Mass Spectrometry. Overview



Similar documents
Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass

F321 THE STRUCTURE OF ATOMS. ATOMS Atoms consist of a number of fundamental particles, the most important are... in the nucleus of an atom

For example: (Example is from page 50 of the Thinkbook)

13C NMR Spectroscopy

CHE334 Identification of an Unknown Compound By NMR/IR/MS

Proton Nuclear Magnetic Resonance Spectroscopy

electron does not become part of the compound; one electron goes in but two electrons come out.

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis

Chapter 1: Moles and equations. Learning outcomes. you should be able to:

Amount of Substance.

Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy

Molecular Formula Determination

Solving Spectroscopy Problems

PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR)

Symmetric Stretch: allows molecule to move through space

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.

How to Quickly Solve Spectrometry Problems

Pesticide Analysis by Mass Spectrometry

m/z

CH3 Stoichiometry. The violent chemical reaction of bromine and phosphorus. P.76

Getting the most from this book...4 About this book...5

Atomic Masses. Chapter 3. Stoichiometry. Chemical Stoichiometry. Mass and Moles of a Substance. Average Atomic Mass

Chapter Five: Atomic Theory and Structure

Chemical Calculations: The Mole Concept and Chemical Formulas. AW Atomic weight (mass of the atom of an element) was determined by relative weights.

Chapter 2 Atoms, Ions, and the Periodic Table

Element of same atomic number, but different atomic mass o Example: Hydrogen

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number

Background Information

@ Oxford Fajar Sdn. Bhd. ( T) Matter. 1.1 Atoms and Molecules 1.2 Mole Concept 1.3 Stoichiometry

2014 Spring CHEM101 Ch1-2 Review Worksheet Modified by Dr. Cheng-Yu Lai,

Trends of the Periodic Table Diary

Organic Chemistry Tenth Edition

1. How many hydrogen atoms are in 1.00 g of hydrogen?

Test Bank - Chapter 4 Multiple Choice

Atomic Mass/Molar Mass, Percent Composition, & Empirical and Molecular Formula

Summer Holidays Questions

= amu. = amu

9/13/2013. However, Dalton thought that an atom was just a tiny sphere with no internal parts. This is sometimes referred to as the cannonball model.

CHEMICAL FORMULA COEFFICIENTS AND SUBSCRIPTS. Chapter 3: Molecular analysis 3O 2 2O 3

Elements, Atoms & Ions

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set

For convenience, we may consider an atom in two parts: the nucleus and the electrons.

The Mole Concept. The Mole. Masses of molecules

We know from the information given that we have an equal mass of each compound, but no real numbers to plug in and find moles. So what can we do?

2 The Structure of Atoms

Suggested solutions for Chapter 3

The Four Questions to Ask While Interpreting Spectra. 1. How many different environments are there?

How much does a single atom weigh? Different elements weigh different amounts related to what makes them unique.

Chapter 2 The Chemical Context of Life

Organic Spectroscopy. UV - Ultraviolet-Visible Spectroscopy. !! nm. Methods for structure determination of organic compounds:

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes.

Nuclear Magnetic Resonance Spectroscopy

ATOMS AND THE PERIODIC TABLE CHAPTER 3 PHYSICAL SCIENCE

Chapter 3. Mass Relationships in Chemical Reactions

Write an equation, including state symbols, for the ionisation of indium that requires the minimum energy.(1)

Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck. atoms- the smallest particle of an element that can be identified with that element

Ionic and Covalent Bonds

Matter. Atomic weight, Molecular weight and Mole

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Mass Spec - Fragmentation

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY

Electrophilic Aromatic Substitution

20.2 Chemical Equations

Translate chemical symbols and the chemical formulas of common substances to show the component parts of the substances including:

Unit 9 Compounds Molecules

Chemical Composition Review Mole Calculations Percent Composition. Copyright Cengage Learning. All rights reserved. 8 1

Atoms, Ions and Molecules The Building Blocks of Matter

Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part.

Chapter 2: The Chemical Context of Life

Magnetic Fields and Forces. AP Physics B

10 The Mole. Section 10.1 Measuring Matter

Nuclear Magnetic Resonance notes

Calculating Atoms, Ions, or Molecules Using Moles

Simple vs. True. Simple vs. True. Calculating Empirical and Molecular Formulas

Woods Chem-1 Lec Atoms, Ions, Mole (std) Page 1 ATOMIC THEORY, MOLECULES, & IONS

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num

= atm. 760 mm Hg. = atm. d. 767 torr = 767 mm Hg. = 1.01 atm

LEWIS DIAGRAMS. by DR. STEPHEN THOMPSON MR. JOE STALEY

How To Use Gc-Ms

Shielding vs. Deshielding:

CHEM 150 Exam 1 KEY Name Multiple Choice

Introduction to Chemistry

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages )

Chemical Composition. Introductory Chemistry: A Foundation FOURTH EDITION. Atomic Masses. Atomic Masses. Atomic Masses. Chapter 8

Infrared Spectroscopy: Theory

Calculating the Degrees of Unsaturation From a Compound s Molecular Formula

CHAPTER 8: CHEMICAL COMPOSITION

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Accurate calibration of on-line Time of Flight Mass Spectrometer (TOF-MS) for high molecular weight combustion product analysis

Molecular Models Experiment #1

Unit 2: Quantities in Chemistry

Atomic Theory Part 1

Chapter 4. Chemical Composition. Chapter 4 Topics H 2 S. 4.1 Mole Quantities. The Mole Scale. Molar Mass The Mass of 1 Mole

ATOMS A T O M S, I S O T O P E S, A N D I O N S. The Academic Support Daytona State College (Science 120, Page 1 of 39)

Molecular Models in Biology

EXPERIMENT 12: Empirical Formula of a Compound

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

CHEM 101/105 Numbers and mass / Counting and weighing Lect-03

Sample Exercise 8.1 Magnitudes of Lattice Energies

MOLECULAR MASS AND FORMULA MASS

Transcription:

Mass Spectrometry Overview Mass Spectrometry is an analytic technique that utilizes the degree of deflection of charged particles by a magnetic field to find the relative masses of molecular ions and fragments.2 It is a powerful method because it provides a great deal of information and can be conducted on tiny samples. Mass spectrometry has a number of applications in organic chemistry, including: - Determining molecular mass Finding out the structure of an unknown substance Verifying the identity and purity of a known substance 1 Providing data on isotopic abundance How a Mass Spectrometer Works 2 * Figure A3 Step 1: The sample is vaporized, and then ionized by being bombarded by a beam of highenergy electrons (usually at 70 ev). The electron beam knocks out an electron from the molecule of the injected sample, creating a molecular ion (which is also a radical cation because it has an unpaired electron and a positive charge). Losing an electron weakens the bond, while the collision gives it extra kinetic energy. These factors make it more likely for the molecular ion to break into fragments as it travels through the mass spectrometer. Step 2: There is a pair of oppositely charged plates in the ionization chamber. The positively charged one causes the positively charged radical cation to accelerate into an analyzer tube. 1 Chem 14C Course Thinkbook by Professor Steven Hardinger, Summer 2006 Version, Pg. 41 Bibliographical source: Pg. 702 of Atkins and Jones, Chemical Principles, 3rd Edition and Pg. 484 of Bruice, Organic Chemistry, 4th Edition 3 Figure A from http://www.chem.ucalgary.ca/courses/351/carey/ch13/1334.gif (Site visited on 8/23/06) 2

Step 3: The analyzer tube is surrounded by a curved magnetic field, which causes the path of the radical cation to be deflected in proportion to its mass-to-charge ratio (m/z). The flight path of the ion depends on its molecular mass, its charge, and the strength of the magnetic field. Thus, at a given magnetic field strength, ions of only one specific mass collide with the detector and are recorded. Step 4: The strength of the magnetic field is varied in increments to produce a mass spectrum, which is a plot of m/z (on the x axis) against relative abundance (on the y axis). If we assume that all ions have a charge of +1, then the peaks give the mass ratios and their heights give the proportions of ions of different masses. Aston and Thomson used a process similar to the one outlined above to acquire the mass spectrum of neon in 1919. They observed that neon s mass spectrum had two peaks: one at m/z 20 (90% abundance) and one at m/z 22 (10%), but no peak at the atomic weight of Neon (20.20, which is the weighted average). Since Neon is inert and lacks chemical bonds, the peaks did not correspond to masses of fragments of the molecular ion, but to the masses of different isotopes of Neon. The experiment s conclusion was that neon has two natural isotopes: 20 Ne (90% abundance) and 22 Ne (10% abundance) 4. This was the first time that an isotope had been detected for a non-radioactive substance. Note that modern spectrometers actually indicate that neon has a third isotope. Interpreting a Mass Spectrum *Figure B 5 Base Peak CH 3 CH 2 CH 2 Br Relative ion abundance M M+2 Mass-to-charge ratio (m/z) 4 Quoted from Chem 14C Course Thinkbook by Professor Steven Hardinger, Summer 2006 Version, Pg. 215 5 Mass spectrum from http://www.chem.ucalgary.ca/courses/351/carey/ch13/ch13-ms.html (labels have been modified in Adobe Photoshop); Site visited on 8/24/06

The mass spectrum of 1-bromopropane shown on the previous page illustrates some characteristic features. The Base Peak is the peak with the greatest intensity (usually set to 100% relative abundance) in the mass spectrum, corresponding to the most abundant ion. (M and the base peak are only the same if many of the molecular ions make it to the detector without breaking into fragments). Since M+1 and M+2 are always less intense than M, they can never be the base peak. M is the molecular ion (un-fragmented molecule minus one electron) made up of isotopes with the lowest mass numbers (H 1, C 12, etc) 6 This peak will most likely be indicated on an exam, but is usually the highest peak with the largest m/z. When we assume that z=1 (charge is usually +1), M provides the mass (in amu) of the compound with the lowest mass isotopes. To find the m/z for the M peak of a compound, refer to the table of natural isotopes (Chem 14C Thinkbook, Summer 2006, Pg. 42) and multiply the isotopic mass (not the atomic weight!) of each atom by the number of atoms of each in the formula. EX: We expect the M peak of CH 3 CH 2 CH 2 Br should be at (3)(12)+(7)(1)+(1)(79)=122. This is verified by the mass spectrum above. Note that we use the isotopic mass, not the atomic weight, of each atom. M+1 is next-door to M on the mass spectrum, and corresponds to the molecular ion with mass one higher than M due to presence of one atom that is a heavier isotope 6 EX: For 1-bromopropane, the M peak is at 122, so the M+1 peak should be at 122+1=123 Only 13 C, 15 N, and 33 S contribute significantly to the M+1 peak, 13 C is most important If M is scaled to 100%, then the M+1 intensity/1.1% gives an estimate for the number of carbons in the compound. BE CAREFUL TO AVOID MATH ERRORS HERE! Note about rounding: If remainder is 0.4 or less, then round down If remainder is 0.7 or more, then round up It is important to be conservative in mass spectrometry, so if remainder is between 0.4-0.7, then consider two different carbon counts for formula candidates. Some of these may be rejected later based on other data. EX: If the relative abundance of the M+1 peak (relative to M) is 4.95%, how many carbons are there in the formula? ANSWER: 4.95/1.1 = 4.5 There are 4 or 5 carbons! M+2 is next-door to M+1 on the mass spectrum, and has a mass two higher than M. EX: For 1-bromopropane, the M peak is at 122, so the M+2 peak should be at 122+2=124 For our purposes, the elements that make significant contributions to this peak are 34 S, 37 Cl, and 81 Br. The M:M+2 ratio indicates the presence of S(100:4.4), Cl (100:31.9), or Br(100:97.2) in the compound. 6 Quoted from Chem 14C Course Thinkbook by Professor Steven Hardinger, Summer 2006 Version, Pg. 214

EX: Notice that the M and M+2 peaks for 1-bromopropane are almost the same height, revealing that Br is a component of the molecule. Getting the Formula from the Mass Spectrum 7 The Nitrogen Rule states that if m/z for M is odd, then the molecular formula must have an odd number of nitrogens. If m/z for M is even, then the molecular formula must have an even number of nitrogens (this includes 0). EX: For 1-bromopropane, m/z for M=122. The even number is in accordance with the even number of nitrogens in the formula (zero). The Hydrogen Rule states that the maximum number of hydrogens in the molecular formula is 2C+N+2. In the formula, C: # of carbons, N: # of nitrogens EX: For CH 3 CH 2 CH 2 Br, there are three carbons, so the max # of hydrogens is 2(3)+2=8 Getting the Molecular Structure from the Formula One Double Bond Equivalent (DBE) (also known as a degree of unsaturation) is one pi bond or one ring. A triple bond counts as 2 DBE. Having 4 DBE indicates the possibility of a benzene ring, since benzene has three pi bonds plus one ring. The formula for DBE is the following: DBE = C (H/2) + (N/2) + 1 * Formula 8 C: # of carbons H: # of hydrogens or halogens N: # of nitrogens Important Note: DBE can never be negative and can never be fractional! Beware of math errors! EX: For CH 3 CH 2 CH 2 Br, the DBE equals 3-(8/2)+(0/2)+1=0. (No pi bonds, no rings.) Putting it All Together EX: Use the given mass spectrometry data to determine the molecular formula. m/z Relative Intensity M 59 100% M+1 60 3.85% M+2 61 0.0127% ANSWER: 7 Nitrogen and Hydrogen Rules are outlined in the Chem 14C Course Thinkbook by Professor Steven Hardinger, Summer 2006 Version, Pg. 44-45 8 Formula from Chem 14C Course Thinkbook by Professor Steven Hardinger, Summer 2006 Version, Pg. 44-45

Step 1: Check to see if the relative intensity of the M peak is 100%. If not, you would have to rescale the values. Step 2: Is the m/z value for the M peak even or odd? The M peak equals the molecular mass of the compound, which in this case is 59 amu. This is an odd number, so according to the Nitrogen Rule, there must be an odd number of nitrogen atoms in the compound. The minimum number of nitrogen atoms is one. Step 3: Use the relative intensity of the M+1 peak to find the number of carbon atoms. Here, 3.85%/1.1% = 3.5. This means that there are three or four carbons in the compound. Step 4: Look at the M+2 peak to check for the presence of S, Cl, or Br. Since the intensity of the M+2 peak is less than 4% (approximate relative abundance of S), there are no S, Cl, or Br atoms in this molecule. Step 5: Subtract the isotopic masses of the known atoms from the mass of the entire compound (m/z of M peak). The remaining value represents the amu left over for the other atoms. So, M - C 3 N We must have at least 3 C and 1 N 59-(3(12)+14) = 9 amu left over for O, H, more N atoms (must be odd), or another C atom. Step 6: Evaluate all possibilities for the molecular formula, and assess whether they are reasonable. In this instance, there is no need to construct a chart for the number of each type of atom. 9 amu are not enough for oxygen (16 amu), nitrogen (14 amu each), or another carbon (12 amu). Thus, the 9 amu must come from nine hydrogen atoms. In conclusion, the only possible molecular formula is C 3 H 9 N EX: Assuming that the molecular ion is the base peak, create and fill out a chart containing the m/z and relative intensities for the M, M+1, and M+2 peaks for 2-chloropropane (CH 3 CHClCH 3 ) ANSWER: m/z Relative Intensity M 3(12)+7(1)+35(1) = 78 100% (we assume that it is the base peak) M+1 78+1 = 79 3(1.107%)+7(0.015%) = 3.426% M+2 78 + 2 = 80 2(31.9%) = 63.8% 37 Cl is the only significant contributor to the M+2 peak. It will increase the intensity of this peak only when one of the two chlorine atoms is 37 Cl (if they are both 37 Cl, then this contributes to the M+4 peak). We multiply the abundance of the isotope relative to M by 2 because there are two chlorine atoms. For the M+4 peak, since both chlorine atoms must be 37 Cl, we multiply the probabilities together: 31.9%(31.9%) = 10.176%