Surface area measurement using rendered three-dimensional ultrasound imaging: an in-vitro phantom study



Similar documents
Frontomaxillary and mandibulomaxillary facial angles at to13+ 6 weeks in fetuses with trisomy 18

Charts of fetal size: limb bones

Fetal size and dating: charts recommended for clinical obstetric practice

Ultrasonography of the Fetal Thyroid

An introduction to fetal neurosonography using three-dimensional ultrasound

F. I. VOS*, E. A. P. DE JONG-PLEIJ, L. S. M. RIBBERT, E. TROMP and C. M. BILARDO*

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, , , 4-9

3D Ultrasound. Outline. What is 3D US? Volume Sonography. 3D Ultrasound in Obstetrics: Current Modalities & Future Potential. Alfred Abuhamad, M.D.

Algebra Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard

Clinical Studies Abstract Booklet

Common Core Unit Summary Grades 6 to 8

Prentice Hall Mathematics Courses 1-3 Common Core Edition 2013

Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, United States

X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)

Assessment Anchors and Eligible Content

Solving Simultaneous Equations and Matrices

Tennessee Mathematics Standards Implementation. Grade Six Mathematics. Standard 1 Mathematical Processes

Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter B. Middle School

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Area of Parallelograms, Triangles, and Trapezoids (pages )

Comparison to other anterior segment imaging devices

Reference intervals of gestational sac, yolk sac and embryo volumes using three-dimensional ultrasound

NEW MEXICO Grade 6 MATHEMATICS STANDARDS

Under 20 of rotation the accuracy of data collected by 2D software is maintained?

Screening for trisomy 21 by fetal tricuspid regurgitation, nuchal translucency and maternal serum free β-hcg and PAPP-A at to13+ 6 weeks

Twelve. Figure 12.1: 3D Curved MPR Viewer Window

Prentice Hall Algebra Correlated to: Colorado P-12 Academic Standards for High School Mathematics, Adopted 12/2009

TISSUE MIMICKING GEL QUALITY LE PHANTOM SERIES DESIGN. performance the ultrasound labs ofand. icking material has the same attenuation mim-

Exploratory data analysis (Chapter 2) Fall 2011

Volumes of Revolution

Testing of simulation training device for assessment of cervical dilatation among nursing student of Karad, India

ICH Topic Q4B Annex 5 Disintegration Test General Chapter. Step 3

Umbilical Artery Doppler Waveform Indices in Normal Pregnancies

Estimation of Fetal Weight: Mean Value from Multiple Formulas

Ultrasonographic Diagnosis of Trisomy 18: Is It Practical in the Early Second Trimester?

Pre-Algebra Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems

Algebra I Vocabulary Cards

School of Diagnostic Medical Sonography

Data Exploration Data Visualization

Imaging of placental vasculature using three-dimensional ultrasound and color power Doppler: a preliminary study

Fetal Lateral Ventricular Width: What Should Be Its Upper Limit?

Sonographic screening for trisomy 13 at 11 to 13 D6 weeks of gestation

Grazing incidence wavefront sensing and verification of X-ray optics performance

BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I

KEANSBURG SCHOOL DISTRICT KEANSBURG HIGH SCHOOL Mathematics Department. HSPA 10 Curriculum. September 2007

BASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS

Manufacturing Process and Cost Estimation through Process Detection by Applying Image Processing Technique

Geostatistics Exploratory Analysis

Copyright 2011 Casa Software Ltd. Centre of Mass

Common Core State Standards for Mathematics Accelerated 7th Grade

Performance Level Descriptors Grade 6 Mathematics

Grade 8 Mathematics Geometry: Lesson 2

Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees

Introduction to Exploratory Data Analysis

Vocabulary Cards and Word Walls Revised: June 29, 2011

High-accuracy ultrasound target localization for hand-eye calibration between optical tracking systems and three-dimensional ultrasound

Learning Equity between Online and On-Site Mathematics Courses

Assessment of umbilical arterial and venous flow using color Doppler

Circumference Pi Regular polygon. Dates, assignments, and quizzes subject to change without advance notice.

Convert between units of area and determine the scale factor of two similar figures.

ASSESSMENT REPORT. Program: AAS Diagnostic Medical Sonography Cardiac Vascular Tract

Robot Perception Continued

Point cloud processing - scanning, analysing and validating

BE-SAFE: Bedside Sonography for Assessment of the Fetus in. Fetus in Emergencies: Educational Intervention for Latepregnancy. Obstetric Ultrasound

Sonographic Accuracy of Estimated Fetal Weight in Twins

Reflection and Refraction

How does one make and support a reasonable conclusion regarding a problem? How does what I measure influence how I measure?

Prognosis of Very Large First-Trimester Hematomas

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.

Technical Drawing Specifications Resource A guide to support VCE Visual Communication Design study design

Area of Parallelograms (pages )

STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures.

Prentice Hall: Middle School Math, Course Correlated to: New York Mathematics Learning Standards (Intermediate)

Prenatal screening and diagnostic tests

Thoracic Epidural Catheterization Using Ultrasound in Obese Patients for Bariatric Surgery

your questions answered the reassurance of knowing A guide for parents-to-be on noninvasive prenatal testing.

Exercise 1.12 (Pg )

Grade 6 Mathematics Common Core State Standards

Characteristics of the Four Main Geometrical Figures

Area is a measure of how much space is occupied by a figure. 1cm 1cm

of surface, , , of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

The correlation coefficient

EVERY DAY COUNTS CALENDAR MATH 2005 correlated to

ViewPoint 6. Clarify your View

CEEN Geotechnical Engineering Laboratory Session 7 - Direct Shear and Unconfined Compression Tests

Differentiation between normal and abnormal fetal growth

Chapter 6: Constructing and Interpreting Graphic Displays of Behavioral Data

Application Example: Quality Control of Injection-Molded Parts

Grade 6 Mathematics Performance Level Descriptors

Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B

Conjectures. Chapter 2. Chapter 3

A Statistical Experimental Study on Shrinkage of Injection-Molded Part

GeoGebra. 10 lessons. Gerrit Stols

Illinois State Standards Alignments Grades Three through Eleven

Screening for chromosomal abnormalities at weeks: the role of ductus venosus blood flow

A Simple Guide To Understanding 3D Scanning Technologies

What is the diagnostic value of ultrasound for determining a viable intrauterine pregnancy?

TEKS TAKS 2010 STAAR RELEASED ITEM STAAR MODIFIED RELEASED ITEM

containing Kendall correlations; and the OUTH = option will create a data set containing Hoeffding statistics.

Transcription:

Ultrasound Obstet Gynecol 211; 38: 445 449 Published online 13 September 211 in Wiley Online Library (wileyonlinelibrary.com). DOI: 1.12/uog.8984 Surface area measurement using rendered three-dimensional ultrasound imaging: an in-vitro phantom study C. IOANNOU*, I. SARRIS*, M. K. YAQUB, J. A. NOBLE, M. K. JAVAID anda.t.papageorghiou* *Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Oxford, UK; Institute of Biomedical Engineering, University of Oxford, Oxford, UK; Botnar Research Centre, University of Oxford, Oxford, UK KEYWORDS: accuracy; fontanelle; phantom; rendering; reproducibility; validity ABSTRACT Objective Cranial sutures and fontanelles can be reliably demonstrated using three-dimensional (3D) ultrasound with rendering. Our objective was to assess the repeatability and validity of fontanelle surface area measurement on rendered 3D images. Methods This was an in-vitro phantom validation study. Four holes, representing fontanelles, were cut on a flat vinyl tile. The phantom was scanned in a test-tank by two sonographers, at four different depths and using two different 3D sweep directions. The surface areas were measured on scan images and also directly from the phantom for comparison. Coefficients of variation (CVs), intraclass correlation coefficients (ICCs) and Bland Altman plots were used for repeatability analysis. Validity was expressed as the percentage difference of the measured area from the true surface area. Results Validity of measurement was satisfactory with a mean percentage difference of 5.9% (median = 3.5%). The 95% limits of agreement were 23.9 to 12.1%, suggesting that random error is introduced during image generation and measurement. Repeatability of caliper placement on the same image was higher (intraobserver CV = 1.6%, ICC =.999) than for measurement of a newly generated scan image (intraobserver CV = 5.5%, ICC =.992). Reduced accuracy was noted for the smallest shape tested. Conclusion Surface area measurements on rendered 3D ultrasound images are accurate and reproducible in vitro. Copyright 211 ISUOG. Published by John Wiley & Sons, Ltd. INTRODUCTION Fetal biometry usually relies on two-dimensional (2D) imaging planes of fetal organs, amenable to linear measurements only (length or circumference). Threedimensional (3D) ultrasound permits the visualization of complex structures or entire organs, whereby volume or surface area measurements may be performed. One particular area of interest is assessment of the fetal skull, cranial sutures and fontanelles 1 4. Most fontanelles and sutures can be reliably demonstrated using rendering techniques throughout the second half of gestation 1. Visualization of fontanelles on rendered 3D images may be affected negatively by advancing gestational age and cephalic presentation, owing to increasing difficulty of scan acquisition of the entire fetal head 1. A pocket of amniotic fluid between the transducer and the fetal skull often optimizes the rendered image and therefore reduced amniotic fluid volume is also likely to affect the visibility of these structures 1. Surface area measurements of the anterior fontanelle, using rendered 3D ultrasound, have been described and relevant nomograms have been published 4. Potential clinical applications include screening for Down syndrome, as these fetuses have larger fontanelles 5, or in the diagnosis of various craniosynostosis syndromes 6,7. Fetal fontanelle size and development may also be influenced by maternal vitamin D status 8. However, the use of 3D ultrasound has not been validated for fetal biometry on rendered images. While volume calculation using 3D ultrasound has high reproducibility and validity 9, surface area measurements when using rendered images cannot be assumed to have the same accuracy. Rendered scan images are reconstructed pictures, whereby several points of ultrasound reflected from different depths are projected onto a single imaging plane, and this has the potential to lead to significant error. In general, sources of measurement variation may include error during caliper placement and variability during generation of the scan image, for example, as the result of an incorrect plane or the effect of fetal breathing on abdominal circumference. For rendered 3D images in Correspondence to: Dr C. Ioannou, NDOG, Level 3, Women s Centre, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (e-mail: chrisioannou@doctors.org.uk) Accepted: 18 February 211 Copyright 211 ISUOG. Published by John Wiley & Sons, Ltd. ORIGINAL PAPER

446 Ioannou et al. particular, measurement error may be the result of fetal movement artifacts during volume acquisition. There is also the possibility of true biologic variation; thus, the head diameters and fontanelle size may vary as a result of moulding and external pressure because the calvarial bones and fontanelles are compressible structures. The aim of this study was to assess the repeatability and validity of surface area calculation on rendered 3D images, using an in-vitro phantom that simulates skull fontanelles. METHODS This was an in-vitro phantom validation study. A commercially available ultrasound scan machine with a mechanical 3D transducer was used (Philips HD-9 with a V7-3 transducer; Philips Ultrasound, Bothell, WA, USA). A glass test-tank containing a solution of 7% glycerol in water was the scanning medium 9,1.The phantom consisted of a flat tile made of rigid vinyl plastic (1-mm thickness) to simulate skull bone. Four holes of standard geometrical shapes were cut out on the tile to represent fontanelles (Figure 1). The shapes chosen were a regular pentagon, trapezoid, isosceles triangle and a parallelogram. The phantom was positioned horizontally into the test-tank and time was allowed for the solution to de-gas. The ultrasound transducer was then immersed 2 cm into the solution and a volume scan for every shape was obtained with a vertical angle of insonation. In order to assess whether the direction of the sweep has an effect on measurement, the 3D acquisition was repeated with the transducer rotated by 9 (Figure 1, x- andy-axes). This process was repeated with the phantom positioned at four different depths (1, 8, 6 and 4 cm) from the transducer. A second sonographer scanned the phantom independently and in a blinded manner, using the above protocol. x-axis Each scan was obtained using a varying sweep angle in order to acquire one shape per image and a default sweep speed of 5 seconds for a 65 sweep. A low gain setting was used during scanning to minimize ultrasound artifacts caused by reflection from the tank walls. The 3D image was displayed using the maximum rendering mode. Brightness and contrast were adjusted during postprocessing in order to enhance the shape demarcation: image bias (contrast) was set at the maximum setting and image position (brightness) was kept at an average setting. Each rendered image was extracted in a digital format (jpeg file) and analyzed on a PC using image viewing software for measurement (Escape Medical Viewer, version 3.2.3, Escape OE, Thessaloniki, Greece). Every image was calibrated for measurement using the scale displayed on the left side of the scan image. Manual tracing of the phantom fontanelle was then performed using the polygon measuring tool (Figure 2). Images were processed by two operators (C.I. and I.S.) independently of each other; the operators were blinded to each other s results and also to the true size of the fontanelles. In order to assess intraobserver and interobserver repeatability, all images were traced twice by Observer 1 and once by Observer 2. In order to assess validity, scan measurements were compared with the true surface areas; the shape dimensions (sides, base and height) were measured by both observers directly onto the phantom and the true surface areas were calculated using standard geometric equations (Table 1). Data were analyzed with PASW Statistics 18. (SPSS Inc., Chicago, IL, USA). Intraobserver and interobserver measurement repeatability were expressed as withinsubject coefficients of variation (CV) 11 and as intraclass correlation coefficient (ICC) with 95% CI 12. Interobserver percentage differences were also plotted using the method described by Bland and Altman 13. Validity was expressed as the percentage difference of the measured surface area from the true surface area. Percentage differences at different scan conditions (depth, shape, sonographer and sweep direction) were assessed for normality of distribution using Kolmogorov Smirnov and Shapiro Wilk tests. As data were not normally distributed, they were compared using non-parametric significance tests: the Kruskal Wallis test was used for comparisons between multiple groups (depth and shape effect) and the Mann Whitney U-test was used for paired comparisons (sonographer and sweep direction). The y-axis Table 1 Shapes and their true surface areas calculated using standard mathematical equations Shape Equation Surface area (mm 2 ) Figure 1 A flat vinyl tile with four holes of perfect geometrical shapes was scanned in a test-tank by two sonographers, in four different depths and using two sweep directions: along the x-axis and then along the y-axis. Pentagon (regular) S = t2 25 + 1 5 654.2 4 Trapezoid S = 1 / 2 h(b 1 + b 2 ) 325.5 Triangle (isosceles) S = 1 / 2 bh 95.3 Parallelogram S = bh 471.9 b, base; h, height; S, surface area; t, side length. Copyright 211 ISUOG. Published by John Wiley & Sons, Ltd. Ultrasound Obstet Gynecol 211; 38: 445 449.

Measurement accuracy on rendered ultrasound 447 P1,Area=644.7 mm2 L5=18.96 mm L4=19.91 mm Cal: 6. mm L1=19.15 mm L3=19. mm L2=19.79 mm Figure 2 Appearance and measurement of the phantom on rendered three-dimensional (3D) ultrasound. Mann Whitney U-test was also used post-hoc, to test all six possible paired comparisons of four depths and of four shapes. In the latter case, significance was set at P =.5/6 =.8 using the simple Bonferroni correction method 14. RESULTS There were a total of 64 volume scans; four shapes scanned at four depths, by two sonographers using two transducer orientations. The true surface areas of the four phantom fontanelles are listed in Table 1. Intraobserver and interobserver repeatability measures were all satisfactory (Table 2). Coefficients of variation ranged from 1.6 to 5.5% and ICCs were in excess of.99. Bland Altman plots of the interobserver percentage differences showed that the 95% limits of agreement between two observers were 6.2 to 14.9% when measuring the same scan image; while for measuring an independently acquired scan image the limits of agreement were 16.2 to 17.5% (Figure 3). In order to assess validity, the first ultrasound scan measurement by the first observer was compared with the true surface area. The median percentage difference from the true surface area was 3.5%, the mean percentage difference was 5.9% and the 95% limits of agreement were 23.9 to 12.1%. The largest percentage Table 2 Intraobserver and interobserver repeatability of surface area measurement Repeatability measure Tracing same scan image Tracing new scan image Intraobserver CV (%) 1.6 5.5 ICC (95% CI).999 (.999.999).992 (.974.999) Interobserver CV (%) 3.1 5. ICC (95% CI).997 (.975.999).992 (.981.996) CV, within-subject coefficient of variation; ICC, intraclass correlation coefficient. Interobserver difference of tracing same image (%) Interobserver difference of tracing a new scan image (%) 3 2 1 2 3 3 2 1 2 3 2 4 Mean measurement (mm 2 ) 2 4 Mean measurement (mm 2 ) 6 6 Figure 3 Bland Altman plots of interobserver percentage differences when tracing the same scan image and on a newly acquired image. difference, however, was noted for the triangle, which was the smallest shape tested: the median difference for the triangle was 12.1% vs..6% for the trapezoid (P <.1) and vs. 2.4% for the pentagon (P =.2) (Figure 4). Depth also affected measurement accuracy Copyright 211 ISUOG. Published by John Wiley & Sons, Ltd. Ultrasound Obstet Gynecol 211; 38: 445 449.

448 Ioannou et al. 1 1 1 2 3 4 5 1 2 3 4 5 Triangle (95.3 mm 2 ) Trapezoid (325.5 mm 2 ) Shape (size) Parallelogram (471.9 mm 2 ) Pentagon (654.2 mm 2 ) 1 8 6 4 Depth (cm) Figure 4 Validity expressed as percentage difference between measured surface area and true surface area vs. shape (in order of size: smallest to largest) and depth. Box-plots demonstrate median and interquartile range (IQR), whiskers demonstrate values within 1.5 IQR, outliers ( ) are values between 1.5 and 3 IQR and extremes (*) are values beyond 3 IQR. P <.1 and P =.44 (Kruskal Wallis test). to some extent (P =.44). The highest measurement error (median 8.1%) was noted when the phantom was furthest away (1 cm) from the transducer, although none of the pairwise post-hoc comparisons reached Bonferronicorrected statistical significance (Figure 4). The smallest median percentage differences were noted for intermediate depths ( 2.2% at 8 cm and 2.6% at 6 cm). Neither the operator performing the scan (P =.727) nor the direction of the 3D sweep (P =.11) had any appreciable effect on the validity of the technique (Figure 5). DISCUSSION This study demonstrates that surface measurement on rendered 3D ultrasound images is accurate and reproducible in vitro. To the best of our knowledge this is the first attempt to validate surface area measurements on rendered scan images. 2 3 4 5 1 2 Sonographer 2 3 4 5 x-axis y-axis Direction of sweep Figure 5 Validity expressed as percentage difference between measured surface area and true surface area vs. sonographer and direction of three-dimensional sweep. Box-plots demonstrate median and interquartile range (IQR), whiskers demonstrate values within 1.5 IQR, outliers ( ) are values between 1.5 and 3 IQR and extremes (*) are values beyond 3 IQR. P =.727 and P =.11 (Mann Whitney U-test). Fontanelles are not entirely flat structures. Even though they can be demonstrated in part with B-mode ultrasound, scanning on a single plane may not achieve adequate and consistent visualization. Using rendered 3D ultrasound instead, successful visualization is feasible in 82 1% of cases 1. Fetal anterior fontanelle measurement using this technique has been described previously, and ICCs for intraobserver and interobserver repeatability were.87 and.83, respectively 5. These are lower than the ICC for volume calculation, quoted in the literature as being in excess of.997 in vitro 9 and in vivo 15,16. Volume calculations are achieved using measurements performed on the constituent 2D planes of a 3D scan; conversely, fontanelle area measurements are taken on the rendered image. The different ICC values therefore support the hypothesis that those two different methodologies are subject to different measurement bias. Our study makes a clear distinction between the following two sources of measurement variation: manual tracing of the scan image and measurement of a newly generated image. Repeatability of tracing the same image was overall excellent both within and between observers. Variability of tracing a newly acquired scan image was considerably greater. The measurement variation introduced during the generation of a scan image was probably caused by movement artifact, which is an inherent limitation of 3D ultrasound. A 3D volume acquisition usually takes 2 5 seconds, depending on the settings of the scan machine (sweep angle and speed). Any fetal or transducer movement during acquisition may result in image distortion, which may affect measurement reproducibility. In this experiment there were no fetal movements. However, movement artifact may still be caused by the sonographer holding the transducer while obtaining the 3D volume. This study shows a systematic underestimation, of an average of 5.9%, of the true surface area. Copyright 211 ISUOG. Published by John Wiley & Sons, Ltd. Ultrasound Obstet Gynecol 211; 38: 445 449.

Measurement accuracy on rendered ultrasound 449 This compares reasonably to the percentage error, published elsewhere, of between + 1.4% and + 4.1% for volume measurement using 3D ultrasound 9.There is also a degree of random error, as evidenced by wide limits of agreement. Despite these figures for random and systematic error, this technique generated a satisfactory ICC, of.992. This means that within-subject measurement error was very small when compared with the size variation between subjects in our experiment. The phantom shapes were purposely designed so that the range of surface areas (95.3 654.2 mm 2 ) matched the reported values of the anterior fontanelle surface area in vivo 4. It is interesting that reduced accuracy was noted for the smallest fontanelle (< 1 mm 2 ). There was no difference in accuracy between different sonographers or when using a different direction of sweep. The effect of depth was difficult to evaluate: while, overall, there seemed to be a significant difference between groups, pairwise comparison showed a nonsignificant trend for reduced accuracy at the greatest depth, and this would be logical. However, depth is generally dictated by patient characteristics and this may not be a correctable factor in normal practice; where feasible it would be preferable to avoid surface area measurements at great distances from the transducer, in keeping with the general principles of ultrasound. There are some limitations to this study. It was carried out using only one ultrasound scanner and a mechanical transducer, as specified in the Methods. However, there is not a standard digital format for saving, analyzing and reporting 3D ultrasound data; and image-encoding and rendering algorithms vary amongst ultrasound manufacturers. It is therefore possible that different ultrasound equipment may demonstrate different measurement accuracy. We also explored the effect on accuracy of the sonographer, depth, sweep direction and phantom shape using a univariate model. It is possible that a mixed interaction exists among those four factors; however, the experiment was not designed to explore a four-factor interaction model. Finally, this experiment cannot account for any temporal size variation of the surface area of interest, as a source of bias. The phantoms were made of non-compressible vinyl material. It can therefore be assumed that the surface area of each hole was constant throughout the experiment. It is possible, however, that the fontanelle size may vary in vivo owing to moulding of skull bones, fetal position or external abdominal pressure. It is also possible that the demarcation between skull bones and the fontanelleis less clear in vivo and this would make tracing less reproducible. These effects can only be investigated by performing an in vivo reproducibility study, acquiring and measuring multiple scan images for each fetus. In conclusion, we demonstrate that surface area measurement in vitro, using rendered 3D ultrasound of a phantom simulating fetal fontanelles, is subject to a low measurement error. This technique is therefore accurate enough to be applied in vivo. ACKNOWLEDGMENTS We would like to thank Philips Healthcare for providing the HD9 ultrasound machine and technical assistance. A. T. Papageorghiou and C. Ioannou are supported by the Oxford Partnership Comprehensive Biomedical Research Centre with funding from the Department of Health NIHR Biomedical Research Centres funding scheme. REFERENCES 1. Dikkeboom CM, Roelfsema NM, Van Adrichem LN, Wladimiroff JW. The role of three-dimensional ultrasound in visualizing the fetal cranial sutures and fontanels during the second half of pregnancy. Ultrasound Obstet Gynecol 24; 24: 412 416. 2. Faro C, Benoit B, Wegrzyn P, Chaoui R, Nicolaides KH. Threedimensional sonographic description of the fetal frontal bones and metopic suture. Ultrasound Obstet Gynecol 25; 26: 618 621. 3. Ginath S, Debby A, Malinger G. Demonstration of cranial sutures and fontanelles at 15 to 16 weeks of gestation: a comparison between two-dimensional and three-dimensional ultrasonography. Prenat Diagn 24; 24: 812 815. 4. Paladini D, Vassallo M, Sglavo G, Pastore G, Lapadula C, Nappi C. Normal and abnormal development of the fetal anterior fontanelle: a three-dimensional ultrasound study. Ultrasound Obstet Gynecol 28; 32: 755 761. 5. Paladini D, Sglavo G, Penner I, Pastore G, Nappi C. Fetuses with Down syndrome have an enlarged anterior fontanelle in the second trimester of pregnancy. Ultrasound Obstet Gynecol 27; 3: 824 829. 6. Benacerraf BR, Spiro R, Mitchell AG. Using three-dimensional ultrasound to detect craniosynostosis in a fetus with Pfeiffer syndrome. Ultrasound Obstet Gynecol 2; 16: 391 394. 7. Krakow D, Santulli T, Platt LD. Use of three-dimensional ultrasonography in differentiating craniosynostosis from severe fetal molding. J Ultrasound Med 21; 2: 427 431. 8. Brooke OG, Brown IR, Bone CD, Carter ND, Cleeve HJ, Maxwell JD, Robinson VP, Winder SM. Vitamin D supplements in pregnant Asian women: effects on calcium status and fetal growth. BMJ 198; 28: 751 754. 9. Raine-Fenning NJ, Clewes JS, Kendall NR, Bunkheila AK, Campbell BK, Johnson IR. The interobserver reliability and validity of volume calculation from three-dimensional ultrasound datasets in the in vitro setting. Ultrasound Obstet Gynecol 23; 21: 283 291. 1. Cardinal HN, Gill JD, Fenster A. Analysis of geometrical distortion and statistical variance in length, area, and volume in a linearly scanned 3-D ultrasound image. IEEE Trans Med Imaging 2; 19: 632 651. 11. Bland JM, Altman DG. Measurement error. BMJ 1996; 313: 744. 12. McGraw KO, Wong SP. Forming inferences about some intraclass correlation coefficients. Psychol Methods 1996; 1: 3 46. 13. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 37 31. 14. Shaffer JP. Multiple hypothesis-testing. Annu Rev Psychol 1995; 46: 561 584. 15. Deurloo K, Spreeuwenberg M, Rekoert-Hollander M, van Vugt J. Reproducibility of 3-dimensional sonographic measurements of fetal and placental volume at gestational ages of 11 18 weeks. J Clin Ultrasound 27; 35: 125 132. 16. Duin LK, Willekes C, Vossen M, Beckers M, Offermans J, Nijhuis JG. Reproducibility of fetal renal pelvis volume measurement using three-dimensional ultrasound. Ultrasound Obstet Gynecol 28; 31: 657 661. Copyright 211 ISUOG. Published by John Wiley & Sons, Ltd. Ultrasound Obstet Gynecol 211; 38: 445 449.