Electrophilic Aromatic Substitution
|
|
|
- Aubrey Richards
- 9 years ago
- Views:
Transcription
1 Electrophilic Aromatic Substitution Electrophilic Aromatic Substitution: a reaction in which the hydrogen atom of an aromatic ring is replaced as a result of an electrophilic attack on the aromatic ring Here are three general steps to an electrophilic aromatic substitution: 1. Attack of the electrophile on the aromatic ring, creating a resonance-stabilized carbocation called an arenium ion. We lose aromaticity in this step, so the energy of activation is high. Furthermore, this is the rate-determining step of the reaction because of the disruption of aromaticity. 2. Deprotonation of the arenium ion by a weak base to regain aromaticity Arenium ion: an ion that is the result of an electrophilic attack on a benzene ring General structure of an arenium ion: The arenium ion is a hybrid resonance structure. Here are three general resonance contributors of an arenium ion: 1
2 Try writing a mechanism for this reaction using the two steps outlined above. Include all resonance contributors of the arenium ion: Solution: This is a bromination reaction, which means that we must first generate the electrophile by adding a strong Lewis acid to the Br Generation of the nucleophile: 2. Attack of the elctrophile on the aromatic ring note: There are arenium ion resonance contributors, and aromaticity is lost in this step. 3. Deprotonation of the arenium ion by a weak base to regain aromaticity: Directing effects of Elecrophilic Aromatic Substitution: What happens if there is a substituent on the aromatic ring? How do we determine which isomer of the product is formed? Example: (14D Thinkbook, CFQ #3) 2
3 3 Factors that determine where the electrophile attacks (in decreasing order of importance) 1. Resonance 2. Probability 3. Steric hinderance First, we will talk about resonance There are two types of substituent directors: Note: we want to choose the most likely attack, which creates the most resonancestabilized carbocation. Furthermore, full octets are highly favored over open octets. 1. Ortho/Para directors-groups that donate electron density to the ring. These groups are referred to as activating groups because they speed up the reaction. a. Three types of ortho/para directors i. Alkyl groups stabilize the aromatic ring by providing electron density through inductive effects ii. Pi bonds stabilize the aromatic ring by providing electron density through resonance iii. Lone pairs stabilize the aromatic ring by providing resonance b. Some examples of ortho/para directors i. Alkyl group, benzene ring, OH, OR, NH 2, NHR, NR 2, F, CL, BR, I Ortho attack: Para attack: 2. Meta directors-usually groups that withdraw electron density from the ring. These groups are often referred to as deactivating groups because they slow down the reaction. a. Some examples of meta directors i. NO 2, CN, NR 3 +, C=O, CF 3, SO 3 H 3
4 Meta attack: Try this problem: (From 14D Thinkbook, PP#3) Determine which products dominate: the ortho and para product, or the meta product? Solution: To determine which products dominate, we need to look at the resonance contributors of each of the arenium ion intermediates. Ortho attack: (four resonance contributors, one contributor with a full octet on all atoms) Para attack: (four resonance contributors one contributor with a full octet on all atoms) Meta attack: (three resonance contributors, no contributors have a full octet on all atoms) 4
5 Because the ortho/para attack results in more resonance contributors with full octets than the meta attack, the ortho/para attack is favored and ortho/para positions are favored for the substituent. Other factors that determine where the electrophile attacks: Next, we will talk about probability Note that there are two locations for ortho and meta attack but only one position for para attack. Therefore, in terms of probability, ortho and meta attacks are favored over para attack. Next, we will talk about steric hinderance Usually, steric hinderance doesn t affect where the electrophile attacks. (When the electrophile is relatively small. However, if the electrophile is larger, then para attack is favored over ortho attack to reduce steric hinderance between the substituent and the electrophilic group. Try this problem: (From 14D Thinkbook, PP#9) Determine whether this reaction has ortho, para, or meta attack based on arenium ion stability, probability, and steric effects. Solution: Based on arenium ion stability, we see that ortho and para attack are favored because the arenium ion has three resonance contributors (two of the contributors have secondary carbocations and the other has a tertiary carbocation). However, meta attack 5
6 results in three resonance contributors (but all three contributors have secondary carbocations). Based on probability, we see that there are two ortho and meta positions, but only one para position, so probability favors attack at the ortho and para positions. Based on steric effects, we see that there is steric hinderance of the methyl group, (however this is not significant steric hinderance), so ortho attack is still favored over para. If the group had been large, para attack would have been favored over ortho attack. Special Case Substituent effects of Halogens: Halogens are generally ortho/para directors because they provide a small amount of resonance stabilization due to their high electronegativity and small overlap with carbon p orbitals by elements not in the same period as carbon. However, halogens are deactivators because they are electron withdrawing (due to the inductive effect they are highly electronegative) If there is more than one substituent director: Activators dominate deactivators while stronger activators dominate over weaker activators and weaker deactivators dominate over stronger deactivators. Six Common Electrophilic Aromatic Substitution Reactions: Reminder: in electrophilic aromatic substitution reactions, a hydrogen on an aromatic ring is replaced by an electrophile. You should practice these mechanisms and be able to determine the products and mechanisms when the reactants are given. You should also be able to recognize the missing reactants when given the product. 1. Halogenation: replacing hydrogen with a bromine or chlorine. Bromonation and chloronation require a Lewis acid, which accepts a pair of electrons to create a permanent bond dipole of the Br-Br bond or the Cl-Cl bond. This dipole allows the bromine or chloride to have a formal positive charge and therefore allows the group to be electrophilic enough to overcome the activation energy caused by the loss of aromaticity of the benzene ring. a. Bromonation (see example on page 1 for a bromination reaction) b. Chloronation Try this chloronation problem (Problem from 14D Thinkbook, PP#12e) Hint: it is very similar to the bromonation example given on page 1 6
7 Solution: Notice the three general steps of electrophilic aromatic substitution as given on page 1. In this problem, the FeCl 3 is the Lewis acid, which has accepted a pair of electrons from the Cl-Cl bond. Note the formal positive charge that results on the Cl which is bonded to the FeCl 3. This formal positive charge increases the electrophilicity of the group and the electrophile can now attack the aromatic ring. In the final step, a proton is lost to restore aromaticity. Notice that NO 2 is a meta director. 2. Nitration: replacing a hydrogen with a nitro (NO 2 ) group. Nitration requires the presence of sulfuric acid (H 2 SO 4 ) as a catalyst. Just like we had to take extra steps to create the electrophile in bromonation and chloronation (with the help of a Lewis acid), we must use the sulfuric acid to protonate the nitric acid, resulting in the formation of a nitronium ion. The nitronium ion can then proceed as a general electrophlic aromatic substitution. Try this nitration problem (Problem from 14D Thinkbook, PP#12a) Hint: Use H 3 O + instead of H 2 SO 4 in this problem because mixing H 2 SO 4 with HNO 3 produces several different products, including H 3 O +. 7
8 Solution: In this problem, we generated the electrophile using the H 3 O + to protonate the nitric acid. Water leaves, and the result is a nitronium ion, which is the electrophile required for this mechanism. Notice that the nitrogen has a positive charge and electrophilic attack to the benzene ring occurs. Notice that in this reaction, the methyl group is a para director. 3. Sulfonation: replacing a hydrogen with a sulfonic acid (SO 3 ). Sulfonation is similar to nitration because in general, we create the electrophile by protonating the SO 3 with H 2 SO 4 to make a stronger electrophile. The mechanism can then proceed as an electrophilic aromatic substitution reaction. Try this sulfunation problem (Problem from 14D Thinkbook, PP#12b) Solution: In this problem, we used the H 2 SO 4 to protonate the sulfonic acid to generate the electrophile. OSO 3 leaves and is used again to remove the proton to restore the aromatic ring structure. Note that sulfonation reactions are easily reversible and depending on reaction conditions, SO 3, SO 3 H +, or H 3 SO 4 + can be used as the 8
9 electrophile depending on reaction conditions. Note that COCH 3 is a meta director. 4. Friedel-Crafts Acylation: replacing a hydrogen with an acyl group (RC=O). In Friedel-Crafts Acylation, we form the acylium ion (the electrophile in the reaction) by using a lone pair from the chlorine (of the H 3 COCl) to fill the open octet of the alunimum (of the AlCl 3 ). As a result, the chlorine carbon bond is weakened and Cl + -Al - Cl 3 leaves. The acylium ion acts as an electrophile in the electrophilic aromatic substitution mechanism. Try this problem (14D Thinkbook, PP#12d) Solution: In this Friedel-Crafts Acylation, we use the acylium ion for electrophilic attack on the aromatic ring. We use the Cl + -Al - Cl 3 to remove the proton to restore the aromaticity of the aromatic ring. Notice that OH is a para director in this reaction. 5. Friedel-Crafts Alkylation: replacing a hydrogen with an alkyl group (R). In Friedel-Crafts Alkylation, we use the lone pair of the chlorine (of the CH 3 Cl) to fill the open octet of aluminum (of the AlCl 3 ). As a result, the ClAl - Cl 3 leaves. The (CH 3 ) 3 C + acts as the electrophile in the electrophilic aromatic substitution mechanism. Try this problem (From Chem 14D Thinkbook, PP#9) 9
10 Solution: This mechanism follows the general mechanism for Friedel-Crafts Alkylation. I have discussed the directing effects of the CH 3 for this problem on page Diazonization of a Primary Amine: In this reaction, we react an acid (like H 3 O + ) with NO 2 - to form a nitrosonium cation (O=N + ) which acts as the electrophile. Then, we form the N-N bond with the electrophilic attack of the nitrosonium cation to the Ph-NH 2. Then, through a series of protonation and deprotonation steps by water (the proton shuttle) we form a diazonium cation. In 14D, we did a specific reaction which was diazo coupling. Try this problem (Chem 14D Thinkbook, PP#12f) 10
11 Solution: This mechanism might look intimidating, but it the trickiest part is the formation of the nitrosonium cation and the formation of the N-N bond. Through a series of protonation and deprotonation steps, we get a product of PhN + N, which is used as the electrophile to the PhOh. The rest of the mechanism proceeds as a general electrophilic aromatic substitution reaction. Note: All the above information and example problems are taken from lecture, Chemistry 14D Thinkbook by Steven Hardinger for Winter 2006, Organic Chemistry by Paula Yurkanis Bruice, 4 th edition, and the Electrophilic Aromatic Substitution chapter of Professor Hardinger s textbook in progress 11
Electrophilic Aromatic Substitution Reactions
Electrophilic Aromatic Substitution Reactions, Course Notes Archive, 1 Electrophilic Aromatic Substitution Reactions An organic reaction in which an electrophile substitutes a hydrogen atom in an aromatic
Benzene Benzene is best represented as a resonance hybrid:
Electrophilic Aromatic Substitution (EAS) is a substitution reaction usually involving the benzene ring; more specifically it is a reaction in which the hydrogen atom of an aromatic ring is replaced as
Electrophilic Aromatic Substitution
Electrophilic Aromatic Substitution Electrophilic substitution is the typical reaction type for aromatic rings. Generalized electrophilic aromatic substitution: E E Electrophile Lewis acid: may be or neutral.
REACTIONS OF AROMATIC COMPOUNDS
A STUDENT SHOULD BE ABLE TO: REACTIONS OF AROMATIC COMPOUNDS 1. Predict the product(s) of Electrophilic Aromatic Substitution (EAS), Nucleophilic Aromatic Substitution (S N Ar) and Elimination-Addition
CHEM 211 CHAPTER 16 - Homework
CHEM 211 CHAPTER 16 - Homework SHORT ANSWER Consider the Friedel-Crafts alkylation reaction below to answer the following question(s): 1. Refer to the reaction above. Draw the structure of the electrophilic
CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway. CHAPTER 14 Substitution Reactions of Aromatic Compounds
CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway "Organic Chemistry" by Maitland Jones, 4 th edition Chapter 14 Homework: 1, 2, 5, 7, 13, 19, 20, 23, 26, 27, 28, 30, 31, 34, 35, 36, 41, 46,
4/18/2011. 9.8 Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions
9.8 Substituent effects in the electrophilic substitution of an aromatic ring Substituents affect the reactivity of the aromatic ring Some substituents activate the ring, making it more reactive than benzene
Aromaticity and Reactions of Benzene
Aromaticity and eactions of Benzene ark College Benzene is a unique molecule it is highly unsaturated with 6 carbons and 6 hydrogens, it is planar, and has a high degree of symmetry. These features explain
Q.1 Draw out some suitable structures which fit the molecular formula C 6 H 6
Aromatic compounds GE 1 BENZENE Structure Primary analysis revealed benzene had an... empirical formula of and a molecular formula of 6 6 Q.1 Draw out some suitable structures which fit the molecular formula
EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate
EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate Pahlavan/Cherif Purpose a) Study electrophilic aromatic substitution reaction (EAS) b) Study regioselectivity
Chapter 2 Polar Covalent Bonds; Acids and Bases
John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds; Acids and Bases Javier E. Horta, M.D., Ph.D. University of Massachusetts Lowell Polar Covalent Bonds: Electronegativity
Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes
Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes History and Application: The rate of a reaction directly impacts the commercial
Acids and Bases: Molecular Structure and Acidity
Acids and Bases: Molecular Structure and Acidity Review the Acids and Bases Vocabulary List as needed. Tutorial Contents A. Introduction B. Resonance C. Atomic Radius D. Electronegativity E. Inductive
Chemistry Notes for class 12 Chapter 13 Amines
1 P a g e Chemistry Notes for class 12 Chapter 13 Amines Amines constitute an important class of organic compounds derived by replacing one or more hydrogen atoms ofnh 3 molecule by alkyl/aryl group(s).
INTDUCTIN T LEWIS ACID-BASE CEMISTY DEINITINS Lewis acids and bases are defined in terms of electron pair transfers. A Lewis base is an electron pair donor, and a Lewis acid is an electron pair acceptor.
SN2 Ionic Substitution Reactions
SN2 Ionic Substitution Reactions Chem 14D Winter 2005 SN2 Ionic Substitution Reactions Substitution can occur in organic compounds that have an electronegative atom or group bonded to an sp 3 hybridized
RESONANCE, USING CURVED ARROWS AND ACID-BASE REACTIONS
RESONANCE, USING CURVED ARROWS AND ACID-BASE REACTIONS A STUDENT SHOULD BE ABLE TO: 1. Properly use curved arrows to draw resonance structures: the tail and the head of every arrow must be drawn in exactly
Determining the Structure of an Organic Compound
Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants In the 19 th and early 20 th
Electrophilic Addition Reactions
Electrophilic Addition Reactions Electrophilic addition reactions are an important class of reactions that allow the interconversion of C=C and C C into a range of important functional groups. Conceptually,
Nucleophilic Substitution and Elimination
Nucleophilic Substitution and Elimination What does the term "nucleophilic substitution" imply? A nucleophile is an the electron rich species that will react with an electron poor species A substitution
Conjugation is broken completely by the introduction of saturated (sp3) carbon:
Chapter 16 Conjugation, resonance, and dienes Conjugation relies on the partial overlap of p-orbitals on adjacent double or triple bonds. A common conjugated system involves 1,3-dienes, such as 1,3-butadiene.
Acids and Bases. but we will use the term Lewis acid to denote only those acids to which a bond can be made without breaking another bond
Acids and Bases. Brønsted acids are proton donors, and Brønsted bases are proton acceptors. Examples of Brønsted acids: HCl, HBr, H 2 SO 4, HOH, H 3 O +, + NH 4, NH 3, CH 3 CO 2 H, H CH 2 COCH 3, H C CH,
Writing a Correct Mechanism
Chapter 2 1) Balancing Equations Writing a Correct Mechanism 2) Using Arrows to show Electron Movement 3) Mechanisms in Acidic and Basic Media 4) Electron rich Species: Nucleophile or Base? 5) Trimolecular
C 2 H 5 L L LC 2 H 5 l max = 256 nm (e = 20,000) 283 nm (e = 5,100) CH 3 H 3 C. CH 3 i. B bimesityl l max = 266 nm (e = 700)
750 CAPTER 6 TE CEITRY F BENZENE AND IT DERIVATIVE This hybridization allows one of its electron pairs to occupy a 2p orbital, which has the same size, shape, and orientation as the carbon 2p orbitals
Studying an Organic Reaction. How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction?
Studying an Organic Reaction How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction? Information we want to know: How much heat is generated? How fast is
Chapter 2 Polar Covalent Bonds: Acids and Bases
John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds: Acids and Bases Modified by Dr. Daniela R. Radu Why This Chapter? Description of basic ways chemists account for chemical
How do we determine which molecule is more basic?
How do we determine which molecule is more basic? One way to determine is by considering molecules structure, because structure can affect basicity of a molecule. Let s start with this concept. Higher
Use the Force! Noncovalent Molecular Forces
Use the Force! Noncovalent Molecular Forces Not quite the type of Force we re talking about Before we talk about noncovalent molecular forces, let s talk very briefly about covalent bonds. The Illustrated
ORGANIC CHEMISTRY I PRACTICE PROBLEMS FOR BRONSTED-LOWRY ACID-BASE CHEMISTRY
RGANIC CHEMISTRY I PRACTICE PRBLEMS FR BRNSTED-LWRY ACID-BASE CHEMISTRY 1. For each of the species below, identify the most acidic proton and provide the structure of the corresponding conjugate base.
INTERMOLECULAR FORCES
INTERMOLECULAR FORCES Intermolecular forces- forces of attraction and repulsion between molecules that hold molecules, ions, and atoms together. Intramolecular - forces of chemical bonds within a molecule
partial positive an acid is a hydrogen ion donor, or proton donor base is a hydrogen ion acceptor, or proton acceptor acidic protons acid base
INTRDUCTIN T INIC MECANISMS PART I: FUNDAMENTALS F BRNSTED-LWRY ACID-BASE CEMISTRY YDRGEN ATMS AND PRTNS IN RGANIC MLECULES - A hydrogen atom that has lost its only electron is sometimes referred to as
Chapter 22 Carbonyl Alpha-Substitution Reactions
John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 22 Carbonyl Alpha-Substitution Reactions The α Position The carbon next to the carbonyl group is designated as being in the α position Electrophilic
ORGANIC CHEM I Practice Questions for Ch. 4
ORGANIC CHEM I Practice Questions for Ch. 4 1) Write an equation to describe the initiation step in the chlorination of methane. 2) Reaction intermediates that have unpaired electrons are called. 3) When
EXPERIMENT 1: Survival Organic Chemistry: Molecular Models
EXPERIMENT 1: Survival Organic Chemistry: Molecular Models Introduction: The goal in this laboratory experience is for you to easily and quickly move between empirical formulas, molecular formulas, condensed
Self Assessment_Ochem I
UTID: 2013 Objective Test Section Identify the choice that best completes the statement or answers the question. There is only one correct answer; please carefully bubble your choice on the scantron sheet.
Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy
Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy Theory behind NMR: In the late 1940 s, physical chemists originally developed NMR spectroscopy to study different properties of atomic nuclei,
Mass Spectrometry. Overview
Mass Spectrometry Overview Mass Spectrometry is an analytic technique that utilizes the degree of deflection of charged particles by a magnetic field to find the relative masses of molecular ions and fragments.2
Survival Organic Chemistry Part I: Molecular Models
Survival Organic Chemistry Part I: Molecular Models The goal in this laboratory experience is to get you so you can easily and quickly move between empirical formulas, molecular formulas, condensed formulas,
Resonance Structures Arrow Pushing Practice
Resonance Structures Arrow Pushing Practice The following is a collection of ions and neutral molecules for which several resonance structures can be drawn. For the ions, the charges can be delocalized
California State Polytechnic University, Pomona. Exam Points 1. Nomenclature (1) 30
Chem 316 Final Exam Winter, 2008 Beauchamp ame: Topic Total Points Exam Points 1. omenclature (1) 30 Credit 2. Explanation of elative eactivities of Aromatic 20 Compounds or Carbonyl Compounds 3. eactions
AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO:
A STUDENT SHULD BE ABLE T: ARMATIC CMPUNDS 1. Name benzene derivatives given the structures, and draw the structures given the names. This includes: Monosubstituted benzenes named as derivatives of benzene:
Solving Spectroscopy Problems
Solving Spectroscopy Problems The following is a detailed summary on how to solve spectroscopy problems, key terms are highlighted in bold and the definitions are from the illustrated glossary on Dr. Hardinger
For example: (Example is from page 50 of the Thinkbook)
SOLVING COMBINED SPECTROSCOPY PROBLEMS: Lecture Supplement: page 50-53 in Thinkbook CFQ s and PP s: page 216 241 in Thinkbook Introduction: The structure of an unknown molecule can be determined using
Willem Elbers. October 9, 2015
S N 1 and S N 2 reactivity of 3 alkyl bromides Willem Elbers ctober 9, 2015 1 Abstract n this experiment, we investigate the relative reactivities of three alkyl bromides with increasing steric bulk. We
Mass Spec - Fragmentation
Mass Spec - Fragmentation An extremely useful result of EI ionization in particular is a phenomenon known as fragmentation. The radical cation that is produced when an electron is knocked out of a neutral
But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).
Reactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. Normally: Oxidation
Addition Reactions of Carbon-Carbon Pi Bonds - Part 1
Addition eactions of arbon-arbon Pi Bonds - Part 1 3 δ+ 2 δ 3 3 3 + 2 3 2 3 What Is an Addition eaction? Addition reaction: Atoms or groups are added to opposite ends of a pi bond. X Y Why should I study
Chapter 15 Radical Reactions. Radicals are reactive species with a single unpaired electron, formed by
Chapter 15 Radical Reactions Radicals are reactive species with a single unpaired electron, formed by homolysis of a covalent bond; a radical contains an atom that does not have an octet of electrons,
methyl RX example primary RX example secondary RX example secondary RX example tertiary RX example
ucleophilic Substitution & Elimination hemistry 1 eginning patterns to knowfor S and E eactions - horizontal and vertical templates for practice Example 1 - two possible perspectives (deuterium and tritium
Carboxylic Acid Structure and Chemistry: Part 2
Principles of Drug Action 1, pring 2005, Carboxylic Acids Part 2 Carboxylic Acid tructure and Chemistry: Part 2 Jack Deuiter IV. eactions of the Carboxylic Acid eactions Depending on their overall structure,
Everything You Need to Know About Mechanisms. First rule: Arrows are used to indicate movement of electrons
Everything You eed to Know About Mechanisms A) The orrect Use of Arrows to Indicate Electron Movement The ability to write an organic reaction mechanism properly is key to success in organic chemistry
H 2O gas: molecules are very far apart
Non-Covalent Molecular Forces 2/27/06 3/1/06 How does this reaction occur: H 2 O (liquid) H 2 O (gas)? Add energy H 2O gas: molecules are very far apart H 2O liquid: bonding between molecules Use heat
Proton Nuclear Magnetic Resonance Spectroscopy
Proton Nuclear Magnetic Resonance Spectroscopy Introduction: The NMR Spectrum serves as a great resource in determining the structure of an organic compound by revealing the hydrogen and carbon skeleton.
Physicochemical Properties of Drugs
Therapeutics I Michael B. Bolger 1/3/02 bjectives: At the end of the next hour: Physicochemical Properties of Drugs 1. The student should be able to calculate the degree of ionization for an acidic or
Chapter 6 An Overview of Organic Reactions
John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 6 An Overview of Organic Reactions Why this chapter? To understand organic and/or biochemistry, it is necessary to know: -What occurs -Why and
ORGANIC CHEMISTRY I PRACTICE EXERCISE Sn1 and Sn2 Reactions
ORGANIC CEMISTRY I PRACTICE EXERCISE Sn1 and Sn2 Reactions 1) Which of the following best represents the carbon-chlorine bond of methyl chloride? d d - d - d d d d - d - I II III IV V 2) Provide a detailed,
ammonium salt (acidic)
Chem 360 Jasperse Ch. 19 otes. Amines 1 eactions of Amines 1. eaction as a proton base (Section 19-5 and 19-6) amine base -X (proton acid) a X ammonium salt (acidic) Mechanism: equired (protonation) everse
Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015)
(Revised 05/22/2015) Introduction In the early 1900s, the chemist G. N. Lewis proposed that bonds between atoms consist of two electrons apiece and that most atoms are able to accommodate eight electrons
CH 3 CH 2 ONa + H 2 O. CH 3 CH 2 NH 2 + CH 3 OLi
rganic Chemistry Jasperse Acid- Practice Problems A. Identify each chemical as either an acid or a base in the following reactions, and identify conjugate relationships. -You should have one acid and one
IR Summary - All numerical values in the tables below are given in wavenumbers, cm -1
Spectroscopy Data Tables Infrared Tables (short summary of common absorption frequencies) The values given in the tables that follow are typical values. Specific bands may fall over a range of wavenumbers,
Chapter 8 Concepts of Chemical Bonding
Chapter 8 Concepts of Chemical Bonding Chemical Bonds Three types: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other atoms Ionic Bonding
Chapter 14 - Acids and Bases
Chapter 14 - Acids and Bases 14.1 The Nature of Acids and Bases A. Arrhenius Model 1. Acids produce hydrogen ions in aqueous solutions 2. Bases produce hydroxide ions in aqueous solutions B. Bronsted-Lowry
PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR)
PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR) WHAT IS H-NMR SPECTROSCOPY? References: Bruice 14.1, 14.2 Introduction NMR or nuclear magnetic resonance spectroscopy is a technique used to determine
Benzene and Aromatic Compounds
Benzene and Aromatic Compounds Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Benzene has four degrees of unsaturation, making it a highly unsaturated hydrocarbon. Whereas unsaturated
Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged.
LS1a Fall 2014 Section Week #1 I. Valence Electrons and Bonding The number of valence (outer shell) electrons in an atom determines how many bonds it can form. Knowing the number of valence electrons present
SUBSTITUTION REACTION CHARACTERISTICS. Sn1: Substitution Nucleophilic, Unimolecular: Characteristics
SUBSTITUTION EATION AATEISTIS Sn2: Substitution cleophilic, Bimolecular: haracteristics 1) The 2 means Bimolecular (or 2 nd order) in the rate-determining (slow) step: rate = k [: - ] [-X] or rate = k
Shielding vs. Deshielding:
Shielding vs. Deshielding: Pre-tutorial: Things we need to know before we start the topic: What does the NMR Chemical shift do? The chemical shift is telling us the strength of the magnetic field that
A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES
A REVIEW OF GENERAL CEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES A STUDENT SOULD BE ABLE TO: 1. Draw Lewis (electron dot and line) structural formulas for simple compounds and ions from molecular
Chapter 4 Lecture Notes
Chapter 4 Lecture Notes Chapter 4 Educational Goals 1. Given the formula of a molecule, the student will be able to draw the line-bond (Lewis) structure. 2. Understand and construct condensed structural
EXPERIMENT 9 Dot Structures and Geometries of Molecules
EXPERIMENT 9 Dot Structures and Geometries of Molecules INTRODUCTION Lewis dot structures are our first tier in drawing molecules and representing bonds between the atoms. The method was first published
Chapter 10. Conjugation in Alkadienes and Allylic Systems. Class Notes. B. The allyl group is both a common name and an accepted IUPAC name
Chapter 10 Conjugation in Alkadienes and Allylic Systems Chapter 10 suggested problems: I. The allyl group Class Notes A. B. The allyl group is both a common name and an accepted IUPAC name 1. Allyl alcohol
Chapter 2 The Chemical Context of Life
Chapter 2 The Chemical Context of Life Multiple-Choice Questions 1) About 25 of the 92 natural elements are known to be essential to life. Which four of these 25 elements make up approximately 96% of living
2. Which one of the ions below possesses a noble gas configuration? A) Fe 3+ B) Sn 2+ C) Ni 2+ D) Ti 4+ E) Cr 3+
Chapter 9 Tro 1. Bromine tends to form simple ions which have the electronic configuration of a noble gas. What is the electronic configuration of the noble gas which the bromide ion mimics? A) 1s 2 2s
CHE 232 - Organic Chemistry Exam 1, February 10, 2004
CE 232 - rganic Chemistry Exam 1, February 10, 2004 ame Student ID o. Before you begin this exam: First: You are allowed to have a simple model set at your seat. Please put away all other materials. Second:
Chapter 11 Homework and practice questions Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations
Chapter 11 Homework and practice questions Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations SHORT ANSWER Exhibit 11-1 Circle your response in each set below. 1. Circle the least
A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.
CHAPTER EIGHT BNDING: GENERAL CNCEPT or Review 1. Electronegativity is the ability of an atom in a molecule to attract electrons to itself. Electronegativity is a bonding term. Electron affinity is the
Bonding Practice Problems
NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which
How to Quickly Solve Spectrometry Problems
How to Quickly Solve Spectrometry Problems You should be looking for: Mass Spectrometry (MS) Chemical Formula DBE Infrared Spectroscopy (IR) Important Functional Groups o Alcohol O-H o Carboxylic Acid
Chapter 16 Acid-Base Equilibria
Chapter 16 Acid-Base Equilibria Learning goals and key skills: Understand the nature of the hydrated proton, represented as either H + (aq) or H 3 O + (aq) Define and identify Arrhenuis acids and bases.
NMR Spectroscopy of Aromatic Compounds (#1e)
NMR Spectroscopy of Aromatic Compounds (#1e) 1 H NMR Spectroscopy of Aromatic Compounds Erich Hückel s study of aromaticity in the 1930s produced a set of rules for determining whether a compound is aromatic.
Chapter 12: Oxidation and Reduction.
207 Oxidation- reduction (redox) reactions Chapter 12: Oxidation and Reduction. At different times, oxidation and reduction (redox) have had different, but complimentary, definitions. Compare the following
CHEM 203 Exam 1. KEY Name Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
CHEM 203 Exam 1 KEY Name Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. _D C 1. Which of the following elements is a large percentage of both
Theme 3: Bonding and Molecular Structure. (Chapter 8)
Theme 3: Bonding and Molecular Structure. (Chapter 8) End of Chapter questions: 5, 7, 9, 12, 15, 18, 23, 27, 28, 32, 33, 39, 43, 46, 67, 77 Chemical reaction valence electrons of atoms rearranged (lost,
Sample Exercise 8.1 Magnitudes of Lattice Energies
Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the ionic compounds NaF, CsI, and CaO in order of increasing lattice energy. Analyze From the formulas for three
Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance
Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance Lewis Dot notation is a way of describing the outer shell (also called the valence shell) of an
Chemistry Diagnostic Questions
Chemistry Diagnostic Questions Answer these 40 multiple choice questions and then check your answers, located at the end of this document. If you correctly answered less than 25 questions, you need to
Carboxylic Acid Derivatives and Nitriles
Carboxylic Acid Derivatives and itriles Carboxylic Acid Derivatives: There are really only four things to worry about under this heading; acid chlorides, anhydrides, esters and amides. We ll start with
Topic 5. Acid and Bases
Topic 5 5-1 Acid and Bases Acid and Bases 5-2 There are a number definitions for aicd and bases, depending on what is convenient to use in a particular situation: Arrhenius and Ostwald: Theory of electrolyte
Lewis Dot Structures of Atoms and Ions
Why? The chemical properties of an element are based on the number of electrons in the outer shell of its atoms. We use Lewis dot structures to map these valence electrons in order to identify stable electron
Typical Infrared Absorption Frequencies. Functional Class Range (nm) Intensity Assignment Range (nm) Intensity Assignment
Typical Infrared Absorption Frequencies Functional Class Range (nm) Intensity Assignment Range (nm) Intensity Assignment Alkanes 2850-3000 CH 3, CH 2 & CH 2 or 3 bands Alkenes 3020-3100 1630-1680 1900-2000
MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY
MLEULAR REPRESENTATINS AND INFRARED SPETRSPY A STUDENT SULD BE ABLE T: 1. Given a Lewis (dash or dot), condensed, bond-line, or wedge formula of a compound draw the other representations. 2. Give examples
AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts
AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy
Acids and Bases: A Brief Review
Acids and : A Brief Review Acids: taste sour and cause dyes to change color. : taste bitter and feel soapy. Arrhenius: acids increase [H ] bases increase [OH ] in solution. Arrhenius: acid base salt water.
Sample Exercise 8.1 Magnitudes of Lattice Energies
Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the following ionic compounds in order of increasing lattice energy: NaF, CsI, and CaO. Analyze: From the formulas
Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds
Comparing Ionic and Covalent Bonds Chapter 7 Covalent Bonds and Molecular Structure Intermolecular forces (much weaker than bonds) must be broken Ionic bonds must be broken 1 Ionic Bonds Covalent Bonds
Chapter 2 Polar Covalent Bond Covalent bond in which the electron pairs are not shared equally.
hapter 2 Polar ovalent Bond ovalent bond in which the electron pairs are not shared equally. Pure ovalent Bond (non-polar) increasing bond polarity Ionic Bond X X X Y X + Y - Electronegativity, c ability
ACID and BASES - a Summary
AID and BASES - a Summary Stefan Svensson 2004 Brönsted-Lowry : Acids donate protons Lewis -acid : Electron pair acceptor Bases accept protons Lewis-base: Electron pair donator. Acetic acid ättiksyra 3
Worksheet 14 - Lewis structures. 1. Complete the Lewis dot symbols for the oxygen atoms below
Worksheet 14 - Lewis structures Determine the Lewis structure of 2 oxygen gas. 1. omplete the Lewis dot symbols for the oxygen atoms below 2. Determine the number of valence electrons available in the
Amines H 3 C H. CH 2 CH 3 ethylmethylamine. Nomenclature. 1 o : RNH 2, 2 o : RR'NH, 3 o : RR'R"N, 4 o (salt) RR'R"R'"N + R = alkyl or aryl
Amines omenclature 1 o :, 2 o : 'H, 3 o : '", 4 o (salt) '"'" + = alkyl or aryl ommon names For simple amines name groups attached to alphabetically; use suffix -amine. H 3 H H 2 ethylmethylamine In complicated
