowice 220; XIIIG Radków 216; XIV Pińczów 220; C Pińczów 145; B Mucharz 220; MV Mucharz 143; M81 Morawica 220; MII Morawica 141; MV Libiąż 216; III, I NEROTH MORSE Ld cm Ld cm (purely Monte-Carlo) Libiąż 145; V Józefów 216; JII Brenna 215; B35 BIV BIVa Brenna 141 B29.8 B42 B40 Biała Marianna 220 BMG KAlSi3O8 (ORTOKLAZ) CaMg(CO3)2 por. 20% CaCO3 por. 20% SiO2 por. 20% CaMg(CO3)2 por. 0% CaCO3 por. 0% SiO2 por. 0% H2O 0 5 10 15 20 25 Diffusion length [cm]
Nomogram do wyznaczania Σ a matryc mioceńskich na podstawie pomiarów sondą NNTE. Parametrem krzywych jest PorPozBter [% jsm]. Średnica otworu 216 mm. Wykres uzyskany na drodze symulacji MCNP. 40 4 [% jsm] 8 [% jsm] 35 12 [% jsm] 16 [% jsm] Σ a matrycy mioceńskiej [cu] 30 25 20 15 10 5-10 -5 0 5 10 15 20 DporSigA [%] 20 [% jsm] 25 [% jsm] 30 [% jsm] 35 [% jsm] 40 [% jsm] 45 [% jsm] 50 [% jsm] 55 [% jsm] 60 [% jsm] 70 [% jsm] 80 [% jsm] 90 [% jsm]
NNTE response in the multi-layer system r Continuous change of the parameters of the wellbore zone along the radial dimension
NNTE response in the multi-layer system Brine Virgin zone Filtration zone Borehole (brine) Rock matrix Gas Formation fluid NNTE tool
NNTE response in the multi-layer system Virgin zone: Miocen standard Skład: SiO 2 : 72.50 %; Al 2 O 3 : 7 %; Fe 2 O 3 : 2 %; CaO: 2 7.50 %; K 2 O: 1.80 %; H 2 O: 1.20 %; CO 2 : 8 % Σ a = 15 c.u. (for rock matrix) Density: ρ r = 2.63 g cm -3 Porosity: 20 p.u. Examples for analytical calculation Temperature: 20.5 C Pressure : 0.1 MP Gas saturation of the virgin zone: CH 4 density: ρ g = 0.1 g cm -3 Example 1: H 2 O + CH 4, S w + S g = 100% Example 2: solanka 50 kppm NaCl + CH 4, S w + S g = 100% Borehole fluid: 10 kppm NaCl Density ρ b = 1.00538 g cm -3 Filtration zone: Miocen standard 20 p.u., 100 % saturated of borehole fluid Thickness G f = 0, 50, 100, 200 mm Borehole diam.: 216 mm Tool diam.: 89 mm Stand-off: 0 mm
NNTE response in the multi-layer system Analytical approximate solution Near thermal detector [cps] 1400 1300 1200 1100 1000 900 800 700 600 Gf = 0 Gf = 50 mm Gf = 100 mm Gf = 200 mm NNTE tool response as the function of the thickness Gf of the filtration zone Example 1 0 20 40 60 80 100 Gas saturation of the virgine zone [%]
NNTE response in the multi-layer system Analytical approximate solution 2.5 Gf - thickness of the filtration zone (Near / Far) Epi 2.0 1.5 1.0 0.5 0.0 Gf = 0 mm Gf = 50 mm Gf = 100 mm Gf = 200 mm Example 1 0 20 40 60 80 100 Gas saturation of the virgin zone [%]
NNTE response in the multi-layer system Monte Carlo solution NNTE tool Borehole and brine Filtration zone Virgin zone
NNTE response in the multi-layer system Normalized detector response of the NNTE tool Near thermal detector 1.1 1 0.9 0.8 0.7 0.6 Sg = 90 % { Sg = 50 % { Sg = 10 % { LMBRIN MCNP LMBRIN MCNP LMBRIN MCNP 0.5 0 50 100 150 200 250 Thickness of the filtration zone [mm]
NNTE response in the multi-layer system Near-to-Far epith. det. 2.5 2 1.5 1 0.5 Example Example 1 NNTE tool. Ratio of the detectors response: Near to Far epithermal detectors MCNP LMBRIN 7 % < 100% < LMBRIN Sg=90% { Sg=50% { Sg=10% { 20% LMBRIN MCNP LMBRIN MCNP LMBRIN MCNP 0 0 50 100 150 200 250 Thickness of the filtration zone [mm]
Future belongs to Monte Carlo