(IJACSA) Iraioal Joural of Advad Compur Si ad Appliaios, Vol. 3, o.4, 2012 Aalysis hod of Traffi Cogsio Dgr Basd o Spaio-Tmporal Simulaio Shuli H Dparm of aagm Liaoig poli Aadmy Dalia 116036, Chia Absra Th purpos of his rsarh is o dsig ad implm a road raffi ogsio ad raffi pars simulaio (TPS) modl ad igra i wih xsio-iformaio modl (EI). Th problms of road raffi simulaio ad orol ar sudid aordig o h mhod of xsio iformaio modl, ad from h spaio-mporal aalysis poi of viw. Th ruls of h raffi simulaio from xis o voluio ar aalyzd usig horis. Basd o his sudy, h op of raffi sysm ropy is irodud, ad rsuld i h sablishm of a fudamal fram wor for h road raffi simulaio sysm basd o xsio spaio-mporal iformaio sysm. orovr, a praiabl mhodology is prsd. Kywords- road raffi simulaio; xsio iformaio modl; dgr of raffi ogsio; raffi ogsio ropy; raffi ogsio orol sysm. I. ITRODUCTIO Traffi ogsio has b a major problm o roads aroud h world for may yars. I modr iis, raffi o major roads is abuda, ad sps hav o b a o p h raffi flowig a a apabl spd. Th volum of road raffi has irasd rapidly i r yars. I h Dalia, oal road raffi has almos doubld si 2001 (s Figur 2.1). Forass from h Dparm for Poli show ha h volum of road raffi will oiu o iras a a alarmig ra. Ths forass, whih i h pas hav b osrvaiv simas, suggs ha raffi lvls will iras by approximaly 50% bw h yars 2010 ad 2020. If his is h as, h h auss ad ffs of raffi ogsio d o b udrsood ow or i is ould bom muh wors a problm i h ar fuur. Th purpos of his rsarh is o dsig ad implm a road raffi pars ad raffi ogsio dgr simulaio (TPS) modl ad igra i wih xsio-iformaio modl (EI). Udr urr ompur sofwar dvlopm odiios, i is rahr diffiul o implm TPS, or ohr spaial-mporal basd omplx simulaio modls. Diffr approahs hav b xplord o build spaial-mporal simulaio modls of raffi sysm. Baus of his hial barrir, spaial-mporal simulaio modlrs hav o spd mor im o hial issus, whih omplias h appliaio of lassis modl of raffi sysm ad ohr spaial simulaio horis. This rsarh dvlopd a dyami raffi par simulaio modl from a sai road raffi modl [1]. This rsarh has hos ommrial propry robbry simulaio as a xampl for igraig a xsio spaial-mporal simulaio modl wih EI. Th simulaio modl applid EI o h raffi ogsio lilihood valuaio formula from roui raffi aiviy hory (RAT). Th simulaio pross rus hrough muh iraio, ah graig som idividual raffi ogsio. Th aumulaio of idividual ogsio rvals raffi pars i spa ad im. Aohr raso for hoosig raffi ogsio par simulaio is o xpad SP s appliaio o ivisibl spaial-mporal prosss. os SP appliaios hav ourrd i ology, urba plaig ad virom sudis. O of h SP or lms is sa variabl. Sa variabls rprs h saus of lls, whih ar h fous of h modlig. Lad us yp ad umbr of pollua paril ar xampls of sa variabl. Compard wih visibl phoma, i is mor diffiul o simula spaial-mporal hags of ivisibl phoma wih SP modlig. To simulaio raffi ogsio par dvlopig pross from a miro-lvl, firs w d o fid ou h ivisibl phomo whih broadas ovr spa ad im, ad s i as sa variabl. Th ohr variabls a h b rlad o h sa variabl dirly or idirly. This papr is orgaizd as follows: Sio 2 irodus som basi ops abou raffi ogsio ad sysm simulaio. Sio 3 prss our w simulaio modl of raffi ogsio dgr, ad sio 4 xplais our proposal for raffi ogsio orol by slf-orgaizig hory. Fially, sio 5 oluds h papr ad draws som fuur wor. II. TRAFFIC COGESTIO AD SYSTE SIULATIO A. Traffi ogsio Physiiss hav b ryig o dsrib h phoma of raffi for a las half a ury. I h 1950s, Jams Lighhill, a xpr o h physis of fluid flow, suggsd ha h flow of raffi o a road was ai o h flow of liquid i a pip. This hory (h Lighhill-Whiham-Rihards modl) rprsd h flow of raffi irly wih mahmaial quaios, ad igord h idividual drivrs. This sor of modl is alld marosopi, ad a of produ ralisi oupu, bu las h omplxiy o modl ralisi drivr bhaviours [2]. www.ijasa.hsai.org 12 P a g
(IJACSA) Iraioal Joural of Advad Compur Si ad Appliaios, Vol. 3, o.4, 2012 Th omplxiy ad uraiy of raffi ogsio ma a idal illusraio of suh rsarh. Traffi ogsio pars dvlop ovr im priod as a rsul of iraios bw arg ad ogsio ovr spa. A is mos basi, ogsio is ausd wh h volum of raffi xds road apaiy. This holds for mos privd auss of ogsio; for xampl, aids, bradows ad road wors dras h availabl road apaiy, whil shool-ru ad holiday raffi iras h volum of raffi. Th x approah was o ra vhils as idividual uis isad of a oiuous flow, ad s wha bhaviour mrgs wh h vhils ar giv simpl ruls o follow. Eah vhil would mov aordig o h vhil ahad, spdig up or slowig dow o mah is spd whil maiaiig a saf disa bw ars. This is a yp of mirosopi modl, whih a vary i omplxiy dpdig o h aims of h simulaio. O wll-ow modl is a llular auomaa modl dsigd by agl ad Shrbrg [5]. I was vry simplisi ad followd maily h ruls abov, y xhibis omplx phoma foud i ral raffi, as dsribd blow. Th rsuls from hs modls ad from raffi sudis show ha flow ra ad raffi dsiy ar lid i a irsig way. ormally, flow ra irass as dsiy irass, ha is, mor vhils ar o h road wihou ay havig o slow dow. Howvr, wh h dsiy rahs a so-alld riial dsiy, h flow ra bgis o dras ad h raffi boms ogsd. A irsig obsrvaio is a hysrsis ff ha as h dsiy irass abov h riial dsiy i is possibl for h flow o oiu o iras i a m sabl or bi-sabl sa. I his sa, ay hiup i h flow a aus h raffi o bom ogsd [3]. B. Sysm Simulaio W a fid from h whol produr of raffi simulaio, brig forward raffi sysm propry s all ids of blivs basig o h iformaio of raffi spaial-mporal. Ad h subjuiv prisor ad qualiy s possibiliy basig o a variy of suppos. Rurr subjuiv produr may form osrigy. Cosrigy fixs raffi sysm iformaio. This raffi sysm iformaio is alld for proof. Baus of i, raffi sysm law a b obaiig. Obai dpd o hmslvs flig ad rogiz abiliis o g raffi sysm iformaio from all h dirios. If i his odiios, obai wors a b do; ohrwis, i will b shrivl. I raliy, h wor ha fidig raffi sysm iformaio from xprssioal iformaio is vry diffiul, maily raso is ha w a drmi is rsoluio fram ad iformaio virom. Oly dpd o brai o fiish quaiy iformaio dvlopm ad osrig, o g o h purpos is vry diffiul. To improv fuio ad bfi of raffi sysm maagm ad o build subjuiv raffi sysm modl (TS) is ssary. Firs dfiiud, TS is ools dalig wih raffi iformaio i xsio iformaio spa. TS of xsio iformaio spa is ourr sysm ha prsos ad ompur ar omposd. Th spial ompliay ad uraiy of raffi sysm qusio ar o havig raffi s iral ruls. For xampl, raffi ogsio wh happd, whr, wha form, why, wha hag? Ths ar amd for 5CW problm. I is ovr h barrl basig o mahmais i had for h qusio. Th maily o of raffi iformaio raliy sysm osisd of 5CW, is possibiliy spa wih mappig ad ivrsio is osisig of lm of rim simulaio sysm. I raffi sysm simulaio, radiioal ways ar imiaig ixa ad uraiy problm by buildig mahmais modl, ad h solv hm by saisis ad probabiliy. Bu h modl d a lo of bliv ad approxima, so a las, h modl is diffr from raliy largly. Obviously, radiioal quaiaiv ways hav saisfid wih ds. For big shor of iformaio ad usruurd, i is possibl ha buildig xa mahmaial modl; a h sam im, disio aim of h qusio is misrabl, so i is o ssary o buildig xa mahmais modl. O praial way is buildig som qualiaiv modls o aalysis qualiaivly. So ma ou som bfi aalysis rsul, had farhs owldg s ff. Cao ompur is iformaio odu sysm buildig o umbr arihmi. Thrfor, i raffi raliy sysm rsarhig, for dlig xprssio ad modl from ompur, usually buildig dfii bliv ad daa s shoru. I fa, hos blivs of subjuiv sysm ar big a all. So w d a iformaio diggig hology wha is fi for raliy qusio. Rsoluio for raffi maagm sysm xprssd ha raffi iformaio is a simulaio sysm of im ad spa. Bu iformaio s ubdig ad asymmri ar formd by ovr ordr of raffi propris ausal ordr. Exsio ausal ordr sarhd rlaio ordr of ausal ordr. Ad h i hagd ovr ordr io disovrabl ordr i h raffi iformaio, xdd raffi xprssio iformaio. W a g a iformaio from xprssio iformaio. Traffi sysm will rah o h purpos imiaig ad simulaig udr h ausal mhaism. For xampl, i subjuiv raffi raliy sysm, wh ompur givs us rim xprssios, subjuiv sysm will appar ausal rlaio imags of raffi sysm propris. Ad h w a g raffi sa xprssio iformaio s rlaio iformaio by alra flig produr of prso wih ompur. III. TRAFFIC SIULATIO BASED O EXTESIO IFORATIO ODEL A. hodologis As a iroduio o raffi simulaio aalysis, his sio provids h dfiiio of raffi simulaio aalysis as a gral op as wll as dfiiio of four yps of raffi aalysis. Ths dfiiios ar ma o ha h udrsadig of raffi sysm simulaio aalysis ad o hlp ra ommoly udrsood rmiology, ops ad idas i h fild of raffi sysm aalysis. Th quaiaiv ad qualiaiv sudis of raffi sysm ad law form iformaio i ombiaio wih soial dmographi ad spaial faors o apprhd raffi, prv ogsio, rdu aid, ad valua orgaizaioal produr. From h dfiiio, a umbr of daa ar rquird i aalyzig raffi sysm so as o om up wih iformd disios i h apprhsio of raffi ad plaig. I ordr o udrsad h dfiiio of sysm aalysis, major phrass www.ijasa.hsai.org 13 P a g
(IJACSA) Iraioal Joural of Advad Compur Si ad Appliaios, Vol. 3, o.4, 2012 ad rms usd ar dfid ad disussd i dail i h followig [5,6]. Traffi sysm simulaio aalysis uss boh qualiaiv ad quaiaiv daa ad i also uss aalyial hiqus. Qualiaiv daa ad aalyial hiqus rfr o o-umrial daa as wll as h xamiaio ad irpraio of obsrvaios for h purpos of disovrig udrlyig maigs ad par of rlaioships. Quaiaiv daa ar daa primarily i umrial or agorial forma. Quaiaiv aalysis osiss of maipulaios of obsrvaios for h purpos of dsribig ad xplaiig h phoma ha hos obsrvaios rfl ad is primarily saisial. Traffi sysm simulaio aalysis mploys boh yps of daa ad hiqus dpdig o h aalysis ad praial d. Th iformaio suh as da, im, loaio, ad yp of raffi ogsio is quaiaiv i ha saisis a b usd o aalyz hs variabls. O h ohr had, arraiv of raffi ogsio iformaio ar osidrd qualiaiv daa i ha a larg umbr of arraivs ar arly impossibl o aalyz saisially ad ar primarily xamid o drmi gral hms ad pars. Thr major lms of raffi simulaio aalysis mrg from h dfiiio ad hs ar raffi ris, spaial ad mporal daa as show i abl1 blow. TABLE1. AJOR FACTORS OF TRAFFIC SIULATIO Faor Phas Huma Vhil Evirom Pr-rash Iformaio Aiuds Impairm Poli form Roadworhiss lighig Braig hadlig Spd maagm Road dsig Road layou Spd limis Pdsria failiis Crash Us of rsrais Impairm Oupa rsrais Ohr safy dvis Crash-proiv dsig Forgivig roadsid Pos-rash Firs-aid sill Ass o hospial Eas of ass Fir ris Rsu failiis Cogsio Traffi simulaio aalysis is prformd for diffr purposs ad baus of his, i has b sub dividd io diffr agoris whih hav b giv spifi ams for h purpos. Th followig ar four yp of aalysis ha fall udr h umbrlla of raffi simulaio aalysis. Eah oais hararisis of raffi simulaio aalysis i gral, bu ah is spifi i h yp of daa ad simulaio aalysis usd as wll as i is purpos. Traffi ogsio is a xrmly ompliad soial phomo, ad has h faurs of radom muaio aordig o is ourr, dvlopm ad h rd of is voluio. From h viwpoi of govrm maagm, soiy suriy ad raffi aid prvio is h aim of raffi maagm. Aordig o h xisig op o raffi sysm orol, h orol pross is drmid by hr faors: (1) Drmi h possibl spa ad im of raffi ogsio; (2) sl som sas from h possibl spa ad im as args; (3) Cra h ssary odiios o ma h raffi sysm orol rah h prs aim. I is ow ha h rm possibl spa is h assmbly of all h possibiliis fad i h dvlopm pross of a obj. Th possibl spa of raffi ogsio is drmid by h odiios ladig o a ogsio as. Ths faors hav hir hararisi possibl spas ad im, diffrig from ah ohr i h amous ad h forms, ad may irhag from o o aohr. Wh a possibl spa ad im of a ogsio as is dvlopig io a rai sa, i may ur io a w possibl spa ad im. Th ourr of svral possibl spas ad ims i h dvlopm of raffi ogsio mas h raffi pross apparig i diffr sags. I ohr words, h arg of raffi orol hags as h possibl ogsio spa varis. B. Simulaio modl of raffi ogsio dgr Th poi of quaiaiv raffi sudy lis i h raffi ogsio siuaio rlaioship sruur. I sablishs siuaio modl ad rlaioship modl. By ombiig hm oghr, w g rlaioship sruur aalysis of praial raffi ogsio. Th form is ha w us h mahmaial modl omig from h quaiaiv aalysis o g h y, h basd o whih w ma qualiaiv ifr [7,8]. A h sam im, aordig o h rlaioship sruur s mappig whih gs from qualiaiv ifr, w sablish mahmaial modl hrough all ids of s mappig spa hypohsis. Two rsuls will b fd ba hrough slf-orgaizd rlaioship sruur ad fially form a fasibl rsul. If road raffi sysm is mad up of variabls C 1, C 2,,C,, ad hr ar orollig paramrs K 1, K 2,,K m, h raffi ogsio dyami quaio is dsribd as h followig[6]: www.ijasa.hsai.org 14 P a g
(IJACSA) Iraioal Joural of Advad Compur Si ad Appliaios, Vol. 3, o.4, 2012 dc d 1 f1(,, C1, C2,, C dc2 f 2 (,, C1, C2,, C ) d dc f (,, C1, C2, C ) d I road raffi sysm, ogsio siuaio variabl is h y faor o form raffi sysm. Th ffiv hoi of siuaio variabl is riial o rfl h ral lvl of raffi maagm ad dsrib soial sabiliy ad h dgr of h soial dvlopm. Th oomi growh ad osumpio lvl rfl raffi sysm dvlopm. I oomy sudy, if w la h aalysis of rim faors, our olusio of h oomy aalysis will o b rliabl. Amog h formr sudy of road raffi, hr ar may faors osruig raffi sysm, suh as oomy faor, duaio faor, soial hos, law faor, popl rlaioship ad maagm faor. Baus hs faors li i diffr siuaios, h hararisis of raffi sysm ar diffr. Th valuaio of soial sabiliy ad dvlopm dpds o h hoi of orollig paramr. For xampl umploym ra, rlaiv umbr of iom diffr, orollig proporio of iformal soial groups, maagm ffiiy of road raffi ad duaio qualiy. dci fi ({ C j},{ a}) ( i,j=1,2,, a=1,2,,m ) (2) d Suppos quaio (2) is slf-orgaizaio powr raffi sysm, his sysm as wih a sudd hag ha has h saisial hararisis. Bu raffi aio is ivisibl. Th asymmry of iformaio mas i urai i h oomi loss ad ivsm wh w solv ass ad orol raffi sysm. Thrfor, h saisial prdiio i raffi ogsio dgr ad ffii sima i solvig raffi ogsio ass ar vry impora i marooomi aalysis ad growh, oghr wih i h orol h raffi sabiliy. Traffi ogsio as is lood as h dgr of ogsio (, whih is didd by im ( s fuio. I happs radomly. Baus ogsio happig ad solvig ogsio ass ar wo variabls, ad h dgr of ogsio is didd by hs variabls, w suppos xpaio of ogsio dgr E{ ( } (, h E[ ( ] ( 0 ) P ( I h formula miod abov, P ( idias ha im ( has ogsio ra. Abov all, by isi, h hagig ra of h xpaio ogsio dgr, whos ra hags wih im, is d ( / d. Durig h im (, his happig (1) ra xplais h w ogsio ad rpad ogsio. So i a rai ara, h whol xpd ra of ogsio dgr is ha avrag ra ( oud o vhil muliplis h xpd ogsio dgr. If ( is avrag ra of orol dgr of raffi ogsio a im, ( ( is h gral xpd ra. So d( [ ( ( ] ( (3) d This is alld simulaio modl of raffi ogsio dgr. By aalyzig h ogsio aribu i rai ara, if h raffi ogsio dos rasfr bw isid ad ousid, i.. spifi ra of ogsio dgr ad raig ra dos hag wih im, h ( =, ( =, formula (3) will hag io d( ( ) ( (4) d I formula (4) rsul ould b validad by rplaig. ( ( ) (0) (5) I h formula, (0) ) is ogsio dgr wh im is 0. Wh >0, i xplais ha praial ogsio raig is lss ha praial ogsio dgr. From sudy of rssiv siuaio, w ow ha h umbr ha popl did rpor h siuaio ad raffi ogsio hav b foud is gra may. So orollig aim of raffi sysm is 0. W fid from abov aalysis ha h idiaio of ogsio dgr has gra ff o soial dvlopm, spially o oomy. If hr is o raffi oomy dyami aalysis i marosopi raffi aalysis, marosopi raffi aalysis will b half-bad. Hr is ogsio umbr irval [ mi, ]; h dgr of ogsio siuaio happig is orolld amog irval. Supposig wo rds, ( mi ad (, raffi ogsio orollig dgrs ad ar rplad by ( - ( h Gig rsul of diffrial quaio. [ ( ( ] [ ( ( ] [ ( ] [ ( ] [ 1 ( [ 1 ( mi ( ) mi, mi ( ) ( ) 1 (0) ( ( ) ) 1 (0) ( ) ]( ) ]( ) www.ijasa.hsai.org 15 P a g
(IJACSA) Iraioal Joural of Advad Compur Si ad Appliaios, Vol. 3, o.4, 2012 Hr supposig ha h dgr of raffi ogsio orollig is hos radomly bw ad ad. logarihm [, ] is h idal y o raffi ogsio orollig. I a b ifrrd from h followig. Formula (6) shows h gral umbr hararisis of raffi ogsio orollig lvl ovr a rai priod of im [9]. [ ( ] 0 [ ( ] 2 [ ( ] d ( ) mi [[ + 0 mi ( ) ( ) 1 (0) ( ( ) ) 1 (0) ( ) ]]2 Through h abov disussio w ow ha h y poi drmiig [ ( ] is o g ( ad (, ad h y poi gig rsul is o sablish quaio (1) ad (3). Esablishig quaio (1) is didd by aalysis of ogsio siuaio variabl ad quaio (3) s siuaio sysm sruur. A h sam im, ogsio saisis ad h mhods of raffi iformaio s masurm is vry impora. IV. 1 d TRAFFIC COGESTIO COTROL A. o-quilibrium raffi orol sysm I fa, h simulaio sysm of raffi ogsio is a slf-orgaizaio sysm basd o o-quilibrium sysm hory. Usig o-quilibrium sysm hory o sudy h problms of raffi orol is rlaivly w. Traffi ogsio is a ommo soial phomo. Traffi ogsio prvio ad orol origia as ogsio our. Th x of h soial sabiliy is dpd o wha lvl h raffi ogsio is udr orol. Rduig h raffi ogsio o h lows x mas ha h soiy advaig. Philosophially, quilibrium xiss mporarily ad rlaivly. o-quilibrium xiss ommoly ad absoluly. Th quilibrium ahivd i h raffi ogsio orol sysm rfrs o h uifid bhavior of h orol aiviy udr h prdiiv raffi modl. This is a sai poi of viw for h raffi ad hir orol. Equilibrium a b udrsood as a pross of adapig wih h raffi ogsio ad adjusig orol, from h ii poi of viw. This rfls h harars of h o-quilibrium pross. Si h raffi ogsio appars o b ii i aur as h soiy is dvlopig, raffi orol sysm should b a o-quilibrium pross. Howvr, h rol of h raffi ogsio iformaio saisis should o b xaggrad. I has o b poid ou ha h objivs prossd by h saisis should b idpd iids ad larg umbrs ad hav a radom faur. Srily spaig, h idividual ass i a marosopi raffi sudy do o fully fulfil h abov (6) miod assumpios. Th saisis usd bfor ar o aura ad ompl ough i dsribig h soiy raffi problm as a whol. Thrfor, h ds ar risig for a br hory o dsrib h soial raffi horoughly, ad o a boh mirosopi ad marosopi viwpois io osidraio. From h viw poi of o-quilibrium sysm hory, h ombiaio of saisis wih iis should b usful i solvig h problm miod bfor. Th oopraio hory applis saisis for boh mirosopi ad marosopi ivsigaios for h objivs udr sudy. Th ds for a larg umbr of objivs ar o log a ssiy. I is saisially maigful o o had, ad i mphasizs h iraios i h soial raffi o h ohr. Syrgi a b usd o rval h ruls of h voluio of h raffi problms from h poi of im, spa ad forms. Thrfor, h soial raffi problms a b dsribd i a srir ad ompl ways aordig o his hory, ad h ffiv rim orol a b foud wih h hlp of his omprhsiv saisial mhod. Th voluio of h raffi ogsio problms is parly dpd o h hags of h raffi virom, ad parly dpd o h orol mas ad odiios of h govrm. Aordig o h aalysis of h muaio modl, i is lar ha h raffi ogsio sa modl for sudyig h voluio par a b sablishd by fidig ou h sa variabls rprsig h quaiaiv hag, ad h odiio variabls (i.. orollig variabls) whih aus h hag of h sa of h rim-affd sa i h soial dvlopm. For h aalysis of h raffi ogsio problm, h sam priipls apply. Thr ar a umbr of faors, whih aff h raffi ogsio variaios. Th diffiuly is o fid ou h domia variabls. All h raffi ogsio variabls a b dividd io wo groups: dir variabls (dirly aff h ourr of raffi ogsio). O h rlaioship bw h dir variabls ad h sa variabls is ow, h mahmais modl a b obaid, ad h quaiaiv aalysis a b arrid ou for h ruls of h hags of h raffi sa. B. Th Eropy Chararisi of h raffi ogsio sysm Th raffi ogsio sysm is o-quilibrium, so is faur is didd by h dgr of h sysm disordr, whih is drmid by propr masurm. I physis, ropy dos h amou of sysm probabiliy, whih quaiaivly dsribs irrvrsibl pross. For raffi ogsio sysm, ay ogsio siuaio ould happ agai. I ao rsor. Th marosopi siuaio of raffi ogsio sysm orrspods o may miroosmi raffi sa. Th mor hy orrspod, h largr uraiy of raffi sysm has. Thrby, i rfls h disordr of raffi sysm. I s obvious i raffi ogsio problms. Baus raffi aio is ompliad ad hagabl, ad raffi aio form ad way ar so various ha w ao prdi. Th hararisis i miroosmi raffi aio siuaio a did marosopi ogsio idx of raffi sysm. Traffi sysm disordr a b masurd by all ids of ogsio dgr probabiliy. Cogsio ropy shows how muh probabiliy of ah yp of raffi aio happs i raffi sysm. Supposig is happig ra of ogsio dgr of marosopi raffi www.ijasa.hsai.org 16 P a g
(IJACSA) Iraioal Joural of Advad Compur Si ad Appliaios, Vol. 3, o.4, 2012 sysm, ad h is raffi marosopi orollig osa, S j1 l (7) j C S is raffi ogsio ropy, whih is didd by addig rai ad orollig osa of marosopi raffi sysm. I fa, raffi sysm is a op sysm. I shows ha populaio flowig mas vhil mov bw rgio isid ad ousid. Supposig h populaio i a rgio is, i hr ar popl who probably ommi a raffi aio, i dsi / h i shows h hag of ir ropy i raffi sysm. A h sam im, du o h populaio flowig, h probabiliy of raffi has hagd, rsulig i h hag of xrior ropy. is h ds o o o / umbr of flowig populaio i a rgio, ad o is h umbr of raffi ogsio probably happig amog h flowig populaio. Th h hag of ropy i raffi sysm is dsribd as h followig [9]. ds d[ l j1 ds j1 i l L C ds ( l (1,2,, )) o ] j i o (8) 1 T mi mo ( ) d m m Th gral xpd umbr of a rgioal raffi ogsio dos always happ whih mus b ombid wih h ra of h ogsio dgr. W sudy h law of raffi sysm aordig o xsio iformaio hagig modl basd o o-quilibrium sysm hory. A h sam im, w will ow how marosopi raffi ogsio orol sysm affs soial ad oomi sysm basd o raffi ogsio lvl ad i s solvig orol idx, oghr wih hags of ordr paramr. V. COCLUSIOS I his papr w hav xdd ad improvd a prvious modl for valuaig raffi ogsio usig a xsio iformaio modl ad applyig a slf-orgaizig mhodology. W ar improvig fuio ad bfi of raffi simulaio ad o build xsio raffi simulaio sysm (ETSS) is ssary. (9) Firs dfiiud, ETSS is ools dalig wih iformaio i xsio iformaio spa. ETSS of xsio iformaio spa is ourr sysm ha prsos ad ompur ar omposd. Th spial ompliay ad uraiy of road raffi qusio ar o havig ogsio s iral ruls. For xampl, raffi ogsio wh happd, whr, how, why, wha hag? Ths ar amd for 5CW problm. I is ovr h barrl basig o mahmais i had for h qusio. Th maily o of road raffi iformaio raliy sysm osisd of 5CW, is possibiliy spa wih mappig ad ivrsio is osisig of lm of road raffi simulaio sysm. I fuur rsarh, by iorporaig h iformaio variabls ivolvd i raffi ogsio maagm suh as h umbrs of aids, raffi iformaio violaios, ad raffi polim o duy io a arifiial illig hiqu, i is possibl o build a raffi disio maig sysm o hlp disio mars for aalysis of raffi laws ad poliis. REFERECES [1] Robr R, Thodor F. Corasig h Us of Tim-Basd ad Disa-Basd asurs o Quaify Traffi Cogsio Lvls:A Aalysis of w Jrsy Couis. Th 81h Aual igs of h Trasporaio Rsarh Board, Washigo,D.C, 2002. [2] H Pig. Rsarh o h Quaiy Aalysis of Soial Crim. Joural of Liaoig Poli Aadmy, 2004, vol. 37, pp.1-6. [3] K Hymly. Dos Traffi Cogsio Rdu Employm Growh? Joural of Urba Eoomis, 2009,vol. 65/2, pp. 127-135. [4] Klij, J. P. C. Rspos surfa mhodology for osraid simulaio opimizaio: A ovrviw, Simulaio odllig Prai ad Thory, 2008, vol.16, pp.50 64. [5] Klij, J. P. C., va Brs, W. ad va iuwhuys, I. Cosraid opimizaio i xpsiv simulaio: ovl approah, Europa Joural of Opraioal Rsarh, 2010, vol.202, pp.164 174. [6] ari, K. Sohasi opimizaio mhods, Sprigr, Brli. or, J. ad Wild, S. (2009). Bhmarig drivaiv-fr opimizaio algorihms, SIA Joural o Opimizaio, 2009, vol.20, pp.172 191. [7] Ouvray, R. ad Birlair,. Boosrs: a drivaiv-fr algorihm basd o radial basis fuios, Iraioal Joural of odllig ad Simulaio, 2009, vol. 29,pp.26 36. [8] Osorio, C. iigaig wor ogsio: aalyial modls, opimizaio mhods ad hir appliaios, PhD hsis, Eol Polyhiqu F d ral d Lausa. Osorio, C. ad Birlair,. (2009a). A aalyi fii apaiy quuig wor modl apurig hpropagaio of ogsio ad bloig, Europa Joural Of Opraioal Rsarh, 2010, vol. 196, pp.996 1007. AUTHORS PROFILE Shuli H was bor i 1962, i Liaoyag, Chia. H is a assisa profssor of h maagm dparm of h Liaoig Poli Aadmy, Dalia, Chia. His aadmi irss ar foud i raffi maagm hory ad appliaios, iludig urai raffi sysm aalysis. H a b rahd a -mail: hshl888597@yahoo.om.. www.ijasa.hsai.org 17 P a g