The correlation coefficient

Size: px
Start display at page:

Transcription

2 Table 1. Height, quadriceps muscle, and age in 41 male alcoholics (data of Hickish et al., 1989) Height (cm) Quadriceps muscle (N) Age (years) Height (cm) Quadriceps muscle (N) Age (years) Muscle (newtons) Height (cm) Figure 1. Scatter diagram showing muscle and height for 41 male alcoholics

3 Quadriceps (newtons) Mean Mean height Height (cm) Figure 2. Scatter diagram showing muscle and height for 41 male alcoholics, with lines through the mean height and mean Quadriceps (newtons) Age (years) Figure 3. Scatter diagram showing muscle and age for 41 male alcoholics Quadriceps (newtons) 600 Mean Mean age Age (years) Figure 4. Scatter diagram showing muscle and age for 41 male alcoholics, with lines through the mean.

4 Figure 3 shows the relationship between and age in Table 1. Strength tends to be less for older men than for younger men. Figure 4 shows lines through the means, as in Figure 2. Now there are more observations in the top left and bottom right quadrants, where products are negative, than in the top left and bottom right quadrants, where products are positive. The sum of products will be negative. When large values of one variable are associated with small values of the other, we say we have negative correlation. The sum of products will depend on the number of observations and the units in which they are measured. We can show that the maximum possible value it can have is the square root of the sum of squares for height multiplied by the square root of the sum of squares for. Hence we divide the sum of products by the square roots of the two sums of squares. This gives the correlation coefficient, usually denoted by r. Using the abbreviation r looks very odd. Why r and not c for correlation? This is for historical reasons and it is so ingrained in statistical practice that we are stuck with it. If you see an unexplained r = in a paper, it means the correlation coefficient. Originally, r stood for regression. Because of the way r is calculated, its maximum value = 1.00 and its minimum value = We shall look at what these mean later. The correlation coefficient is also known as Pearson s correlation coefficient and the product moment correlation coefficient. There are other correlation coefficients as well, such as Spearman s and Kendall s, but if it is described simply as the correlation coefficient or just the correlation, the one based on the sum of products about the mean is the one intended. For the example of muscle and height in 41 alcoholic men, r = This a positive correlation of fairly low. For and age, r = This is a negative correlation of fairly low. Figure 5 shows the correlations between several simulated variables. Each pair of variables was generated to have the correlation shown above it. The first panel in Figure 5 shows a perfect correlation. The points lie exactly on a straight line and we could calculate Y exactly from X. In fact, Y = X; they could not be more closely related. r = when large values of one variable are associated with large values of the other and the points lie exactly on a straight line. The second panel shows a strong but not perfect positive relationship. The third panel also shows a positive relationship, but less strong. The size of the correlation coefficient clearly reflects the degree of closeness on the scatter diagram. The correlation coefficient is positive when large values of one variable are associated with large values of the other.

5 r = 1.0 r = 0.9 r = 0.5 r = 0.0 r = 0.0 r = 0.92 r = -0.3 r = r = -1.0 Figure 5. Simulated data from populations with different relationships between the two variables, and the population correlation coefficient

6 The fourth panel In Figure 5 shows what happens when there is no relationship at all, r = This is the not only way r can be equal to zero, however. The fifth panel shows data where there is a relationship, because large values of Y are associated with small values of X and with large values of X, whereas small values of Y are associated with values of X in the middle of the range. The products about the mean will be positive in the upper left and upper right quadrants and negative in the lower left and lower right quadrants, giving a sum which is zero. It is possible for r to be equal to 0.00 when there is a relationship which is not linear. A correlation r = 0.00 means that there is no linear relationship, i.e. that there is no relationship where large values of one variable are consistently associated either with large or with small values of the other, but not both. The sixth panel shows another perfect relationship, but not a straight line. The correlation coefficient is less than r will not equal 1.00 or when there is a perfect relationship unless the points lie on a straight line. Correlation measures closeness to a linear relationship, not to any perfect relationship. The correlation coefficient is negative when large values of one variable are associated with small values of the other. The seventh panel in Figure 5 shows a rather weak negative relationship, the eighth a strong one, and the ninth panel a perfect negative relationship. r = 1.00 when large values of one variable are associated with small values of the other and the points lie on a straight line. Test of significance and confidence interval for r We can test the null hypothesis that the correlation coefficient in the population is zero. This is done by a simple t test. The distribution of r if the null hypothesis is true, i.e. in the absence of any relationship in the population, depends only on the number of observations. This is often described in the terms of the degrees of freedom for the t test, which is the number of observations minus 2. Because of this, it is possible to tabulate the critical value for the test for different sample sizes. Bland (0) gives a table. For the test of significance to be valid, we must assume that: at least one of the variables is from a Normal distribution, the observations are independent. Large deviations from the assumptions make the P value for this test very unreliable. For the muscle and height data of Figure 1, r = 0.42, P = Computer programmes almost always print this when they calculate a correlation coefficient. As a result you will rarely see a correlation coefficient reported without it, even when the null hypothesis that the correlation in the population is equal to zero is absurd. We can find a confidence interval for the correlation coefficient in the population, too. The distribution of the sample correlation coefficient when the null hypothesis is not true, i.e. when there is a relationship, is very awkward. It does not become approximately Normal until the sample size is in the thousands. We use a very clever but rather intimidating mathematical function called Fisher s z transformation. This produces a very close approximation to a Normal distribution with a fairly simple expression for its mean and variance (see Bland 0 if you really want to know). This can be used to calculate a 95% confidence interval on the transformed scale, which can then be transformed back to the correlation coefficient scale. For the and height data, r = 0.42, and the approximate 95% confidence interval is

7 0.13 to As is usual for confidence intervals which are back transformed, this is not symmetrical about the point estimate, r. For Fisher s z transformation to be valid, we must make a much stronger assumption about the distributions than for the test of significance. We must assume that both of the variables are from Normal distributions. Large deviations from this assumption can make the confidence interval very unreliable. The use of Fisher s z is tricky without a computer, approximate, and requires a strong assumption. Computer programmes rarely print this confidence interval and so you rarely see it, which is a pity. References Bland M. (0) An Introduction to Medical Statistics. Oxford University Press. Hickish T, Colston K, Bland JM, Maxwell JD. (1989) Vitamin D deficiency and muscle in male alcoholics. Clinical Science 77,

DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

Week 4: Standard Error and Confidence Intervals

Health Sciences M.Sc. Programme Applied Biostatistics Week 4: Standard Error and Confidence Intervals Sampling Most research data come from subjects we think of as samples drawn from a larger population.

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression

Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

Simple Regression Theory II 2010 Samuel L. Baker

SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the

MEASURES OF VARIATION

NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are

Correlational Research. Correlational Research. Stephen E. Brock, Ph.D., NCSP EDS 250. Descriptive Research 1. Correlational Research: Scatter Plots

Correlational Research Stephen E. Brock, Ph.D., NCSP California State University, Sacramento 1 Correlational Research A quantitative methodology used to determine whether, and to what degree, a relationship

Association Between Variables

Contents 11 Association Between Variables 767 11.1 Introduction............................ 767 11.1.1 Measure of Association................. 768 11.1.2 Chapter Summary.................... 769 11.2 Chi

Module 3: Correlation and Covariance

Using Statistical Data to Make Decisions Module 3: Correlation and Covariance Tom Ilvento Dr. Mugdim Pašiƒ University of Delaware Sarajevo Graduate School of Business O ften our interest in data analysis

Correlation key concepts:

CORRELATION Correlation key concepts: Types of correlation Methods of studying correlation a) Scatter diagram b) Karl pearson s coefficient of correlation c) Spearman s Rank correlation coefficient d)

X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)

CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.

CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

Introduction to Quantitative Methods

Introduction to Quantitative Methods October 15, 2009 Contents 1 Definition of Key Terms 2 2 Descriptive Statistics 3 2.1 Frequency Tables......................... 4 2.2 Measures of Central Tendencies.................

Using Excel for inferential statistics

FACT SHEET Using Excel for inferential statistics Introduction When you collect data, you expect a certain amount of variation, just caused by chance. A wide variety of statistical tests can be applied

Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables

Session 7 Bivariate Data and Analysis

Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares

Regression Analysis: A Complete Example

Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

Means, standard deviations and. and standard errors

CHAPTER 4 Means, standard deviations and standard errors 4.1 Introduction Change of units 4.2 Mean, median and mode Coefficient of variation 4.3 Measures of variation 4.4 Calculating the mean and standard

CORRELATIONAL ANALYSIS: PEARSON S r Purpose of correlational analysis The purpose of performing a correlational analysis: To discover whether there

CORRELATIONAL ANALYSIS: PEARSON S r Purpose of correlational analysis The purpose of performing a correlational analysis: To discover whether there is a relationship between variables, To find out the

Homework 11. Part 1. Name: Score: / null

Name: Score: / Homework 11 Part 1 null 1 For which of the following correlations would the data points be clustered most closely around a straight line? A. r = 0.50 B. r = -0.80 C. r = 0.10 D. There is

Answer: C. The strength of a correlation does not change if units change by a linear transformation such as: Fahrenheit = 32 + (5/9) * Centigrade

Statistics Quiz Correlation and Regression -- ANSWERS 1. Temperature and air pollution are known to be correlated. We collect data from two laboratories, in Boston and Montreal. Boston makes their measurements

Section 3 Part 1. Relationships between two numerical variables

Section 3 Part 1 Relationships between two numerical variables 1 Relationship between two variables The summary statistics covered in the previous lessons are appropriate for describing a single variable.

Statistical tests for SPSS

Statistical tests for SPSS Paolo Coletti A.Y. 2010/11 Free University of Bolzano Bozen Premise This book is a very quick, rough and fast description of statistical tests and their usage. It is explicitly

Projects Involving Statistics (& SPSS)

Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,

Lecture 11: Chapter 5, Section 3 Relationships between Two Quantitative Variables; Correlation

Lecture 11: Chapter 5, Section 3 Relationships between Two Quantitative Variables; Correlation Display and Summarize Correlation for Direction and Strength Properties of Correlation Regression Line Cengage

Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

SIMPLE LINEAR CORRELATION. r can range from -1 to 1, and is independent of units of measurement. Correlation can be done on two dependent variables.

SIMPLE LINEAR CORRELATION Simple linear correlation is a measure of the degree to which two variables vary together, or a measure of the intensity of the association between two variables. Correlation

COMP6053 lecture: Relationship between two variables: correlation, covariance and r-squared. jn2@ecs.soton.ac.uk

COMP6053 lecture: Relationship between two variables: correlation, covariance and r-squared jn2@ecs.soton.ac.uk Relationships between variables So far we have looked at ways of characterizing the distribution

Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables 2

Lesson 4 Part 1 Relationships between two numerical variables 1 Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables

. 58 58 60 62 64 66 68 70 72 74 76 78 Father s height (inches)

PEARSON S FATHER-SON DATA The following scatter diagram shows the heights of 1,0 fathers and their full-grown sons, in England, circa 1900 There is one dot for each father-son pair Heights of fathers and

Exercise 1.12 (Pg. 22-23)

Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL

Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables

Correlation. What Is Correlation? Perfect Correlation. Perfect Correlation. Greg C Elvers

Correlation Greg C Elvers What Is Correlation? Correlation is a descriptive statistic that tells you if two variables are related to each other E.g. Is your related to how much you study? When two variables

Factors affecting online sales

Factors affecting online sales Table of contents Summary... 1 Research questions... 1 The dataset... 2 Descriptive statistics: The exploratory stage... 3 Confidence intervals... 4 Hypothesis tests... 4

11. Analysis of Case-control Studies Logistic Regression

Research methods II 113 11. Analysis of Case-control Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:

Simple linear regression

Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between

Study Guide for the Final Exam

Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

Linear Models in STATA and ANOVA

Session 4 Linear Models in STATA and ANOVA Page Strengths of Linear Relationships 4-2 A Note on Non-Linear Relationships 4-4 Multiple Linear Regression 4-5 Removal of Variables 4-8 Independent Samples

6.4 Normal Distribution

Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

Section 14 Simple Linear Regression: Introduction to Least Squares Regression

Slide 1 Section 14 Simple Linear Regression: Introduction to Least Squares Regression There are several different measures of statistical association used for understanding the quantitative relationship

Hypothesis testing - Steps

Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =

The Dummy s Guide to Data Analysis Using SPSS

The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to

We are often interested in the relationship between two variables. Do people with more years of full-time education earn higher salaries?

Statistics: Correlation Richard Buxton. 2008. 1 Introduction We are often interested in the relationship between two variables. Do people with more years of full-time education earn higher salaries? Do

Statistics. Measurement. Scales of Measurement 7/18/2012

Statistics Measurement Measurement is defined as a set of rules for assigning numbers to represent objects, traits, attributes, or behaviors A variableis something that varies (eye color), a constant does

Pie Charts. proportion of ice-cream flavors sold annually by a given brand. AMS-5: Statistics. Cherry. Cherry. Blueberry. Blueberry. Apple.

Graphical Representations of Data, Mean, Median and Standard Deviation In this class we will consider graphical representations of the distribution of a set of data. The goal is to identify the range of

Describing Relationships between Two Variables

Describing Relationships between Two Variables Up until now, we have dealt, for the most part, with just one variable at a time. This variable, when measured on many different subjects or objects, took

Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

" Y. Notation and Equations for Regression Lecture 11/4. Notation:

Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

CHAPTER 14 ORDINAL MEASURES OF CORRELATION: SPEARMAN'S RHO AND GAMMA

CHAPTER 14 ORDINAL MEASURES OF CORRELATION: SPEARMAN'S RHO AND GAMMA Chapter 13 introduced the concept of correlation statistics and explained the use of Pearson's Correlation Coefficient when working

Univariate Regression

Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

The Big Picture. Correlation. Scatter Plots. Data

The Big Picture Correlation Bret Hanlon and Bret Larget Department of Statistics Universit of Wisconsin Madison December 6, We have just completed a length series of lectures on ANOVA where we considered

II. DISTRIBUTIONS distribution normal distribution. standard scores

Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,

Independent samples t-test. Dr. Tom Pierce Radford University

Independent samples t-test Dr. Tom Pierce Radford University The logic behind drawing causal conclusions from experiments The sampling distribution of the difference between means The standard error of

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate

containing Kendall correlations; and the OUTH = option will create a data set containing Hoeffding statistics.

Getting Correlations Using PROC CORR Correlation analysis provides a method to measure the strength of a linear relationship between two numeric variables. PROC CORR can be used to compute Pearson product-moment

Determine If An Equation Represents a Function

Question : What is a linear function? The term linear function consists of two parts: linear and function. To understand what these terms mean together, we must first understand what a function is. The

Lab 1: The metric system measurement of length and weight

Lab 1: The metric system measurement of length and weight Introduction The scientific community and the majority of nations throughout the world use the metric system to record quantities such as length,

17. SIMPLE LINEAR REGRESSION II

17. SIMPLE LINEAR REGRESSION II The Model In linear regression analysis, we assume that the relationship between X and Y is linear. This does not mean, however, that Y can be perfectly predicted from X.

Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

Analysing Questionnaires using Minitab (for SPSS queries contact -) Graham.Currell@uwe.ac.uk

Analysing Questionnaires using Minitab (for SPSS queries contact -) Graham.Currell@uwe.ac.uk Structure As a starting point it is useful to consider a basic questionnaire as containing three main sections:

2 Sample t-test (unequal sample sizes and unequal variances)

Variations of the t-test: Sample tail Sample t-test (unequal sample sizes and unequal variances) Like the last example, below we have ceramic sherd thickness measurements (in cm) of two samples representing

SOLUTIONS TO BIOSTATISTICS PRACTICE PROBLEMS

SOLUTIONS TO BIOSTATISTICS PRACTICE PROBLEMS BIOSTATISTICS DESCRIBING DATA, THE NORMAL DISTRIBUTION SOLUTIONS 1. a. To calculate the mean, we just add up all 7 values, and divide by 7. In Xi i= 1 fancy

Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

1.6 The Order of Operations

1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members

Standard Deviation Estimator

CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of

Unit 26 Estimation with Confidence Intervals

Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference

QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS

QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS This booklet contains lecture notes for the nonparametric work in the QM course. This booklet may be online at http://users.ox.ac.uk/~grafen/qmnotes/index.html.

Eight things you need to know about interpreting correlations:

Research Skills One, Correlation interpretation, Graham Hole v.1.0. Page 1 Eight things you need to know about interpreting correlations: A correlation coefficient is a single number that represents the

Chapter 5 Analysis of variance SPSS Analysis of variance

Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,

Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

Statistics for Sports Medicine

Statistics for Sports Medicine Suzanne Hecht, MD University of Minnesota (suzanne.hecht@gmail.com) Fellow s Research Conference July 2012: Philadelphia GOALS Try not to bore you to death!! Try to teach

Come scegliere un test statistico

Come scegliere un test statistico Estratto dal Capitolo 37 of Intuitive Biostatistics (ISBN 0-19-508607-4) by Harvey Motulsky. Copyright 1995 by Oxfd University Press Inc. (disponibile in Iinternet) Table

HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

Mathematics Revision Guides Histograms, Cumulative Frequency and Box Plots Page 1 of 25 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

2. Simple Linear Regression

Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according

The Crescent Primary School Calculation Policy

The Crescent Primary School Calculation Policy Examples of calculation methods for each year group and the progression between each method. January 2015 Our Calculation Policy This calculation policy has

Measurement with Ratios

Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical

Unit 9 Describing Relationships in Scatter Plots and Line Graphs

Unit 9 Describing Relationships in Scatter Plots and Line Graphs Objectives: To construct and interpret a scatter plot or line graph for two quantitative variables To recognize linear relationships, non-linear

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

hp calculators HP 50g Trend Lines The STAT menu Trend Lines Practice predicting the future using trend lines

The STAT menu Trend Lines Practice predicting the future using trend lines The STAT menu The Statistics menu is accessed from the ORANGE shifted function of the 5 key by pressing Ù. When pressed, a CHOOSE

Two-sample inference: Continuous data

Two-sample inference: Continuous data Patrick Breheny April 5 Patrick Breheny STA 580: Biostatistics I 1/32 Introduction Our next two lectures will deal with two-sample inference for continuous data As

Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

Multiple regression - Matrices

Multiple regression - Matrices This handout will present various matrices which are substantively interesting and/or provide useful means of summarizing the data for analytical purposes. As we will see,

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

Introduction to Statistics for Psychology. Quantitative Methods for Human Sciences

Introduction to Statistics for Psychology and Quantitative Methods for Human Sciences Jonathan Marchini Course Information There is website devoted to the course at http://www.stats.ox.ac.uk/ marchini/phs.html

Chapter 9 Descriptive Statistics for Bivariate Data

9.1 Introduction 215 Chapter 9 Descriptive Statistics for Bivariate Data 9.1 Introduction We discussed univariate data description (methods used to eplore the distribution of the values of a single variable)

CORRELATION ANALYSIS

CORRELATION ANALYSIS Learning Objectives Understand how correlation can be used to demonstrate a relationship between two factors. Know how to perform a correlation analysis and calculate the coefficient

Representing Vector Fields Using Field Line Diagrams

Minds On Physics Activity FFá2 5 Representing Vector Fields Using Field Line Diagrams Purpose and Expected Outcome One way of representing vector fields is using arrows to indicate the strength and direction

Five daily lessons. Page 23. Page 25. Page 29. Pages 31

Unit 4 Fractions and decimals Five daily lessons Year 5 Spring term Unit Objectives Year 5 Order a set of fractions, such as 2, 2¾, 1¾, 1½, and position them on a number line. Relate fractions to division

How to Verify Performance Specifications

How to Verify Performance Specifications VERIFICATION OF PERFORMANCE SPECIFICATIONS In 2003, the Centers for Medicare and Medicaid Services (CMS) updated the CLIA 88 regulations. As a result of the updated

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

Kenken For Teachers. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 27, 2010. Abstract

Kenken For Teachers Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 7, 00 Abstract Kenken is a puzzle whose solution requires a combination of logic and simple arithmetic skills.

5.1 Radical Notation and Rational Exponents

Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar

business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel