Statistical Analysis and Empirical Study for Life Insurance

Size: px
Start display at page:

Download "Statistical Analysis and Empirical Study for Life Insurance"

Transcription

1 Vo 3, No Iraioa Joura of Busiss ad Maagm Saisica Aaysis ad Emirica Sudy for Lif Isurac Xiag Jiag, Jia Ni Guagi Mdica ad Pharmacuica Cog, Naig 532, Chia T: E-mai: Wii Wu Guagi Idusria Vocaioa Tchica Cog, Naig 53, Chia T: E-mai: Absrac Accordig o h ucraiy of isurac accid, i his aric, w iroduc h imorac of isurac ad h aicaio of robabiiy saisics i h isurac, brify dscrib svra aramr mods abou if disribuio (i if mods), discuss h sabishm ad us of h if ab, ad saisicay aayz h rofi ad oss ad isurd amou i if isurac Th rsu coud ossss crai dircioa maigs ad rfrc fucio for racica wors Kywords: Lif isurac, Probabiiy saisics, Saisica aaysis, Lif mod, Emirica Sudy Iroducio Th robabiiy saisics is aid abroad o isurac, icudig accrua ad discou, surviva mod ad if ab, saisica aaysis of surviva ad dah isurac ad saisica aaysis of rmium ad comsaio Isurac is a bargai which rad o righ ad obigaio bw isurr ad isurac aica This bargai rguas i gra ha h isurac aica mus ay h isurr crai amou rmium, ad h isurr romis o ay h isurd amou wh h covioa isurac accid occurs Th isurac cagoris ar ui abudac, bcaus of h diffr sadards, isurac ca divids io rory isurac, iabiiy isurac ad if isurac Th firs ad scod isurac ar cad o-if isurac, h hird is cad if isurac Th cacuaio of if isurac rmium is a comicad usio irsy, h comosiios of rmium ar drmid by may facors Th isurac amou usd o ay for h rmium simy is cad aura rmium Bu h isurr ados from isurac aica is o oy h aura rmium, bu aso various fs ha ach oraio roducs ad various ossib riss Morovr, as h mai body of coomic, h vur isurac ag shoud cosidr crai rofis A hos comoss gross rmium Th gross rmium ca b cacuad basd o aura rmium Tha is, cacuas h aura rmium accordig o h uivac uaio firsy, ad h adds h cssary riss, fs, rofis ad ohr facors Ad h cacuaio of gross rmium ca aso b cacuad by usig h uivac uaio basd o h cosrvaiv fs irs ra ad wighd coffici of dah ra Th disic characrisic of isurac is h ucraiy haig of h isurac accid, such as o s if, raffic accid ad corms This characrisic aso drmis h imora ro of robabiiy saisics i isurac cagoris sig, isurac oraio adig ad ohr ascs So, if you wa o b a viab acuary, you mus b o o of saisics 2 Surviva mod Amog h cagoris of isurac, if isurac is a radiioa ad aso imora isurac Lif isurac ras o o s if characrisic, hrfor, i is cssary o rsarch o s characrisic ad surviva mod 2 Rmaiig Lifim Suosig T () is h isurr s rmaiig ifim, aary, i is a o-gaiv coiuous radom variab Marig h f () is h disribuio dsiy fucio of T (), ad is disribuio fucio is ( ) P{ T ( ) } f ( ) d By a aaracs, wh, T () dos h rmaiig ifim of oaa ifa, ad ( ) dos h disribuio fucio of oaa ifa s rmaiig ifim 22 Commo mars A rs, iraioa acuaria scic uss h radiioa mar (Zhag, 23, P39-83), whr dos h 76

2 Iraioa Joura of Busiss ad Maagm Ocobr, 28 robabiiy of yas od if s dah ra i yars, dos h robabiiy of yas od if s surviva ui yars ar, s dos h robabiiy of h yas od if s surviva i + s yars ad dah ra i yars afr ha, + dos h yas od if s codiio robabiiy of h dah ra o h codiio of is + s ag s Ad h, hr ar () (), ( ), (2) s P{sT s + } s+ s, (3) - ( s + ) P{T > s + T ( ) > s}, + s ( s) (4) ( s + ) ( s) P{T s + T ( ) > s}, + s ( s) If, aways is omid, shorig as, ad, c s 23 Ecaio of Rmaiig ifim If suosig is h caio of isura s rmaiig ifim wh h is yas od, h i ca b asiy rovd, f ( ) d ( ( ) d d 24 Dah isiy Dfi h yas od if s dah isiy (Zhag, 23, P39-83) as f ( ) d ( ()) W ca + ( ) d s ha, h dah robabiiy of yas od if i h scio of (, + d ) ca b rssd as foows, P{T + d} i + d + d Thrfor, h caio of yas od if s rmaiig ifim ca aso cacuas Th dah isiy ca aso b dfid as d +, imm h igra of his formua, w ca g d ha { } + sds I is obvious ha h dah isiy of yas od if s rmaiig im ad h disribuio fucio of i ar dfid cusivy by ach ohr 3 Svra aramr mods abou if disribuio 3 Lif mod of D Moivr (724) Lif mod of D Moivr cosidrs ha hr is a maima agω, ad h rmaiig ifim T () of yas od if i h scio of (, ω ) obys h uaiy disribuio, i f ( ), < < ω, so w ca g h disribuio ω fucio ( ), < < ω, ad h dah isiy is +, < < ω ω ω 32 Lif mod of Gomrz (825) (Zou, 25) This mod cosidrs ha h dah isiy icrasig is oia icras, ha is, + + BC > B > C > By comarig wih Lif mod of D Moivr, if mod of Gomrz rfcs h cours of if rfraby, ad hrows off h maimum ag assumio Th cacuaio bcoms asy Th disribuio fucio of if mod of Gomrz is B ( ) ( C ) I 86, Maham dd h mod of C + Gomrz H suosd ha h dah isiy was + A + BC > A > B >, C >, ad h h disribuio fucio was B ( ) A ( C ) If c, h dah isiy of Gomrz s ad C Maham s if mod ar cosa Th h disribuio fucio of T () is oia disribuio fucio Ahough i is sim wih mah, i ca o rfc h if-sa of o 33 Lif mod of Wibu (Zou, 25) I 939, Wibu u forward ha h dah isiy of o was o oia icras, bu icras wih owr, 77

3 Vo 3, No Iraioa Joura of Busiss ad Maagm ha is + + ) K > > Ad h disribuio fucio of i is K + ( ) [( + ) ] Th + abov-miod if mod is vry hfu 34 Aicaio isac of if mod Eam : Suosd ha h dah of o aggrga obys h mod of Maham, w g h daa, 3, 2 4, 3 6,h cacua o g 4 Souio, Accordig o h mod of dah ad h ow daa, sabish h foowig sysm of uaios, 2 A + BC 3 A + BC 4 A + BC , 4, 6, Sovig h abov sysm of uaios, w ca g A 2, B 25, C 2, ad h h dah isiy + is ,h 25 ( ) 2 (2 ),wha foows 2 is (2 ) Igra rmaiig ifim Dfiiio K ( ) [ T ( )] is igra yars which yas od o wi iv hrough, somims cad rmaiig ifim Th robabiiy disribuio of igra radom variab is { ( ) } P{ T ( ) + } +, (,,2, Λ, ) Th caio of ) is cad h yas od o s c igra rmaiig ifim, sig as Th P{ ) }, or + P{ ) } Th advaag of usig h igra rmaiig ifim of yas od o is ha i rdigss h rmaiig ifim of yas od o, ad i is covi o h cacuaio of caio of rmaiig ifim Maig S( ) T( ) ), S() is h fracio ar of h yars which yas od o has ivd I is asy o s ha S() is a coiuous radom variab o h igra of (,) Assumig ha ) ad S() ar idd, h h codiioa disribuio of S() do o dd o ) wh h vau of ) is giv, ad u + P{ S() u ) } + Prsuoss abov formua ua o H (u), H (u) is a crai fucio which has ohig o do wih Thr wih, u + H( ), +,2, Λ Suosig H ( u) u, ha is, S() is a homogous disribuio i h igra of (,), h + V ar ( T ( )) Var( )) Bcaus ha h disribuio of ) a dds o, hrfor, ca srucur a ids of ab by mas of Th commo if ab of isurac is ab of 4 Th comosiio ad aicaio of if ab Through h rsarch o h disribuio fucio of if, ha is a radom variab, h robabiiy dsiy fucio ad caio, h robabiiy of crai o s dah i crai im or i isaaous ca b rssd as survivorshi fucio ad som scia symbos Tha is o say, w ca sima h if sa of isura i oioa ag I racic, w of us h if o sad for his Th survivorshi fucio ad if ab ar cocd wih ach ohr, ad h survivorshi fucio ca b cacuad hrough if ab Lif ab ar summary ab which b sabishd accordig o h saisic daa of ach ag s dah i crai im 4 Aufbau rici of if ab O h basis of rici of argr umbr, h surviva robabiiy of ach ag o ca b cacuad by obsrvd daa (simaig frucy by frucy) Th commo symbos icud, w-bor if umbr is, is h ag, ad is h umos ag 78

4 Iraioa Joura of Busiss ad Maagm Ocobr, Characrisics of if ab Th Aufbau rici of if ab is sim, ad is o drmid by h oa disribuio (o-aramr mhod) Th surviva caio umbr of w-bor if wi iv o ag X is s(), h dah caio umbr of w-bor if wi di bw h ag of ad + is d s Esciay, wh, mar as d - +,d - + Th sum of yars which w-bor if iv hrough o h igra of ad + is L dy, ad h y oa umbr of h idividua s rmaiig if, which ca iv o ag, is T ydy, h ca g T 43 Aicaio isac of if ab Eam 2: Th ow vau is ),as cacua h foowig vaus, () d 3, 2 3,3 3, 3, (2) h dah robabiiy of 2 yars od o i h igra of 5 o 55, (3) h avrag if of h o Souio: () d 3 3-3, /7, / /7, 3 (2) /6, (3) T 5 ( 5 ) d Aufbau rici of scio-uima if ab (as s i Tab ) Th hah of w moys which g hrough h frsh hysica amiaio cs h hah of od moys which go hrough h hysica amiaio a a og im ago Th forc of scio wi disaar wih im 45 Th aicaio of scio-uima if ab Th aicaio of if ab ad h rsu of cacuaio rsss as h ab 2 46 Th assumio abou fracio ag 46 Surviva siuaio i if ab Usig bacgroud, if ab rovid h disribuio of igra ag, bu somim w d o aaysis h surviva siuaio, so w sc h disribuio of crai ag basd o h wo daa bordr uo, ad sima h surviva siuaio of fracio ag 462 Basic ricis ad commo mhod (iroaio mhod) Basic ricis ad commo mhod (iroaio mhod) icud () Assumio of h uaiy disribuio (iar iroaio), s(+) (-)s()+s(+), <<, (2) Assumio of h dah forc (gomrica iroaio), s(+) s() (-) s(+), <<, (3) Assumio of Baducc (harmoious iroaio), +, << s( + ) s( ) s( + ) Eam 3: Th ow vau is ), as cacua h foowig vaus udr hr diffr fracio ag, 5 3, 525 5, 35 Souio, udr h hr assumios, () Bcaus 3 3 3, so, , UDD 5 3, 4 5 3C , 7 79

5 Vo 3, No Iraioa Joura of Busiss ad Maagm 5 3 Baducci (2) , Bcaus 5 5, 5 5 9, 55, 45 so, UDD , C +9 ( ) 5422, i Baducc (3) 35 UDD 3, C -( 3 )- 69, 7 35 Baducci Th isurac rofi ad oss aaysis basd o cra imi horm 5 Th cra imi horm ad is maig Th cra imi horm ois ou ha if o radom variab is iducd by umrous radom facors, ad vry succssiv chag has fw fucios, so i coud dduc ha h radom variab which dscribs h radom homa obys h orma schoo So o ruir h sum of radom variabs i crai ara, w shoud oy sadardiz i ad aroimay comus i by h orma schoo Th cra imi horm has dircioa maig for h isurac idusry, ad hrough i, w ca sima ad rdic h rofi ad oss of o isurac comay, ad h aw of argr umbrs is h basd o sabish h modr isurac idusry Th foowig am aias o h imora fucio ad cocr aicaio of h aw of argr umbrs ad h cra imi horm i h isurac idusry 52 Eam aaysis ad souio Eam 4: Suos ha hr ar o a ar i h isurac i o isurac comay, ad vry o ays rmium of 2 Yua o h comay vry yar, ad vryo s dah robabiiy i o yar is 6, ad his famiy umbrs coud draw Yua from h isurac comay wh h dis, h aswr h usios, () how big h oss robabiiy of h isurac comay is?, ad (2) how big h robabiiy ha h rofi of h isurac comay i o yar is o ss ha 4 Yua? 4 Souio, Suosig ha h umbr of h dah i o i o yar is X, so X ~ B(, ),, 6,, ad h yar icom of h isurac comay is 2 X () If h isurac comay oss moy i busiss, so 2 X <, ad X > 2 rom h cra imi horm, X { 2} P > P > Φ( ) Φ(77693) So h isurac comay woud o oss moy i busiss (2) If h yar rofi of h isurac comay is o ss ha 4 Yua, so 2 X 4 ad X 8 X P{ 8} P Φ( ) Φ(259) So h robabiiy ha h yar rofi of h isurac comay is o ss ha 4 Yua is Rsu aaysis ad discussio Through aaysis ad souio of h am, w coud cary udrsad why so may isurac comais com io isc, bcaus h oss robabiiy of isurac comay amos is zro, ad why isurac y is br for h isurac comay i so may isurac ys ushd by h isurac comais a rs, ad w coud f ha h robabiiy saisics is surroudig us, ad is aicaio is vry siv

6 Iraioa Joura of Busiss ad Maagm Ocobr, 28 6 Saisica aaysis of isurd amou i if isurac Th dah isurac is h isurac y aig huma dah as h isurac sadard, ad if h isura dis i h im imi of corac, h isurr shoud ay isurd amou o h isura, ad if h isura iv afr h im imi of corac, h isurr ds o ay h isurd amou Thrfor, h cofirmaio of isurd amou dds o h im imi of corac ad h robabiiy characr of isura s rmidig if, ad i aso shoud cosidr may facors such as h rofi of isurac comay, h gross icom ad ayou Accordig o diffr aym ims of isurd amou, h aym mhod of isurd amou ca b dividd io wo sors, i ayig i h a of h yar wh h isura dis, ad ayig wh h isura dis irs, w iroduc h firs sor Suosig ha h corac rguas ha afr h isura isurs his if wh h is yars od, if h dis i h fuur yars, h isurr shoud ay h isurd amou of o moy ui o h isura i h yar h dis, ad if h isura coud iv afr + yars, h isurr woud ay ohig Suos b () dos h isurd amou aid i h h yar, v () dos h discou facor i h h yar So,, b() < K ( ),, ad h rs vau of h isurd amou is od as Z ( (, ) >, )), K, so ( ) ( ) v, < ), Z, ( )) b( ) v, ) > Th caio ad h variac of h rs isurd amou vau rscivy ar A ( ) E[ Z ad, ω ( ))] v P{ ) < + } v ( + ) 2, ( )] EZ, ( ) A ( ) + v A ( ) Var [ Z No, If i h abov formua is ua o h imi ag, h isurac is h dah isurac for if, ad h rs ω caio vau of h isurd amou is ( ω ) EZ, ω ( )) v + A X + I h dah isurac for if, h aym of h isurd amou is h a of h dah yar, so udr h hyohsis ha h isurd amou is o moy ui ad h irs is h cosa, h foowig raioshi coud com io isc A ( ) v + ν A ( ω) ω + 7 Cocusios Emirica sudy idicad ha hrough amos 2 yars dvom, h acuaria mahmaics had graduay dvod o b a rofssioa subjc from a sor of scia comuaio mhod, ad is aicaio rag was graduay adig, ad i had crai dircioa maigs ad br rfrcd fucio for h racica wor of isurac Bcaus of h gh, i h aric, w oy iroduc fw mos basic ad sim cos abou isurac, ad h sudy ad aicaio abou h igraio of isurac, robabiiy saisics ad acuaria mahmaics shoud b furhr discussd by us Rfrcs HUGrbr (999) Th Mahmaics of Comoud Irs Shaghai, Shaghai Word Boo Pubishig Comay Oc, 999 P62-89 Li, Wira (26) Th Paramr Esimaio of Dah orc ucio Basd o Scio-Uima Lif Tab Joura of Hifi Uivrsiy of Tchoogy (Naura Scic) No6 P Mi, Xiaoi (24) Saisics i Lif Isurac Thory Bijig Saisics No Wagya (28) Acuaria Scic of Lif Isurac Bijig, Chia Rmi Uivrsiy Prss May, 28 P2-7 Wi, Zogshu (24) Tuoria of Probabiiy Thory ad Mahmaica Saisics Bijig, Highr Educaio Prss Aug, 24 Zhag, Miyu (23) Sudy of Rsidua Lif ucio i Riabiiy Thory Joura of Lazhou Uivrsiy of Tchoogy No5 P39-83 Zhou, Jiagiog (26) Th Cosrucig Thory of Lif Tab (2d Ediio) Tiaji, Naai Uivrsiy Prss P9-3 Zou, Gogmig (25) Surviva Mods ad Thir Esimaio Shaghai, Shaghai Uivrsiy of iac & 8

7 Vo 3, No Iraioa Joura of Busiss ad Maagm Ecoomics Prss Aug, 25 Tab Scio-uima if ab Ag ara Dah roorio Surviva Numbr a h bgiig of h rm Dah umbr i h rm Surviva yars i h ag ara Sum of rmaiig if Avrag rmaiig if a h bgiig of h rm -+ r ds T Tab 2 Us ad comuaio of scio-uima if ab [] [+] [+2] [+3] [+4] [+5] Tab 3 ucio comariso aaysis of if ab udr hr hyohss fucio v disribuio cosa dah forc Bucci -- ( ) - - ( ) y+ y -- y ( y ) + ( ) fr() --u 2 [ ( ) ] 82

www.akcp.com Virtual Sensors

www.akcp.com Virtual Sensors www.akcp.cm Irduci: Virual Ssrs Virual ssrs ca b a vry pwrful l i yur mirig sysm. O h scuriyprb yu ca hav up 80 f hs virual ssrs ad hy allw fr a muliud f applicais. Igrai wih MODBUS wrks wih h scuriyprb

More information

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ). PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

More information

Decision Making in Finance: Time Value of Money, Cost of Capital and Dividend Policy

Decision Making in Finance: Time Value of Money, Cost of Capital and Dividend Policy Chapr 11 Dcisio Maig i Fiac: Tim Valu of Moy, Cos of Capial ad Dividd olicy Babia Goyal Ky words: rs valu of a flow, fuur valu of a flow, auiy, doublig priod, compoudig, ffciv irs ra, omial irs ra, rur,

More information

Problem Set 6 Solutions

Problem Set 6 Solutions 6.04/18.06J Mathmatics for Computr Scic March 15, 005 Srii Dvadas ad Eric Lhma Problm St 6 Solutios Du: Moday, March 8 at 9 PM Problm 1. Sammy th Shar is a fiacial srvic providr who offrs loas o th followig

More information

Numerical Algorithm for the Stochastic Present Value of Aggregate Claims in the Renewal Risk Model

Numerical Algorithm for the Stochastic Present Value of Aggregate Claims in the Renewal Risk Model Gn. Mah. Nos, Vol. 9, No. 2, Dcmbr, 23, pp. 4- ISSN 229-784; Copyrigh ICSRS Publicaion, 23 www.i-csrs.org Availabl fr onlin a hp://www.gman.in Numrical Algorihm for h Sochasic Prsn Valu of Aggrga Claims

More information

SIF 8035 Informasjonssystemer Våren 2001

SIF 8035 Informasjonssystemer Våren 2001 SIF 8035 Iformasjossysmr Vår 2001 Øvig 6 SAP Løsigsforslag Cas scripio Th compay IDES AG is a Grma-bas car proucr, which buys car pars (bumprs) from BMW a Volkswag. Th compay is maag from Hamburg, hough

More information

Forecasting Demand of Potential Factors in Data Centers

Forecasting Demand of Potential Factors in Data Centers Iformaica Ecoomică vol. 3, o. /29 9 Forcasig Dmad of Poial Facors i Daa rs Alxadr PINNOW, Sfa OSTERBURG, Lars HANISH Oo-vo-Guric-Uivrsiy, Magdburg, Grmay {alxadr.piow sfa.osrburg lars.haisch}@ii.cs.ui-magdburg.d

More information

Why we use compounding and discounting approaches

Why we use compounding and discounting approaches Comoudig, Discouig, ad ubiased Growh Raes Near Deb s school i Souher Colorado. A examle of slow growh. Coyrigh 000-04, Gary R. Evas. May be used for o-rofi isrucioal uroses oly wihou ermissio of he auhor.

More information

Term Structure of Interest Rates: The Theories

Term Structure of Interest Rates: The Theories Handou 03 Econ 333 Abdul Munasb Trm Srucur of Inrs Ras: Th Thors Trm Srucur Facs Lookng a Fgur, w obsrv wo rm srucur facs Fac : Inrs ras for dffrn maurs nd o mov oghr ovr m Fac : Ylds on shor-rm bond mor

More information

GROUP MEDICAL INSURANCE PROPOSAL FORM GROUP MEDICAL INSURANCE PROPOSAL FORM

GROUP MEDICAL INSURANCE PROPOSAL FORM GROUP MEDICAL INSURANCE PROPOSAL FORM Call us: 920012331 www.acig.com.sa Allid Cooprativ Isurac Group (ACIG) شركة املجموعة املتحدة للتاأمني التعاوين ) أ سيج( GROUP MEDICAL INSURANCE GROUP MEDICAL INSURANCE Clit Dtails: - GROUP MEDICAL INSURANCE

More information

Chad Saunders 1, Richard E Scott 2

Chad Saunders 1, Richard E Scott 2 Chad Sauds 1, Richad E Sco 2 1 Haskay School of Busiss. 2 Dpam of Commuiy Halh Scics ad Family Mdici / Dico, Offic of Global -Halh Sagy. Uivsiy of Calgay, Calgay, Alba, Caada Md--Tl 2013 Luxmboug, G. D.

More information

TIME VALUE OF MONEY: APPLICATION AND RATIONALITY- AN APPROACH USING DIFFERENTIAL EQUATIONS AND DEFINITE INTEGRALS

TIME VALUE OF MONEY: APPLICATION AND RATIONALITY- AN APPROACH USING DIFFERENTIAL EQUATIONS AND DEFINITE INTEGRALS MPRA Muich Prsoal RPEc Archiv TIME VALUE OF MONEY: APPLICATION AND RATIONALITY- AN APPROACH USING DIFFERENTIAL EQUATIONS AND DEFINITE INTEGRALS Mahbub Parvz Daffodil Itratioal Uivrsy 6. Dcmbr 26 Oli at

More information

UNDERWRITING AND EXTRA RISKS IN LIFE INSURANCE Katarína Sakálová

UNDERWRITING AND EXTRA RISKS IN LIFE INSURANCE Katarína Sakálová The process of uderwriig UNDERWRITING AND EXTRA RISKS IN LIFE INSURANCE Kaaría Sakálová Uderwriig is he process by which a life isurace compay decides which people o accep for isurace ad o wha erms Life

More information

Chapter 20: Database Programming

Chapter 20: Database Programming Chapr 20: Daaa Prgrammig Pag 303 Chapr 20: Daaa Prgrammig Thi chapr wi hw hw BASIC-256 ca cc a imp raia aaa a u i r a rriv ufu ifrmai. Wha i a Daaa: A aaa i impy a rgaiz cci f umr, rig, a hr yp f ifrmai.

More information

CEO Björn Ivroth. Oslo, 29 April 2015. Q1 2015 Presentation

CEO Björn Ivroth. Oslo, 29 April 2015. Q1 2015 Presentation CEO Björ Ivroh Oslo, 29 April 2015 2015 Prsaio Par I `15 Rpor o Highlighs o Group o Sgms o Fiac Par II Mark oulook Summary Appdix 2015 prsaio 2 Highlighs Lyg Bidco AS has acquird 88 % of h shars o No icludig

More information

Econ 371: Answer Key for Problem Set 1 (Chapter 12-13)

Econ 371: Answer Key for Problem Set 1 (Chapter 12-13) con 37: Answr Ky for Problm St (Chaptr 2-3) Instructor: Kanda Naknoi Sptmbr 4, 2005. (2 points) Is it possibl for a country to hav a currnt account dficit at th sam tim and has a surplus in its balanc

More information

Technological Entrepreneurship : Modeling and Forecasting the Diffusion of Innovation in LCD Monitor Industry

Technological Entrepreneurship : Modeling and Forecasting the Diffusion of Innovation in LCD Monitor Industry 0 Inrnaional Confrnc on Economics and Financ Rsarch IPEDR vol.4 (0 (0 IACSIT Prss, Singaor Tchnological Enrrnurshi : Modling and Forcasing h Diffusion of Innovaion in LCD Monior Indusry Li-Ming Chuang,

More information

Campus Sustainability Assessment and Related Literature

Campus Sustainability Assessment and Related Literature Campus Sustainability Assessment and Related Literature An Annotated Bibliography and Resource Guide Andrew Nixon February 2002 Campus Sustainability Assessment Review Project Telephone: (616) 387-5626

More information

QUALITY OF DYING AND DEATH QUESTIONNAIRE FOR NURSES VERSION 3.2A

QUALITY OF DYING AND DEATH QUESTIONNAIRE FOR NURSES VERSION 3.2A UNIVERSITY OF WASHINGTON SCHOOL OF MEDICINE QUALITY OF DYING AND DEATH QUESTIONNAIRE FOR NURSES VERSION 3.2A Plas rurn your compld qusionnair in h nclosd nvlop o: [Rurn Addrss] RNID PID Copyrigh by h Univrsiy

More information

Outline. - The Trafo Project - 1. Introduction of GEF Ingenieur AG and Trafo Project. 2. Intregrating Renewables into the Jena District Heating System

Outline. - The Trafo Project - 1. Introduction of GEF Ingenieur AG and Trafo Project. 2. Intregrating Renewables into the Jena District Heating System omey Iaioal Cofc Dcmb,, - Th Tafo Pojc - iai Rwabls io xi Dic Hai Sysms Dipl.-I. (FH) Ssa Ochs GEF Ii AG Fdiad-Posch-S. a 9 im [email protected] www.f.d Oli. Iodcio of GEF Ii AG ad Tafo Pojc. Iai Rwabls io h Ja

More information

Mathematical Modeling of Life Insurance Policies

Mathematical Modeling of Life Insurance Policies Europea Joura of Busiess a Maageme ISSN -905 (Paper) ISSN -839 (Oie) o 3, No.4, 0 Mahemaica Moeig of Life Isurace Poicies Ui M. Kuub eparme of Mahemaics, Uiversiy of haka, Bagaesh [email protected] Isam

More information

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct H ig h L e v e l O v e r v iew S te p h a n M a rt in S e n io r S y s te m A rc h i te ct OPEN XCHANGE Architecture Overview A ge nda D es ig n G o als A rc h i te ct u re O ve rv i ew S c a l a b ili

More information

WHAT ARE OPTION CONTRACTS?

WHAT ARE OPTION CONTRACTS? WHAT ARE OTION CONTRACTS? By rof. Ashok anekar An oion conrac is a derivaive which gives he righ o he holder of he conrac o do 'Somehing' bu wihou he obligaion o do ha 'Somehing'. The 'Somehing' can be

More information

OFFSHORE INTERNATIONAL MARINE PERSONNEL SERVICES, INC. EMPLOYMENT APPLICATION

OFFSHORE INTERNATIONAL MARINE PERSONNEL SERVICES, INC. EMPLOYMENT APPLICATION OFFSHORE INTERNATIONAL MARINE PERSONNEL SERVICES, INC. 3802 W. Nvy Bvd Po, FL 32507 Tho: (850) 455-2995 Tx: (850) 455-3033 www.oho-.om EMPLOYMENT APPLICATION Poo Ay Fo Nm: F L SS# - - Add Cy/S Z Pho: Hom

More information

MTBF: Understanding Its Role in Reliability

MTBF: Understanding Its Role in Reliability Modul MTBF: Undrsanding Is Rol in Rliabiliy By David C. Wilson Foundr / CEO March 4, Wilson Consuling Srvics, LLC [email protected] www.wilsonconsulingsrvics.n Wilson Consuling Srvics, LLC Pag

More information

Finite Dimensional Vector Spaces.

Finite Dimensional Vector Spaces. Lctur 5. Ft Dmsoal Vctor Spacs. To b rad to th musc of th group Spac by D.Maruay DEFINITION OF A LINEAR SPACE Dfto: a vctor spac s a st R togthr wth a oprato calld vctor addto ad aothr oprato calld scalar

More information

Bullwhip Effect Measure When Supply Chain Demand is Forecasting

Bullwhip Effect Measure When Supply Chain Demand is Forecasting J. Basic. Appl. Sci. Res., (4)47-43, 01 01, TexRoad Publicaio ISSN 090-4304 Joural of Basic ad Applied Scieific Research www.exroad.com Bullwhip Effec Measure Whe Supply Chai emad is Forecasig Ayub Rahimzadeh

More information

G ri d m on i tori n g w i th N A G I O S (*) (*) Work in collaboration with P. Lo Re, G. S av a and G. T ortone WP3-I CHEP 2000, N F N 10.02.2000 M e e t i n g, N a p l e s, 29.1 1.20 0 2 R o b e r 1

More information

AP Calculus AB 2008 Scoring Guidelines

AP Calculus AB 2008 Scoring Guidelines AP Calculus AB 8 Scoring Guidlins Th Collg Board: Conncting Studnts to Collg Succss Th Collg Board is a not-for-profit mmbrship association whos mission is to connct studnts to collg succss and opportunity.

More information

INFLUENCE OF DEBT FINANCING ON THE EFFECTIVENESS OF THE INVESTMENT PROJECT WITHIN THE MODIGLIANIMILLER THEORY

INFLUENCE OF DEBT FINANCING ON THE EFFECTIVENESS OF THE INVESTMENT PROJECT WITHIN THE MODIGLIANIMILLER THEORY VOUME 2, 2 NFUENCE OF DEBT FNANCNG ON THE EFFECTVENE OF THE NVETMENT PROJECT WTHN THE MODGANMER THEORY Pr Brusov, Taaa Flaova, Naal Orhova, Pavl Brusov, Nasa Brusova Fac Uvrsy ur h Govrm of h Russa Frao,

More information

Pointer Analysis. Outline: What is pointer analysis Intraprocedural pointer analysis Interprocedural pointer analysis. Andersen and Steensgaard

Pointer Analysis. Outline: What is pointer analysis Intraprocedural pointer analysis Interprocedural pointer analysis. Andersen and Steensgaard Poiner anaysis Poiner Anaysis Ouine: Wha is oiner anaysis Inrarocedura oiner anaysis Inerrocedura oiner anaysis Andersen and Seensgaard Poiner and Aias Anaysis Aiases: wo exressions ha denoe he same memory

More information

Improving Survivability through Traffic Engineering in MPLS Networks

Improving Survivability through Traffic Engineering in MPLS Networks Improvig Survivabiiy hrough Traffic Egieerig i MPLS Neworks Mia Ami, Ki-Ho Ho, George Pavou, ad Michae Howarh Cere for Commuicaio Sysems Research, Uiversiy of Surrey, UK Emai:{M.Ami, K.Ho, G.Pavou, M.Howarh}@eim.surrey.ac.uk

More information

Many quantities are transduced in a displacement and then in an electric signal (pressure, temperature, acceleration). Prof. B.

Many quantities are transduced in a displacement and then in an electric signal (pressure, temperature, acceleration). Prof. B. Displacmn snsors Many quaniis ar ransducd in a displacmn and hn in an lcric signal (prssur, mpraur, acclraion). Poniomrs Poniomrs i p p i o i p A poniomr is basd on a sliding conac moving on a rsisor.

More information

1 9 / m S t a n d a r d w y m a g a ń - e g z a m i n m i s t r z o w s k i dla zawodu M E C H A N I K P O J A Z D Ó W S A M O C H O D O W Y C H Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r

More information

CHAPTER 22 ASSET BASED FINANCING: LEASE, HIRE PURCHASE AND PROJECT FINANCING

CHAPTER 22 ASSET BASED FINANCING: LEASE, HIRE PURCHASE AND PROJECT FINANCING CHAPTER 22 ASSET BASED FINANCING: LEASE, HIRE PURCHASE AND PROJECT FINANCING Q.1 Defie a lease. How does i differ from a hire purchase ad isalme sale? Wha are he cash flow cosequeces of a lease? Illusrae.

More information

Question 3: How do you find the relative extrema of a function?

Question 3: How do you find the relative extrema of a function? ustion 3: How do you find th rlativ trma of a function? Th stratgy for tracking th sign of th drivativ is usful for mor than dtrmining whr a function is incrasing or dcrasing. It is also usful for locating

More information

A panel data approach for fashion sales forecasting

A panel data approach for fashion sales forecasting A pael daa approach for fashio sales forecasig Shuyu Re([email protected]), Tsa-Mig Choi, Na Liu Busiess Divisio, Isiue of Texiles ad Clohig, The Hog Kog Polyechic Uiversiy, Hug Hom, Kowloo, Hog Kog Absrac:

More information

Analysis Method of Traffic Congestion Degree Based on Spatio-Temporal Simulation

Analysis Method of Traffic Congestion Degree Based on Spatio-Temporal Simulation (IJACSA) Iraioal Joural of Advad Compur Si ad Appliaios, Vol. 3, o.4, 2012 Aalysis hod of Traffi Cogsio Dgr Basd o Spaio-Tmporal Simulaio Shuli H Dparm of aagm Liaoig poli Aadmy Dalia 116036, Chia Absra

More information

Overview of Spellings on www.spellzoo.co.uk

Overview of Spellings on www.spellzoo.co.uk Overview of Spellings on www.spellzoo.co.uk Year 1 Set 1: CVC words Set 2: CVC and CCVC words Set 3: CVC, CCVC and CCVCC words Set 4: Words containing 'ch', 'sh', 'th' and 'wh' Set 5: Words ending in 'll',

More information

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1.

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1. 1. O b l a s t r o z v o j s p o l k a S U U K 1. 1. Z v y š o v á n í k v a l i f i k a c e Š k o l e n í o S t u d e n t s k á u n i e U n i v e r z i t y K a r l o v y ( d á l e j e n S U U K ) z í

More information

The First Mathematically Correct Life Annuity Valuation Formula *

The First Mathematically Correct Life Annuity Valuation Formula * James E. Ciecka. 008. he Firs Mahemaicay Correc Life Annuiy. Journa of Lega Economics 5(): pp. 59-63. he Firs Mahemaicay Correc Life Annuiy Vauaion Formua * he sory of he firs acuariay correc specificaion

More information

Mechanical Vibrations Chapter 4

Mechanical Vibrations Chapter 4 Mechaical Vibraios Chaper 4 Peer Aviabile Mechaical Egieerig Deparme Uiversiy of Massachuses Lowell 22.457 Mechaical Vibraios - Chaper 4 1 Dr. Peer Aviabile Modal Aalysis & Corols Laboraory Impulse Exciaio

More information

Mortality Variance of the Present Value (PV) of Future Annuity Payments

Mortality Variance of the Present Value (PV) of Future Annuity Payments Morali Variance of he Presen Value (PV) of Fuure Annui Pamens Frank Y. Kang, Ph.D. Research Anals a Frank Russell Compan Absrac The variance of he presen value of fuure annui pamens plas an imporan role

More information

Essence of the Projector Augmented Wave (PAW) Method used in QMAS

Essence of the Projector Augmented Wave (PAW) Method used in QMAS ss o h Poo ugd Wv PW Mhod usd MS Mso Kohy sh Isu o Ubquous gy Dvs No Isu o dvd Idus S d hoogy Id Os J [email protected]. No Isu o dvd Idus S & hoogy IS Ou o u. Psudo-Pos d Poos &. soo hoy: Wv Fuos xo Vus d Chg

More information

Managing money and making a profit

Managing money and making a profit Managing money and making a profit For your information How to get the most from today s workshop Ask questions Participate Worksheets Action Pan Today s objectives To hep you gain a greater understanding

More information

Managing Learning and Turnover in Employee Staffing*

Managing Learning and Turnover in Employee Staffing* Maagig Learig ad Turover i Employee Saffig* Yog-Pi Zhou Uiversiy of Washigo Busiess School Coauhor: Noah Gas, Wharo School, UPe * Suppored by Wharo Fiacial Isiuios Ceer ad he Sloa Foudaio Call Ceer Operaios

More information

PARTICULAR RELIABILITY CHARACTERISTICS OF TWO ELEMENT PARALLEL TECHNICAL (MECHATRONIC) SYSTEMS

PARTICULAR RELIABILITY CHARACTERISTICS OF TWO ELEMENT PARALLEL TECHNICAL (MECHATRONIC) SYSTEMS Maagm Sysms Produco Egrg No 3 7 pp 3 8 PARICULAR RELIABILIY CHARACERISICS O WO ELEMEN PARALLEL ECHNICAL MECHARONIC SYSEMS Zbgw MAUSZAK Marm Uvrsy o Szczc Absrac: h papr characrzs h basc dsrbuos o alur

More information

Numerical modeling of metal cutting processes using the Particle Finite Element Method

Numerical modeling of metal cutting processes using the Particle Finite Element Method Numrical modlig of mal cuig rocsss usig h Paricl Fii Elm Mhod by Jua Maul Rodriguz Prio Advisors Jua Carlos Ca Trá Xavir Olivr Olivlla Barcloa, Ocobr 3 Absrac Mal cuig or machiig is a rocss i which a

More information

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957

More information

SCO TT G LEA SO N D EM O Z G EB R E-

SCO TT G LEA SO N D EM O Z G EB R E- SCO TT G LEA SO N D EM O Z G EB R E- EG Z IA B H ER e d it o r s N ) LICA TIO N S A N D M ETH O D S t DVD N CLUDED C o n t e n Ls Pr e fa c e x v G l o b a l N a v i g a t i o n Sa t e llit e S y s t e

More information

COLLECTIVE RISK MODEL IN NON-LIFE INSURANCE

COLLECTIVE RISK MODEL IN NON-LIFE INSURANCE Ecoomic Horizos, May - Augus 203, Volume 5, Number 2, 67-75 Faculy of Ecoomics, Uiversiy of Kragujevac UDC: 33 eissn 227-9232 www. ekfak.kg.ac.rs Review paper UDC: 005.334:368.025.6 ; 347.426.6 doi: 0.5937/ekohor30263D

More information

8 / c S t a n d a r d w y m a g a ń - e g z a m i n c z e l a d n i c z y dla zawodu Ś L U S A R Z Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji zawodów

More information

How to Subnet a Network How to use this paper Absolute Beginner: Read all Sections 1-4 N eed a q uick rev iew : Read Sections 2-4 J ust need a little h elp : Read Section 4 P a r t I : F o r t h e I P

More information

bow bandage candle buildings bulb coins barn cap corn

bow bandage candle buildings bulb coins barn cap corn b c bow bandage candle buildings bulb coins barn cap corn Copyright (C) 1999 Senari Programs Page 1 SoundBox Montessori d f darts dice door dove forest farm film foot fish Copyright (C) 1999 Senari Programs

More information

A Note on Approximating. the Normal Distribution Function

A Note on Approximating. the Normal Distribution Function Applid Mathmatical Scincs, Vol, 00, no 9, 45-49 A Not on Approimating th Normal Distribution Function K M Aludaat and M T Alodat Dpartmnt of Statistics Yarmouk Univrsity, Jordan Aludaatkm@hotmailcom and

More information

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur Module 4 Single-phase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,

More information

Approximate Counters for Flash Memory

Approximate Counters for Flash Memory Approximat Coutrs for Flash Mmory Jack Cichoń ad Wojcich Macya Istitut of Mathmatics ad Computr Scic Wrocław Uivrsity of Tchology, Polad Abstract Flash mmory bcoms th a vry popular storag dvic Du to its

More information

Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu

Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u i s p r z» t a n i a o b i e k t ó w G d y s k i e C eo n t r u m S p o r t us I S t a d i o n p i ł k a r s k i

More information

Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage

Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage CAS Loss Reserve Seminar 23 Session 3 Private Passenger Automobile Insurance Frank Cacchione Carlos Ariza September 8, 23 Today

More information

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F. Hf Cd Na Nb Lr Ho Bi Ce u Ac I Fl Fr Mo i Md Co P Pa Tc Uut Rh K N Dy Cl N Am b At Md H Y Bh Cm H Bi s Mo Uus Lu P F Cu Ar Ag Mg K Thomas Jefferson National Accelerator Facility - Office of cience ducation

More information

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST:

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST: .4 Eponntial Functions: Diffrntiation an Intgration TOOTLIFTST: Eponntial functions ar of th form f ( ) Ab. W will, in this sction, look at a spcific typ of ponntial function whr th bas, b, is.78.... This

More information

R e t r o f i t o f t C i r u n i s g e C o n t r o l

R e t r o f i t o f t C i r u n i s g e C o n t r o l R e t r o f i t o f t C i r u n i s g e C o n t r o l VB Sprinter D e s c r i p t i o n T h i s r e t r o f i t c o n s i s t s o f i n s t a l l i n g a c r u i s e c o n t r o l s wi t c h k i t i n

More information

1. Online Event Registration 2. Event Marketing 3. Automated Event Progress Reports 4. Web based Point of Sale Terminal 5. Email Marketing System

1. Online Event Registration 2. Event Marketing 3. Automated Event Progress Reports 4. Web based Point of Sale Terminal 5. Email Marketing System 2 t v E S d Ivit 3 M o it o r ro la 1 r g 1 Oli Evt Rgitratio 2 Evt Marktig 3 Automatd Evt rogr Rport 4 Wb bad oit of Sal Trmial 5 Email Marktig Sytm ag 1 of 6 Copyright 2004-2011 myvillag oli Evt Maagmt

More information

GENETIC ALGORITHMS IN SEASONAL DEMAND FORECASTING

GENETIC ALGORITHMS IN SEASONAL DEMAND FORECASTING forcasing, dmand, gnic algorihm Grzgorz Chodak*, Wiold Kwaśnicki* GENETIC ALGORITHMS IN SEASONAL DEMAND FORECASTING Th mhod of forcasing sasonal dmand applying gnic algorihm is prsnd. Spcific form of usd

More information

Chapter 8: Regression with Lagged Explanatory Variables

Chapter 8: Regression with Lagged Explanatory Variables Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One

More information

ALCOHOL, TOXINS, CALORIES CUT OUT THE ADVERSE EFFECTS OF ALCOHOL

ALCOHOL, TOXINS, CALORIES CUT OUT THE ADVERSE EFFECTS OF ALCOHOL COHOL, TOXINS, CORIES CUT OUT THE ADVERSE EFFECTS OF COHOL THE NEW SOCI SIGNIFICANCE OF COHOL WHO CONSUMES COHOL Today howvr any pop hav diffrn socia occasis in which o cs acohic bvras in odrai and hrfor

More information

How To Get A Better Price On A Drug

How To Get A Better Price On A Drug Biomial approximaio mhos for opio pricig Yasir hrwai U.U.D.M. Proc Rpor 7: Examsarb i mamaik poäg Halar och xamiaor: Joha ysk Ji 7 Dparm of Mahmaics Uppsala Uivrsiy Biomial Approximaio Mhos for Opio Pricig

More information

TERM INSURANCE CALCULATION ILLUSTRATED. This is the U.S. Social Security Life Table, based on year 2007.

TERM INSURANCE CALCULATION ILLUSTRATED. This is the U.S. Social Security Life Table, based on year 2007. This is the U.S. Socia Security Life Tabe, based on year 2007. This is avaiabe at http://www.ssa.gov/oact/stats/tabe4c6.htm. The ife eperiences of maes and femaes are different, and we usuay do separate

More information

Circle Geometry (Part 3)

Circle Geometry (Part 3) Eam aer 3 ircle Geomery (ar 3) emen andard:.4.(c) yclic uadrilaeral La week we covered u otheorem 3, he idea of a convere and we alied our heory o ome roblem called IE. Okay, o now ono he ne chunk of heory

More information

Modelling Time Series of Counts

Modelling Time Series of Counts Modellig ime Series of Cous Richard A. Davis Colorado Sae Uiversiy William Dusmuir Uiversiy of New Souh Wales Yig Wag Colorado Sae Uiversiy /3/00 Modellig ime Series of Cous wo ypes of Models for Poisso

More information

Adverse Selection and Moral Hazard in a Model With 2 States of the World

Adverse Selection and Moral Hazard in a Model With 2 States of the World Advrs Slction and Moral Hazard in a Modl With 2 Stats of th World A modl of a risky situation with two discrt stats of th world has th advantag that it can b natly rprsntd using indiffrnc curv diagrams,

More information

New Basis Functions. Section 8. Complex Fourier Series

New Basis Functions. Section 8. Complex Fourier Series Nw Basis Functions Sction 8 Complx Fourir Sris Th complx Fourir sris is prsntd first with priod 2, thn with gnral priod. Th connction with th ral-valud Fourir sris is xplaind and formula ar givn for convrting

More information

PRESS RELEASE Sw y x e m b r a c e s En t e r p r i s e m a r k e t w i t h l a u n c h o f n e w I P t e l e p h o n y p o r t f o l i o t h r o u g h a s i n g l e c o m m o n p l a t f o r m - New offerings

More information

PSYCHOLOGY AT SUNY POTSDAM

PSYCHOLOGY AT SUNY POTSDAM PSYCHOLOGY AT SUNY POTSDAM Ars & Scincs Awards Crmony A Fall 2014 Easrn Psychological Ars Associaion & Scincs Confrnc 1 Award Crmony 1 Psychology 2014 Awards..2 2 Gradua Gradua School School upda Upda..4

More information

G d y n i a U s ł u g a r e j e s t r a c j i i p o m i a r u c z a s u u c z e s t n i k ó w i m p r e z s p o r t o w y c h G d y s k i e g o O r o d k a S p o r t u i R e k r e a c j i w r o k u 2 0

More information

SCHOOL PESTICIDE SAFETY AN D IN TEG R ATED PEST M AN AG EM EN T Statutes put into law by the Louisiana Department of Agriculture & Forestry to ensure the safety and well-being of children and school personnel

More information

CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions

CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions CPS 22 Thory of Computation REGULAR LANGUAGES Rgular xprssions Lik mathmatical xprssion (5+3) * 4. Rgular xprssion ar built using rgular oprations. (By th way, rgular xprssions show up in various languags:

More information

QUANTITATIVE METHODS CLASSES WEEK SEVEN

QUANTITATIVE METHODS CLASSES WEEK SEVEN QUANTITATIVE METHODS CLASSES WEEK SEVEN Th rgrssion modls studid in prvious classs assum that th rspons variabl is quantitativ. Oftn, howvr, w wish to study social procsss that lad to two diffrnt outcoms.

More information

Automobile Sales Modeling using Granger-Causality Graph with PROC VARMAX in SAS 9.3

Automobile Sales Modeling using Granger-Causality Graph with PROC VARMAX in SAS 9.3 uomobie Saes Modeig usig Grager-Causai Grah wih PROC VRMX i SS 9.3 BSTRCT kkarao Sa-gasoogsog ad Saish T.S. Bukkaaam Okahoma Sae Uiversi, Siwaer, OK, US Predicio of saes has aed a crucia roe for roducio

More information

How To Work For A Company

How To Work For A Company Trasformig Ass Capabiliis a Bord Gáis Nworks Paul Lo EGATEC 2011 Cos Ovrviw of Bord Gáis Nworks Visio ad Scop of h Nworks Trasformaio Programm Dvlopm of Ass Dparm Challgs ad Bfis 2 2 Bord Gáis Nworks Ovrviw

More information

Vector Autoregressions (VARs): Operational Perspectives

Vector Autoregressions (VARs): Operational Perspectives Vecor Auoregressions (VARs): Operaional Perspecives Primary Source: Sock, James H., and Mark W. Wason, Vecor Auoregressions, Journal of Economic Perspecives, Vol. 15 No. 4 (Fall 2001), 101-115. Macroeconomericians

More information

Brussels, February 28th, 2013 WHAT IS

Brussels, February 28th, 2013 WHAT IS Brussls, Fbruary 28h, 2013 WHAT IS 1 OPEN SOURCE 2 CLOUD 3 SERVICES 4 BROKER 5 INTERMEDIATION AGGREGATION ARBITRAGE Cloud Srvics Brokr provids a singl consisn inrfac o mulipl diffring providrs, whhr h

More information

Derivative Securities: Lecture 7 Further applications of Black-Scholes and Arbitrage Pricing Theory. Sources: J. Hull Avellaneda and Laurence

Derivative Securities: Lecture 7 Further applications of Black-Scholes and Arbitrage Pricing Theory. Sources: J. Hull Avellaneda and Laurence Deivaive ecuiies: Lecue 7 uhe applicaios o Black-choles ad Abiage Picig heoy ouces: J. Hull Avellaeda ad Lauece Black s omula omeimes is easie o hik i ems o owad pices. Recallig ha i Black-choles imilaly

More information

http://www.ejournalofscience.org Monitoring of Network Traffic based on Queuing Theory

http://www.ejournalofscience.org Monitoring of Network Traffic based on Queuing Theory VOL., NO., November ISSN XXXX-XXXX ARN Joural of Sciece a Techology - ARN Jourals. All righs reserve. hp://www.ejouralofsciece.org Moiorig of Newor Traffic base o Queuig Theory S. Saha Ray,. Sahoo Naioal

More information

2.5 Life tables, force of mortality and standard life insurance products

2.5 Life tables, force of mortality and standard life insurance products Soluions 5 BS4a Acuarial Science Oford MT 212 33 2.5 Life ables, force of moraliy and sandard life insurance producs 1. (i) n m q represens he probabiliy of deah of a life currenly aged beween ages + n

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Manual for SOA Eam MLC. Chapter 4. Life Insurance. Etract from: Arcones Manual for the SOA Eam MLC. Fall 2009 Edition. available at http://www.actemadriver.com/ Manual for SOA Eam MLC. 1/9 Payments at

More information

Online Department Stores. What are we searching for?

Online Department Stores. What are we searching for? Online Department Stores What are we searching for? 2 3 CONTENTS Table of contents 02 Table of contents 03 Search 06 Fashion vs. footwear 04 A few key pieces 08 About SimilarWeb Stepping up the Competition

More information

BLADE 12th Generation. Rafał Olszewski. Łukasz Matras

BLADE 12th Generation. Rafał Olszewski. Łukasz Matras BLADE 12th Generation Rafał Olszewski Łukasz Matras Jugowice, 15-11-2012 Gl o b a l M a r k e t i n g Dell PowerEdge M-Series Blade Server Portfolio M-Series Blades couple powerful computing capabilities

More information

REVISTA INVESTIGACION OPERACIONAL VOL. 31, No.2, 159-170, 2010

REVISTA INVESTIGACION OPERACIONAL VOL. 31, No.2, 159-170, 2010 REVISTA INVESTIGACION OPERACIONAL VOL. 3, No., 59-70, 00 AN ALGORITHM TO OBTAIN AN OPTIMAL STRATEGY FOR THE MARKOV DECISION PROCESSES, WITH PROBABILITY DISTRIBUTION FOR THE PLANNING HORIZON. Gouliois E.

More information

Reaction Rates. Example. Chemical Kinetics. Chemical Kinetics Chapter 12. Example Concentration Data. Page 1

Reaction Rates. Example. Chemical Kinetics. Chemical Kinetics Chapter 12. Example Concentration Data. Page 1 Page Chemical Kieics Chaper O decomposiio i a isec O decomposiio caalyzed by MO Chemical Kieics I is o eough o udersad he soichiomery ad hermodyamics of a reacio; we also mus udersad he facors ha gover

More information

Pricing Warrants Models: An Empirical Study of the Indonesian Market

Pricing Warrants Models: An Empirical Study of the Indonesian Market Pricig Warras Modls: A Epirical udy of Idosia Mark Zouair BEN HELIFA Waji ABBAI Absrac ai issu durig priods of fiacial crisis is o rsor isor s cofidc ad arac back o fiacial arks. us, warras a b a gra lp

More information

Personal Details. Surname: First Name/s: Wits Student Number/ Application Number: Cellphone Number: Email Address:

Personal Details. Surname: First Name/s: Wits Student Number/ Application Number: Cellphone Number: Email Address: Wits Hoours Pros i Pschoo 2016: i partta Prsoa tais Su: First Na/s: i Wits Stut Nubr/ Aicatio Nubr: Cpho Nubr: Eai Arss: To which hoours pro i Pschoo ar ou ai a aicatio? Hoours i isatioa Pschoo Hoours

More information

SEPTEMBER Unit 1 Page Learning Goals 1 Short a 2 b 3-5 blends 6-7 c as in cat 8-11 t 12-13 p

SEPTEMBER Unit 1 Page Learning Goals 1 Short a 2 b 3-5 blends 6-7 c as in cat 8-11 t 12-13 p The McRuffy Kindergarten Reading/Phonics year- long program is divided into 4 units and 180 pages of reading/phonics instruction. Pages and learning goals covered are noted below: SEPTEMBER Unit 1 1 Short

More information

FORECASTING MODEL FOR AUTOMOBILE SALES IN THAILAND

FORECASTING MODEL FOR AUTOMOBILE SALES IN THAILAND FORECASTING MODEL FOR AUTOMOBILE SALES IN THAILAND by Wachareepor Chaimogkol Naioal Isiue of Developme Admiisraio, Bagkok, Thailad Email: [email protected] ad Chuaip Tasahi Kig Mogku's Isiue of Techology

More information

Forecasting Sales: A Model and Some Evidence from the Retail Industry. Russell Lundholm Sarah McVay Taylor Randall

Forecasting Sales: A Model and Some Evidence from the Retail Industry. Russell Lundholm Sarah McVay Taylor Randall Forecasing Sales: A odel and Some Evidence from he eail Indusry ussell Lundholm Sarah cvay aylor andall Why forecas financial saemens? Seems obvious, bu wo common criicisms: Who cares, can we can look

More information

Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.

Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches. Appendi A: Area worked-ou s o Odd-Numbered Eercises Do no read hese worked-ou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa

More information

Sharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means

Sharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means Qian t al. Journal of Inqualitis and Applications (015) 015:1 DOI 10.1186/s1660-015-0741-1 R E S E A R C H Opn Accss Sharp bounds for Sándor man in trms of arithmtic, gomtric and harmonic mans Wi-Mao Qian

More information