Facts and Myths About image Patterns



Similar documents
University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression

Normal Distribution as an Approximation to the Binomial Distribution


Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin

problem arises when only a non-random sample is available differs from censored regression model in that x i is also unobserved

Linear Classification. Volker Tresp Summer 2015

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

!!! 2014!!2015!NONPROFIT!SALARY!&!STAFFING!REPORT! NEW$YORK$CITY$AREA$ $ $ $ $ $ $

HETEROGENEOUS AGENTS AND AGGREGATE UNCERTAINTY. Daniel Harenberg University of Mannheim. Econ 714,

Christfried Webers. Canberra February June 2015

Triple Integrals in Cylindrical or Spherical Coordinates

A General Approach to Variance Estimation under Imputation for Missing Survey Data

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

Trigonometry Hard Problems

Rotation of Axes 1. Rotation of Axes. At the beginning of Chapter 5 we stated that all equations of the form

Reject Inference in Credit Scoring. Jie-Men Mok

Root Locus. E(s) K. R(s) C(s) 1 s(s+a) Consider the closed loop transfer function:

Predict Influencers in the Social Network

Probability for Estimation (review)

ECON1003: Analysis of Economic Data Fall 2003 Answers to Quiz #2 11:40a.m. 12:25p.m. (45 minutes) Tuesday, October 28, 2003

Computing Euler angles from a rotation matrix

CS 431/636 Advanced Rendering Techniques"

Section 5.1 Continuous Random Variables: Introduction

Lecture 3: Linear methods for classification

Phi Theta Kappa Membership. An Honor Earned. Click Here to Learn More. Members & advisor of Omega Nu, Delgado Community College, New Orleans, LA

The Vector or Cross Product

Chapter 10. RC Circuits ISU EE. C.Y. Lee

HIPAA Privacy Board Overview

Pattern Analysis. Logistic Regression. 12. Mai Joachim Hornegger. Chair of Pattern Recognition Erlangen University

Electromagnetism - Lecture 2. Electric Fields

Complex Numbers. w = f(z) z. Examples

THE SINE PRODUCT FORMULA AND THE GAMMA FUNCTION

4.5 Chebyshev Polynomials

Lecture 9. Poles, Zeros & Filters (Lathi 4.10) Effects of Poles & Zeros on Frequency Response (1) Effects of Poles & Zeros on Frequency Response (3)

Section 5.4 More Trigonometric Graphs. Graphs of the Tangent, Cotangent, Secant, and Cosecant Function

Forces & Magnetic Dipoles. r r τ = μ B r

How to Obtain Financial Success in 2009?

Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014

FLUID MECHANICS. TUTORIAL No.7 FLUID FORCES. When you have completed this tutorial you should be able to. Solve forces due to pressure difference.

Lecture 4: BK inequality 27th August and 6th September, 2007

Classification Problems

A hidden Markov model for criminal behaviour classification

Online Supplementary Material


Capital Budgeting: Decision. Example. Net Present Value (NPV) FINC 3630 Yost

EDUCATION: Ph.D. May 2017 (expected) West Virginia University, Morgantown, WV Psychology (Behavioral Neuroscience)

Introduction to the Monte Carlo method

Solving Cubic Polynomials

Eligibility to Serve as a Principal Investigator for Research Involving Human Subjects

Why Use Net Present Value? The Payback Period Method The Discounted Payback Period Method The Average Accounting Return Method The Internal Rate of

Today in Physics 217: the method of images

Dongfeng Li. Autumn 2010

9231 FURTHER MATHEMATICS

Basics of Statistical Machine Learning

How to Graph Trigonometric Functions

5 Directed acyclic graphs

Section 9.1 Vectors in Two Dimensions

THE COMPLEX EXPONENTIAL FUNCTION

Ethics, Privilege, and Practical Issues in Cloud Computing, Privacy, and Data Protection: HIPAA February 13, 2015

Low Default Portfolio (LDP) modelling

Path tracing everything. D.A. Forsyth

MAT 1341: REVIEW II SANGHOON BAEK

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product

Polarized 3D. Achuta Kadambi, MIT Media Lab. Joint work with Vahe Taamazyan, Boxin Shi, and Ramesh Raskar. MIT Media Lab 2

Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k

Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product

Derive 5: The Easiest... Just Got Better!

Recursive Estimation

2.1 Three Dimensional Curves and Surfaces

Section 9.5: Equations of Lines and Planes

OHIO REGION PHI THETA KAPPA

1 Inner Products and Norms on Real Vector Spaces

An Introduction to Basic Statistics and Probability

Lecture 8: More Continuous Random Variables

V Estrella. Victoria Estrella. Dr. Gail F. Buck. CSA 562: Today s College Students. 7, April, Assignment: Final Report

Given three vectors A, B, andc. We list three products with formula (A B) C = B(A C) A(B C); A (B C) =B(A C) C(A B);

Quantum Algorithms. Peter Høyer

Transcription:

CAR-TR-968 CS-TR-4251 CorneliaFermuller1,HenrikMalm2andYiannisAloimonos1 StatisticsExplainsGeometricalOpticalIllusions 1CenterforAutomationResearchIIS-00-8-1365 CollegePark,MD20742-3275 UniversityofMaryland May2001 2MathematicalImagingGroup(MIG) DepartmentofMathematics(LTH) LundInstituteofTechnology/ S-22100Lund,Sweden LundUniversity P.O.Box118 estimatedfromtheinputdata.however,noiseintheimageintensityanditsderivativescauses Itisproposedinthispaperthatmanygeometricalopticalillusions,aswellasillusionary problemsintheestimationofthefeatures;inparticular,itcausesbias.asaresult,thelocations intersectionsoflines,orlocalimagemovementmustbederived.thatis,thesefeaturesmustbe patternsduetomotionsignalsinlinedrawings,areduetothestatisticsofvisualcomputations. Theinterpretationofimagepatternsisprecededbyastepwhereimagefeaturessuchaslines, Abstract Thisworkrevealsageneraluncertaintyprinciplegoverningtheworkingsofvisionsystems.A offeaturesareperceivederroneouslyandtheappearanceofthepatternsisaltered.thebias occurswithanyvisualprocessingoflinefeatures;underaverageconditionsitisnotlargeenough tobenoticeable,butillusionarypatternsaresuchthatthebiasishighlypronounced.ingeneral, thisbiascannotbeavoided,andanyvisionsystem,biologicalorarticial,mustcopewithit. consequenceofthisprincipleisthepredictionofalargeclassofgeometricopticalillusions. acknowledged,asisthehelpofsaralarsoninpreparingthispaper. ThesupportofthisresearchbytheNationalScienceFoundationundergrantIIS-00-8-1365isgratefully

thestreets.everybookstorehasasectiononthetopic,andmanycuriosityandsouvenirstores carryparaphernaliawithdecorativeillusionarypatterns,suchasthedrawingsofm.c.escher Opticalillusionsareasourceoffascinationtomanypeople.Almosteveryoneisfamiliarwith 1Introduction someillusions,asinrecentyearstheyhaveinltratedthepopularsciencesaswellastheartof ancientgreecedevelopedaverygoodunderstandingofthedistortioneectsinstructuresof numberofdierentexplanationsoeredisevenlarger. probablygettheimpressionthattherearehundredsofseeminglyunrelatedillusions,andthe ationofillustrativeartandexplanatorymaterial.butifonetriestondexplanationshewill orgureswithdoubleinterpretations. largeextentandtheyappliedcompensatorymeasures.asverticalcolumnswouldappearto projects,interactivedemonstrations,lotsofartwork,andevencompaniesdevotedtothecre- Someopticalillusionshavebeenknownsinceantiquity.Forexample,thearchitectsof IfonesearchestheInternet,onewillndmanycollectionsofopticalillusions,manyschool beconvextowardtheground,theyconstructedthemtobeconcave;astallcolumnsarelikely leanoutwardatthetop,theyinclinedtheminward;aslonghorizontalbeamswouldappearto toappearsomewhatshrunkeninthemiddle,theymadethemslightlyswollen.anothereect, appearssmalleratthezeniththanatthehorizon.ptolemyprovidedanexplanationforthis documentedveryearlyinhistory,isthemoonillusion,thatis,thephenomenonthatthemoon canbefoundinhelmholtz'streatiseonphysiologicaloptics[34].sincethen,illusionshave eectthatisstillconsideredtoday. sionsbecamethesubjectofsystematicstudy.alargepartofthendingsofthelastcentury beenstudiedmostlyintheeldofpsychology,andovertheyearstheyhavereceivedvarying amountsofattention.inthelastdecades,withgrowinginterestinthestudyofthemindand eldssuchasneurology,physiology,philosophy,andthecomputationalsciences,inparticular perception,illusionshavealsobeenlookedatoccasionallybyscientistsinothermind-related bythoseinterestedinthemodelingofneuralnetworks. Inthenineteenthcenturyscientistsstartedtobeinterestedinperception,andopticalillu- revealsomethingabouthumanlimitationsandbytheirnatureareobscureandthusfascinating. Butthishasnotbeenthesolereasonforscientists'interest.Fortheoristsofperceptiontheyhave beenusedastestinstrumentsfortheory;thiseortoriginatedfromthefoundersofthegestalt school.astrategyinndingouthowcorrectperceptionoperatesistoobservesituationsin whichmisperceptionoccurs.bycarefullyalteringthestimuliandtestingthechangesinvisual performance,psychologistshavetriedtogaininsightintotheprinciplesofperception. Whatisitthathascausedthislong-standinginterestinopticalillusions?Forone,they inuencesonillusionarypatterns thatis,theattitudeoftheobserver,orientation,thickness, numberoflines,etc.,whichcausethemaximumorminimumillusionaryeectinapattern. animals.usingthisknowledgeitispossibletoinventvariationsonillusionarygures.todo oftheobserver'sagehasbeeninvestigated,andafewstudieshaveevenbeenconductedwith thisthereisnoneedtounderstandinanydeepwayhowanillusionworks. Forsomeofthebestknownillusionscross-culturalstudieshavebeenperformed,theinuence Fromalargenumberofexperimentalstudiesalothasbeenlearnedabouttheparametric areanindicatoroftheforlornnessofthehopeofndingageneraltheorywhichwouldaccount edgethatanyexistingtheorysatisfactorilyexplainsopticalillusions,orthattherearemajor principlesunderlyingclassesofillusions.mostwouldagreewithrobinson[29],whowritesin hisintroductiontogeometricalopticalillusionsthatthelargenumberofillusionsinthisclass Atthistime,however,hardlyanyoneinvolvedinthestudyofperceptionwouldacknowl- 1

wewillreducetheobservationstoafewprinciples,expressedinonegeneraltheorywhichis capableofpredictingthefailuresaswellasthesuccessesoftheperceptualsystem. forallofthem.butthestudyofperceptionisstillataveryearlystage.forcomparison,the universallaw.thuswehavegoodreasontobelievethatasmoreknowledgebecomesavailable, manyphysicallawsexplainingtheseobservations,andmodernphysicsisnowinsearchofthe muchmorematureeldofphysicsstartedoutinasimilarway,withmanyobservationsand termisatranslationofthegermangeometrisch-optischetauschungenandhasbeenused foranyillusionseeninlinedrawings.itwascoinedbyoppel[26]inapaperaboutthe overestimationofaninterruptedascomparedwithanuninterruptedextent,latercalledthe largeextentnexttoasmalloneandtheunderestimationofasmallextentnexttoalargeone, Oppel-Kundtillusion[19]. andzollnerillusions,thefraserspiral,andthecontrasteect(thatis,theoverestimationofa Thebestknownandmoststudiedofallillusionsarethegeometricalopticalillusions.The theoverestimationinbrightnessofabrightentitynexttoadarkone,etc.).thenumberof bequitediverse. illusionarypatternsthatfallinthisclassisverylarge,andtheunderlyingphenomenaseemto SomeotherveryfamousillusionsinthisclassincludetheMuller-Lyer[23],Poggendor, oflines,orlocalimagemotionmustbederived,thatis,theymustbeestimatedfromtheinput sionillusionarypatternsduetomotionsignalsinlinedrawings,areduetothestatisticsofvisual computations.wheninterpretingapattern,featuresintheimagesuchaslines,intersections data.noiseintheinputcausestheestimationofthefeaturestobebiased.asaresult,the enoughtobenoticeable,butillusionarypatternsaresuchthatthebiasisstronglypronounced. locationsoffeaturesareperceivederroneouslyandtheappearanceofthepatternisaltered.the biasoccurswithanyvisualprocessingoflinefeatures;underaverageconditionsitisnotlarge Theclaimofthispaperisthatmanyofthegeometricalopticalillusions,andalsobyexten- astaticpatternweperformeyemovementsandgatheraseriesofimages(eitherbymoving oneyemovements[4]thedatafromanumberofretinalimagesiscombinedintooneimage theeyefreelyoverthepatternorbyxatingatsomepointonit).accordingtoexperts representation.helmholtzreferstotherepresentationoftheretinalimageastheeldofxation (Blickfeld)andtotherepresentationthatmoveswiththeeyeasthevisualglobe(Sehfeld).More recentlythetermsretinotopicframeandstablefeatureframehavebeenused[7]. Insomewhatmoredetail,oureyesreceiveasinputasequenceofimages.Evenifweview sequencewhichserveasinputtofurtherestimationprocesses.forthemodelingconducted hereweconsiderthreekindsofimagemeasurements:thegrayvaluesofimagepoints;small imagemeasurementscanonlybederivedwithinarangeofaccuracy.inotherwords,there edgeelements(edgels);andimagemotionperpendiculartolocaledges(normalow).these rstinterpretationprocessesconsistofestimatinglocaledgesusingasinputalltheavailable orientationsofedgeelements,andinthedirectionsandlengthsofnormalowvectors.the isnoiseinthepositionsandgrayvaluemagnitudesofimagepoints,inthepositionsand Theearlyvisualprocessingapparatusextractslocalimagemeasurementsfromtheimage imagepoints,orestimatingtheintersectionsoflinesusingalltheedgels,orcomputinglocal 2Dimagemotionusingallthenormalowmeasurementsinasmallregion.Theseestimation processesarebiased.thustheperceivedpositionsofedgelsareshifted,theirdirectionsare tilted,andtheirmovementsareestimatedwrongly. risetotiltedanddisplacedstraightlinesanddistortedcurvesasperceivedinmanyillusionary patterns.inthecaseofmotion,thelocalimagemeasurementsarecombinedinsegmentation pretationprocesses.longstraightlinesorgeneralcurvesarettedtotheedgelsandthisgives Thelocaledgelandimagemotionestimatesserveasinputtothenexthigherlevelinter- 2

and3dmotionestimationprocessestointerpretthespatiotemporalcontentofthescene. visualsystem,butrathergeneralcomputationsthatinsomeformmustbeconductedinvisual interpretationprocesses.wechoosetoemploythreedierentmodelsforthreekindsofdata wewillalsoshowthatthebiasexistsforother,moreelaborateestimationprocesses,andthat ingeneralitcannotbeavoided.wedonotattempttomodelthespecicsofthehuman temporalderivatives) forthepurposeofclearandsimpleexplanation.foreachmodelwe discussanumberofillusionsthatarebestexplainedbyit.itshouldbeemphasizedthatthe grayvalues,edgels(spatialderivativesataspatiallocation),andnormalow(spatialand Inthispaperwewilldemonstrateandanalyzethebiasinlinearestimationprocesses,but thedierentiationprocess[25],buttherearemanysourcesofnoisethataectthevisualdata, Lettheirradiancesignalcomingfromthesceneparameterizedbyimageposition(x;y)and dataandnoisyspatiotemporaldatacanbederivedfromnoisygraylevelvaluesbymodeling andthedierentiationprocesscertainlyisoneofthem. 2Erroringrayvalues visionsystem,inalmostanyinterpretationprocess,usesallthreekindsofdata.thenoisyedgel graylevelvalue,andthereisnoiseinspatiotemporallocation.wemodelthesenoisesources asfollows: theidealsignal.ingeneral,twokindsofnoisesourcesmustbeconsidered:thereisnoisein tributednoisetermi(x;y;t)withzeromeanandcovariancematrixg.thisrepresentsthe time(t)bei(x;y;t).theimagereceivedontheretinacanbethoughtofasanoisyversionof bution.theexpectedvalueoftheintensitythusamountstotheconvolutionofthesignalwith erroringraylevelvalue.wemodelitasagaussian,i.e.i(x;y;t)n(0;g).asamodelfor thepositionalerror,weconsiderthevalueatapointashavingagaussianprobabilitydistri- aspatiotemporalgaussiankernel,thatis, Ateveryimagepoint(x;y;t)weconsideranadditive,independentlyandidenticallydis- withx=(x;y;t)and g(x;p)= E(I(x)+N(0;g)g(x;p)) standarddeviationinthegraylevelnoise.theexpectedvalueoftheintensityisthen y-directionstobethesame,withpthestandarddeviationinthepositionalnoiseandgthe forsimplicity,throughoutthepaperweassumethespatialnoisecomponentsinthex-and Inthemodelingofstaticsignalsonlythespatialvariablesneedtobeconsidered.Furthermore, (2)3=2jpj1=2e?12xt?1 1 E(I(x;y)+N(0;g)g(x;y;p))=E(I(x;y)g(x;y;p))+E(N(0;g)g(x;y;p))(1) px oftheintensitycanbewrittenasthesumoftwoterms.thesecondterm,theexpectedvalue second-orderderivatives(thelaplacian,r2)[22].ascanbeseenfrom(1),theexpectedvalue ofn(0;g)g(x;y;p)anditsderivativesareindependentofposition(theyarezero).this meansthatnoiseinthegrayleveldoesnotaecttheexpectedlocationsofedgesandforthe Edgesareobtainedastheextremaoftherst-orderderivatives[3]orasthezerocrossingsof 3

purposeofthisanalysisitcanbeignored.1thusweareinterestedinthelocations(x;y)where Beforeanalyzingedgesundersmoothing,letuslookatthesourcesofthenoise.Oneinterpretationisthatthereisuncertaintyinthepositionsinceasequenceofimagesiscombinedinto hasalocalmaximum,orwherer2g(x;y;p)i(x;y)=0 [(@g(x;y;p) @xi(x;y))2+(@g(x;y;p) @yi(x;y))2]1=2 onecoordinatesystemanderrorsoccurinthegeometriccompensationforlocation.another withagaussianwithastandarddeviationthatisthesumofthestandarddeviationsofthe obtainedisaprocessedversionoftheidealsignal,whichevenforonlyoneimagetakenatone [22,30].SincerepeatedlteringwithdierentGaussiankernelsisequivalenttoconvolution predictsthatedgesintheearlyvisualsystemarecomputedusingadierenceofgaussian lter,thatis,aband-passlterwhichisapproximatedwellbythelaplacianofagaussian instantintimecanbemodeledbygaussiansmoothing.furthermore,tocomputethederivativessomelow-passltering(thatis,smoothing)isnecessary.forexample,acurrenttheory interpretationisthattheeyecanbeviewedasade-focusedimagingsystemandtheimage thatwecanemploystraightforwardlyinourstudy. scalespacetheory,andalargenumberoftheoreticalresultsonthistopichavebeenderived ofedgepointsinthedirectionnormaltoedges,theso-calleddriftvelocity. kernels,anycombinationoftheabovenoisesourcesisalsowellapproximatedbyourmodel. paralleltothespatialgradientdirectionatp0andtheu-axisperpendiculartoit.ifedgesare ofthesmoothingparameter.lindebergin[20]derivesformulaefortheinstantaneousvelocity Weareinterestedinthepositionsofedges,orthechangeinpositionsofedgeswithvariation ConsiderateveryedgepointP0alocalorthonormalcoordinatesystem(u;v)withthev-axis Gaussiansmoothingofstaticimageshasbeenintensivelystudiedintheliteratureonlinear givenasthezero-crossingsofthelaplacianthedriftvelocity(@tu;@tv)(wheretdenotesthe scaleparameter)amountsto (@tu;@tv)=? 2(r2Iu)2+(r2Iv)2r2Iu;r2Iv r2?r2i Thedriftvelocityrepresentsthetendencyofthemovementofedgesinscalespace.Toobtain esto Forastraightedge,whereallthedirectionalderivativesintheu-directionarezero,itsimpli- (@tu;@tv)=?12ivvvv Ivvv(0;1) (3) (2) thedriftvelocity.ifthescaleintervalissmallthedriftvelocityinthesmoothedimageprovides, smoothedimage,wouldrequiretracingtheedgepointoverthescaleintervalandintegrating inmanycases,asucientapproximationtothetotaldrift,andthisiswhatwewillshowin laterillustrations. tobeconsidered:edgesbetweenadarkandabrightregiondonotchangelocationunderscale thetotaldriftofanedgepointp0intheoriginalimagetothecorrespondingedgepointinthe intensitypropagatesintolargeruncertaintyintheestimationofthederivativesoftheintensity.thismighthave someeectonhumanperception,anissuethatcouldbeinvestigated. 1Noiseinthegraylevelaectsthesecondmoment,thatis,thevariance.Uncertaintyintheestimationof ThescalespacebehaviorofstraightedgesisillustratedinFigure1.Therearethreecases 4

twoedgestowardeachother.theseobservationssucetoexplainanumberofillusions.the spacesmoothing(figure1a).thetwoedgesattheboundariesofabrightline,orbar,ina underlyingmathematicsisexplainedinfigure2. ofsmoothingonalineofmediumbrightnessnexttoabrightandadarkregionistomovethe parameterislargeenoughthatthewholebaraectstheedges(figure1b).finally,theeect darkregion(or,equivalently,adarklineinabrightregion)driftapart,assumingthesmoothing Figure1:Aschematicdescriptionofthebehaviorofedgemovementinscalespace:(a)no movement,(b)driftingapart,(c)gettingcloser. illusionarypatternsareshownwhichconsistofregulargridsorcheckerboardpatternswithlittle squaressuperimposedonthem.theeectofthesquaresistochangetheappearanceofthe AttheWebsiteoftheAkitaUniversityDepartmentofPsychology[1],anumberofnew (b) (c) blacksquaressuperimposed,andmanyofthesesquaresalignedwiththegrid.figure3bshows asmallpartoftheguremagnied.theblacksquaresinthecenterofthegridallhave straightlinestoconcaveandconvexcurves. beenremovedforclarity,astheydonotnotablyaecttheillusionaryperception.figure3c Figure3dshowsthesmoothedimagewhichresultsfromlteringwithaGaussianwithstandard showstheresultsofedgedetectionontherawimageusingthelaplacianofagaussian(log). deviation5/4timesthewidthofthebarsandfigure3eshowstheresultofedgedetectionon thesmoothedimageusingalog.(thisisclearlythesameasperformingedgedetectiononthe Figure3ashowsoneofthegures,ablacksquaregridonawhitebackgroundwithsmall originallocationswherethegridboundslittlesquaresandareshiftedinsidethewhiteblocks rawimagewithalogoflargerstandarddeviation.) atallotherlocations,andasaresulttheedgesappeartobecurved(figure3e).ascan todriftthetwoedgesapart.atthelocations,however,whereasquareisalignedwiththe grid,thereisonlyoneedge,andthisedgedoesn'tchangelocationunderscale-spacesmoothing. Theneteectofsmoothingisthatedgesofgridlinesarenolongerstraight;theystayatthe beveried,thecurvatureobtainedfromscale-spacesmoothingisqualitativelysimilartothe curvatureperceivedinthegure. Thegridconsistsoflines(orbars),andtheeectofscalespacesmoothingonthebarsis 5

0 5 10 15 20 25 30 35 40 45 50 5 5 5 10 10 10 15 15 15 20 20 20 25 25 25 30 30 30 35 35 35 40 40 40 45 45 45 50 5 10 15 20 25 30 35 40 45 50 50 5 10 15 20 25 30 35 40 45 50 50 5 10 15 20 25 30 35 40 45 50 1 1 1 0.9 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.6 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0 0 5 10 15 20 25 30 35 40 45 50 0 0 5 10 15 20 25 30 35 40 45 50 0 0.14 0.15 0.07 0.12 0.1 0.06 0.1 0.05 0.05 0.08 0 0.04 0.06 0.05 0.03 0.04 0.1 0.02 Figure2:Therstrowshowsgraylevelguresof(a)adarkregionnexttoabrightregion,(b)a 0.02 0.15 0.01 brightlineinadarkregion,and(c)agraylinenexttoadarkandabrightregion.superimposed (b) 0 0.2 0 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 0.03 0.015 0.03 0.02 0.02 0.01 0.01 0.01 0.005 0 0 0 =7).Thethirdrowshowstherstderivatives,andthefourthrowthesecondderivatives onthegraylevelguresaretheedgeswhichhavebeencomputedasthezerocrossingsofthe versionsofthegraylevelgures(thesolidlinecorrespondsto=3andthedashedlineto toastandarddeviation()ofthreeandthedarkerlinestoaofsevenpixels).thesecond LaplacianofaGaussianfortwodierentwidthsoftheGaussian(thebrighterlinescorrespond rowshowsthefunctionsresultingfromcrosssections(onerow)ofthetwodierentlysmoothed 0.01 ofthesefunctions.themaximaoftherstderivativesandthezerocrossingsofthesecond 0.01 0.005 0.02 derivativesaremarkedbyverticallines.fromtheirchangeinpositiontheobservationsabout 0.02 0.01 0.03 themovementofedgesinscalespaceasshowninfigure1canbededuced. 0.03 0.04 0.015 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 6

(a) (b) (c) Figure3:(a)Illusionarypattern:\spring."(b)Smallpartoftheguretowhich(c)edge detection,(d)gaussiansmoothing,and(e)smoothingandedgedetectionhavebeenapplied. 7 (e)

checkerboardtile).thisexplainstheeect:theedgeswhicharetheboundariesofthecreated barsdriftapartunderscale-spacesmoothingandtheotheredges betweentheblackandwhite tilesofthecheckerboard stayinplace.theresultisthattheedgesnearthelocationsofthe boardwithlittlewhitesquaressuperimposedincornersoftheblacktilesclosetotheedges. square)nexttoablackbar(fromablackcheckerboardtile)nexttoawhitearea(fromawhite whitesquaresarebumpedoutwardtowardthewhitecheckerboardtiles.thisisillustrated Inthispattern,nexttothewhitesquaresshortbarsarecreated awhitearea(fromalittle Figure4ashowsanotheroneofthepatternsfromtheWebsite:ablackandwhitechecker- from(2).againtheeectobtainedfromsmoothingisthesameastheoneperceivedwiththis infigure4bwhichshowsthecombinedeectofsmoothingandedgedetectionforapartof linesseparatingtherows.themortarlinesshouldbemid-wayinluminancebetweentheblack illusionarypattern. Aninteractivedemonstrationofthisillusioncanbefoundat[17].Itconsistsofablackand andwhitesquares;thentheillusionaryeectofatiltinthemortarlines,withalternatemortar whitecheckerboardpatternwithalternaterowsshiftedonehalf-cycleandwiththinmortar thepattern.figures4canddzoominonthedriftvelocityinthesmoothedimageasderived linestiltedinoppositedirections,isstrongest.thecafewallgureiscloselyrelatedtothe Munsterberggure[24],whoseonlydierenceisthatthemortarlinesarethesameluminance aseitherthelightordarktiles;inthisgurethetiltingisperceivedtobemuchweaker. Anotherillusionarypatterninthiscategoryisthe\cafewall"illusionshowninFigure5a. brighttilethetwoedgesmovetowardeachotherunderscalespacesmoothing,andforthinlines ittakesarelativelysmallamountofsmoothingforthetwoedgestomergeintoone.where themortarlineisbetweentwobrightregionsorwhereitisbetweentwodarkregionstheedges moveawayfromeachother.theresultsofsmoothingandedgedetectionareshowninfigure 5cforasmallpartofthepatternshowninFigure5b.Fromthisgureitcanbeseenthatthe edgeelementswhichformboundariesofthetiles(thatis,edgeelementsthatformthelower boundaryofawhitetileandtheupperboundaryofablacktile,andedgeelementsthatform Inthecafewallgure,atthelocationswhereamortarlinebordersbothadarktileanda samesignofslopeasperceived.figures5dandeshowthedriftvelocityinlargemagnication thelowerboundaryofablacktileandtheupperboundaryofawhitetile)aretiltedwiththe tile,therewillbeanedgecloserinpositiontotheblacktilethanwiththegraymortarline. themunsterbergillusioniseasilyunderstood.if,forexample,themortarlineischangedfrom graytowhitetherewillbenoedgesbetweenwhitetiles,andattheborderofawhiteandblack whichillustratesthetendencyofthemovementoftheedges.theweakerillusionaryeectin showsasmallpartofthepatternandfigure6cshowstheedgesdetected.asthelattergure shows,theinsertedsquarespartlycompensateforthedriftinginoppositedirectionsofedges whiteandblacksquaresputinthecornersofthetilesremovetheillusionaryeect.figure6b Theresultisfeweredgeelementswithlesstiltandthusaweakerillusion. andasaresultastraightlinewithouttiltisseen. alongthemortarlineseparatingtilesofthesamegraylevel.asaresultslightlywavyedgels areobtained;butthe\waviness"istooweaktobeperceived(lowamplitude,highfrequency) eectbyintroducingadditionalelements.thishasbeenpursuedinfigure6a;theadditional Ifbiasisindeedthemaincauseoftheillusionthenweshouldbeabletocounteractthe explainsthetiltingoftheseelements.thesecondstageconsistsoftheintegrationofthese localelementsintolongerlines.ourhypothesisisthatthisintegrationiscomputationallyan isduetotwoprocessingstages.intherststagelocaledgeelementsarecomputedandbias approximationofthelongerlinesusingasinputthepositionsandorientationsoftheshortline Afullaccountoftheperceptionoftiltedlinesrequiresadditionalexplanation.Theillusion 8

(a) (b) Figure4:(a)Illusionarypattern:\waves."(b)Theresultofsmoothingandedgedetection onapartofthepattern.(c)and(d)thedriftvelocityatedgesinthesmoothedimage logarithmicallyscaledforpartsofthepattern. (d) 9

(a) (b) (c) Figure5:(a)Cafewallillusion.(b)Smallpartofthegure.(c)Resultofsmoothingandedge detection.(d)and(e)zoom-insonthedriftvelocity. 10 (e)

(a) inthelteredimage,whichcounteractstheillusionaryeect. Figure6:Modiedcafewallpattern.Theadditionalblackandwhitesquareschangetheedges (b) (c) 11

spaceandcouldberealizedinamultiresolutionarchitecture.ateveryresolutiontheaverage ofthedirectionsofneighboringelementsiscomputed,andallcomputationsarelocal.ifthe elements.thiscouldbeeasilyimplemented.itbasicallyamountstoasmoothingindirection becomputedashavingatilt. approximationiscarriedoutonthebasisoftheorientationsoflocaledgeelementsthelinewill informationabouttheedgeelementswhichwasderivedearlierandgobacktoimagepoint asinputonlythepositionsofimagepointsontheedgels;suchanapproximationwouldnot information.wedoubtthatevolutionwouldproduceawastefulapproachofthiskind. leadtoatiltintheestimatedlines.however,insuchacasethesystemwouldthrowoutthe Theonlyotherwayofcarryingouttheintegrationwouldbetoapproximatethelines,using twistedcordgivestheperceptionofbeingspiral-shaped,ratherthanasetofcircles.the appearsinbothblackandwhite.inthefraserillusioninfigure8theshortlinesarealltilted principleofthepatterniseasilyexplainedusingthefraserillusioninfigure8.figure8c showsthebasicunitofallfraser'sgures,ashortlinewithatriangleateitherend.this whichtogetherformsomethingratherlikeatwistedcord,onacheckerboardbackground.the Fraser'stwistedcordillusion,ortheFraserspiral,andrelatedFrasergures. TheFraserspiralpattern(Figure7)consistsofcirclesmadeofblackandwhiteelements Ouraccountoftheintegrationprocessalsoexplainsoneofthemostforcefulofallillusions, lines(figure8)orspirals(figure7).wecanalsoaccountfortheincreaseintheperceptionof lines.anapproximationprocessthatusestheseedgelstotextendedcurveswillderivetilted withthesameslopeandatiltedlineisperceived;inthefraserspiralthelineelementsare lineelementsandtheintersectionoftheselineelementswiththetiltedlineelementsofthe thetiltwithinclusionofthebackground.inthiscasetheadditionaltrianglescreateadditional cordonagraybackground(figure8b)butitisslightlyweakerwithoutthepatternofthe backgroundincluded. sectionsofspiralsandspiralsareperceived.theillusionaryeectisalsoobtainedforatwisted gureisbiased,andthisincreasesthetiltofthelineelements. themodelintroducedinthissectionthattheintersectionpointoftwolineswhichintersectat TheperceptualeectatintersectinglinesisillustratedinFigure9.Itcanbeshownwith TheedgeswhicharecomputedinFraser'sguresareatthebordersoftheblackandwhite 3Errorsinlineelements anacuteangleisdisplaced.theeectisobtainedbysmoothingtheimageandthendetecting ofintersectinglinesisthetopicofthenextsection. edgesusingnon-maximumsuppression(seefigure10).amoredetailedanalysisofthebehavior slightlydierentnoisemodel,withthenoisebeingdeneddirectlyontheedgeelements.we areadecisivefactorintheillusion.toanalyzetheselinedrawings,weadoptinthissectiona Thereisalargegroupofillusionsinwhichlinesintersectingatangles,particularlyacuteangles, thecellsanalyzingorientation[15]. edgeelements,parameterizedbytheimagegradient(avectorinthedirectionnormaltothe Anotherphysiologicallyplausibleexplanationisthatsuchnoiseisduetoquantizationerrorsof thatonlythenoiseinthedirectionhasaninuenceonthepositionsoftheintersectionpoints givethesameeects.noiseingraylevelvaluesresultsinnoiseintheestimatededgeelements. assumeadditivenoiseinthepositionsanddirectionsofedgeelements.letusnotebeforehand edge)(ix;iy)andthepositionofthecenteroftheedgeelement(x0;y0). oflines,andthusamodelthatdoesn'tconsideranynoiseinthepositionsofedgeelementswill Wenextanalyzetheestimatedpositionofanintersectionofstraightlines.Theinputsare 12

Figure7:Fraser'sspiral[9]. ateitherend. Figure8:From[29].(a)Frasergurewithstraighttwistedcords.(b)Theillusionisweaker withagraybackground.(c)thebasicelementsofthegurearetiltedelementswithatriangle (b) 13

Figure9:[34]ThenelineasshowninAappearstobebentinthevicinityofthebroader blackline,asindicatedinexaggerationinb. Figure10:(a)Alineintersectingabaratanangleoffteendegrees.(b)Theimagehasbeen smoothedandthemaximaofthegraylevelfunctionhavebeendetectedandmarkedwithstars. (c)magnicationofintersectionarea. (b) (c) 14

rameters.inthesequelunprimedlettersareusedtodenoteestimates,primedletterstodenote actualvalues,and'stodenoteerrors,whereix=i0x+ix,iy=i0y+iy,x0=x0+x0and y0=y0+y0. Consideradditive,independentlyidenticallydistributed(i.i.d.)zero-meannoiseinthepa- Thisequationisapproximatedbythemeasurements.Letnbethenumberofmeasurements. Eachmeasurementiprovidesoneequation Foreverypoint(x;y)onthelinesthefollowingequationholds: andweobtainasystemofequationswhicharerepresentedinmatrixformas Ixix+Iyiy=Ixix0i+Iyiy0i I0xx+I0yy=I0xx0+I0yy0 (4) HereIsisthen-by-2matrixwhichincorporatesthedataintheIxiandIyi,and~Cisthe n-dimensionalvectorwithcomponentsixix0i+iyiy0i.thevector~xdenotestheintersection Is~x=~C (5) leastsquare(ls)estimationisgivenby~x=(itsis)?1its~c pointwhosecomponentsarexandy.thesolutiontotheintersectionpointusingstandard ydirectionsisassumedtobethesame,letitbe2s,andalsotheexpectedvaluesofhigher- twoothernoisytermsandthusthestatisticsaresomewhatdierent. themeasurementmatrixaisbiased.thestatisticsoftheestimationhavebeenstudiedforthe Itiswellknown[10]thattheLSsolutiontoalinearsystemoftheformA~x=~bwitherrorsin caseofi.i.d.noiseintheparametersofaand~b.inourcase~bistheproductoftermsinaand Tosimplifytheanalysis,thevarianceofthenoiseinthespatialderivativesinthexand (6) ~xisfoundbydeveloping(6)intoasecond-ordertaylorexpansionatzeronoise.itconverges (thansecond)ordertermsareassumedtobenegligible.intheappendixtheexpectedvalueof ~x0istheactualintersectionpointand~x0="1npni=1x0i inprobabilityto where M0=Is0tIs0="Pni=1I02xiPni=1I0xiI0yi n!1e(~x)=~x0+nm0?1(~x0?~x0)2s plim Pni=1I0xiI0yiPni=1I02yi# 1nPni=1y0i#isthemeanofthe~x0i. (7) (~x0?~x0).vector(~x0?~x0)extendsfromtheactualintersectionpointtothemeanpositionof eigenvectorsareorthogonaltoeachother.m0?1hasthesameeigenvectorsasm0andinverse shiftedbyatermwhichisproportionaltotheproductofmatrixm0?1andthedierencevector whichdependsonlyonthespatialgradientdistribution,isarealsymmetricmatrixandthusits theedgeelements.thusitisthemasscenteroftheedgelsthatdeterminesthisvector.m0, eigenvalues.thedirectionoftheeigenvectorcorrespondingtothelargereigenvalueofm0?1is dominatedbythenormaltothemajororientationoftheimagegradientsandthustheproduct Using(7)allowsforaninterpretationofthebias.Theestimatedintersectionpointis ofm0?1withvector(~x0?~x0)ismoststronglyinuencedbythisorientation.thustheeect 15

thisgureisapparentlynotthecontinuationofthelowerportionontheright,butistoohigh. interactiveversionsee[16]).theupper-leftportionoftheinterrupted,tiltedstraightlinein AnotherversionofthisillusionisshowninFigure11b.Hereitappearsthatthemiddleportion ofmoregradients.forthecaseoftwointersectinglinesthismeansmoredisplacementofthe ofm0?1ismorebiasinthedirectionoffewerimagegradientsandlessbiasinthedirection AversionofthePoggendorillusionasdescribedbyZollnerisdisplayedinFigure11a(foran oftheinclined(interrupted)lineisnotinthesamedirectionasthetwoouterpatterns,butis intersectionpointinthedirectionperpendiculartothelinewithfeweredgeelements. turnedclockwisewithrespecttothem. ThebestknownillusionsduetointersectinglinesarethePoggendorandZollnerillusions. illusionsastheresultoftheperceptualenlargementofacuteangles.ithasbeenfoundinextensivestudiesthatacuteanglesareoverestimated,andobtuseanglesareslightlyunderestimated Famousvisionscientists[13,34]sawthePoggendoraswellastheZollnerandotherrelated (a) Figure11:Poggendorillusion. (b) (althoughregardingthelattertherehasbeencontroversy).theeectislargerwithshortline segmentsandseemstodiminishwithlongintersectinglines.ourmodelpredictsthatthese phenomenaareduetothebiasintheestimationoftheintersectionpoint. lineismoveddownandtotheright.asaresultthetwolinesegmentsappeartobeshiftedin ismovedupandtotheleft,andtheintersectionpointoftherightverticalwiththelowertilted oppositedirectionsandnottolieonthesamelineanymore. plottheestimatedbiasinthex-andy-directionsasafunctionoftheanglebetweentheline elements.inthisplotthedataisaverticallinewhichmakesananglewithatiltedline,and intheacuteangleandreacheszeroat90degrees.ourmodelpredictsthis.figures12bandc ReferringtoFigure11a,theintersectionpointoftheleftverticalwiththeuppertiltedline thenumberofedgeelementsontheverticallineistwicethatonthetiltedline,asillustrated thediagonallinesinfigure13bareallparallel,buttheylookconvergentordivergent.inthese infigure12a. Fromparametricstudiesitisknownthattheillusionaryeectdecreaseswithanincrease Figure13showstwoversionsoftheZollnerillusion.TheverticalbandsinFigure13aand 16

φ Figure12:(a)Thetiltedlineintersectstheverticallineinthemiddleatanangle.Thereare vertical.(c)biasparalleltothevertical. twiceasmanyedgeelementsontheverticalasonthetiltedline.(b)biasperpendiculartothe (c) bias in x bias in y -0.02 0.7 0.6-0.03 0.5-0.04 0.4 0.3-0.05 0.2-0.06 0.1 tiltedbars. samedirectionasperceivedbythevisualsystem.figure14showstheestimationofthetilted lineelementsforapatternsuchasinfigure13awith45degreesbetweentheverticalandthe tilted,asillustratedinfigure13c.inasecondcomputationalstep,longlinesarecomputedas anapproximationtothesmalledgeelements,andthisgivesrisetotiltedlinesorbarsinthe linesegmentscausetheedgeelementsalongthelongedgesbetweenintersectionpointstobe patternsthebiasesintheintersectionpointsofthelonglines(oredgesofbands)withtheshort 0.4 0.6 0.8 1 1.2 0 0.4 0.6 0.8 1 1.2 phi phi thelineelementsbetweenintersectionpointstobetilted. Figure13:(a),(b)Zollnerpatterns.(c)Thebiasintheintersectionpointsoftheedgescauses increasinglyacuteanglebetweenthemainlineandtheobliques,whichcanbeexplainedas beforeusingfigures12bandc(or,similarly,figure17).thevaluewherethemaximumoccurs Inexperimentswiththisillusionithasalsobeenfoundthattheeectdecreaseswithan (b) (c) variesamongdierentstudies.itissomewherebetween10and30degrees;belowthat,some 17

counteractingeectsseemtotakeplace. Figure14:EstimationofedgesinZollnerpattern.Thelineelementsarefoundbyconnecting twoconsecutiveintersectionpoints,resultingfromtheintersectionofedgesoftwoconsecutive timesmoreelementsonthevertical) acongurationsimilartotheoneinfigure17. consistsofedgeelementsuniformlydistributedontheverticalandonthetiltedline(with1.5 barswiththeedgeoftheverticalbar(oneinanobtuseandoneinanacuteangle).thedata strongestwiththeparallellinesverticalorhorizontal.thezollnerillusion,ontheotherhand, wasfoundtobemaximalwhenthejudgedlinesareat45degrees,asinfigure13b. ofthepoggendorandzollnergures.somestudiesfoundthatthepoggendorillusionis Otherparametricstudieshavebeenconductedontheeectofalteringtheorientations lines,thatis,moreedgeelementsareestimatedintheseandnearbydirections.(inthepatterns zontaldirections:wegenerallyseebetterintheseorientations.anatomicalstudies[15]have tations[21].basedonthesendingsweassumethereismoredataforhorizontalandvertical foundorientation-selectivecellsinthecortex;dierentcellsrespondtodierentangles.ithas alsobeenfoundthatthereismoreactivityforhorizontalandverticalthanforobliqueorien- consideredtheremaybemoreactivitybecauseofmoreeyemovementsalongthesedirections, asthevisualtasksrequirejudgmentsalongthesedirections.) Psychophysicistshavecoinedtheterm\spatialnorms"torefertotheverticalandhori- distributiononthebiasisstrongestinthedirectionoftheeigenvectorcorrespondingtothe inthedirectionsofthespatialnorms.inadirectionwheretherearemoreestimatesthereisa largersignaltonoiseratio,andthisresultsingreateraccuracyinthisdirection. Asimplestatisticalobservationexplainsthehigheraccuracyintheestimationofentities y-directionincreases.thepoggendorillusionisstrongerwhentheparallellinesarevertical verticaltoobliqueelementsincreases,thebiasinthex-directiondecreasesandthebiasinthe largereigenvalueofm0?1andweakestintheorthogonaldirection.changingtheratioof measurements(edgels)alongthedierentlineschangesthebias.figure15illustrates,forthe andy-directionsasafunctionoftheratioofedgeelements.itcanbeseenthatastheratioof caseofaverticallineintersectinganobliquelineatanangleof30degrees,thebiasinthex- Expressedinourformalismof(7),thistakesthefollowingform.Theeectofthegradient andthemainlinesaretilted,asinthiscasethebiasperpendiculartothemainlines(alongthe islarger,andthezollnerillusionisstrongerwhenthesmalllinesarehorizontalandvertical orhorizontal,becauseinthiscasethebiasparalleltothelines(alongthey-axisintheplot) 18

x-axisintheplot)islarger. Figure15:(a)Averticallineandatiltedlineintersectingatanangle.(b)Biasperpendicular totheverticalasafunctionoftheratioofedgeelementsontheverticalandtiltedlines.(c) ExamplesaretheOrbisonguresandthepatternsofWundt,Hering,andLuckiesh.Inthese Biasparalleltothevertical. Manyotherwell-knownillusionscanbeexplainedonthebasisofbiasedlineintersection. (b) patternsgeometricalentitiessuchasstraightlines,circles,trianglesorsquaresaresuperimposedondierentlytiltedlines,andtheyappeartobedistorted.thisdistortionresultsfrom theerroneousestimationofthetiltinthelineelementsbetweenintersectionpointsandthe approximatedbystraightlines,andtheratioofelementsbetweenthecircleandthebackground andtwototheouterones.arcsonthecirclebetweentwoconsecutivebackgroundlineswere edges,andwecomputedtheintersectionbetweenanybackgroundedgeandcircleedge(using withastraightlinefourintersectionpoints,twocorrespondingtotheinneredgesofthecircle edgewas2:1(resultinginacongurationsimilartothatoffigure17withthearccorresponding congurationssuchasthoseinfigure15a).thisprovidedforeveryintersectionofthecircle subsequentttingofcurvestotheselineelements. tothevertical).consecutiveintersectionpoints oneoriginatingfromanobtuseandonefrom Figure16illustratestheestimationofthecurveintheLuckieshpattern.Eachlinehastwo theouterlinesegments(onlyininterestingplaces).thisresultedinacurveliketheonewe perceive,withthecirclebeingbulbedoutontheupperandlowerleftandbulbedinonthe anacuteangle wereconnectedwithstraightlinesegments.thenbeziersplineswerettedto upperandlowerright. illusionswillresultintheoverestimationofacuteanglesforshortlinesegments.theunderestimationofobtuseanglescanbeexplainedifweassumeanunequalamountofedgeldataonthe thebiasinthey-directionincreases(withincreasingangle)forobtuseangles,andthisresults elementsontheverticalthanonthetiltedline.thebiasinthex-directionchangessignand Nextletuslookattheerroneousestimationofangles.Thebiasdiscussedfortheabove inasmallunderestimationofobtuseangles. twoarcs.figure17illustratesthebiasforacuteandobtuseanglesforthecaseofmoreedge verticallinesarethesamelength,buttheoneontheleftwithterminalspointingoutward isthemuller-lyerillusion.theoriginalmuller-lyergureisshowninfigure18.thetwo appearsconsiderablylongerthantheoneontherightwithinward-pointingterminals.inthis gure,theestimatedintersectionpointsoftheterminalsandthestraightlineareoutwardin theleftandinwardintherightgure.thiscertainlycouldbeacontributingfactorinthe Theillusionwhichprobablyhasbeenstudiedthemostinthepsychophysicalliterature 19 φ -0.05-0.06-0.07-0.08 1 2 bias in x, phi= Pi/6 3 Weight1 4 5 6 0.6 0.55 0.5 0.45 0.4 0.35 0.3 1 2 bias in y, phi =Pi/6 3 Weight1 4 5 6

(a) (b) Figure16:EstimationofLuckieshpattern:(a)thepattern:acirclesuperimposedonabackgroundofdierentlyarrangedparallellines,(b)ttingofarcstothecircle,(c)magniedupper leftpartofpatternwithttedarcssuperimposed,(d)intersectionpointsandttingofsegments (c) Figure17:(a)Biasperpendiculartothevertical.(b)Biasparalleltotheverticalforlines toouterintersections.phi intersectingatangle(asinfigure15);theratioofverticaltotiltededgeelementsis3. 20 0.02 0-0.02-0.04-0.06 0.5 1 bias in x, weight = 3 1.5 2 2.5 0.8 0.6 0.4 0.2 0.5 1 bias in y, weight =3 1.5 phi 2 2.5

illusion,buttheeectofthebiasdoesnotseemtobelargeenoughtofullyexplainthisstrong illusion.itislikelythatthereareadditionalcausesforthisillusion,whichareduetohigherlevelinterpretationprocesses.theillusionalsooccurswithotherterminals;itseemstohappen whenaspatialextentisboundedbycontoursthatareeitheroutwardlyconvexorconcave, eithercurvedorangular.forotherterminalsonewouldhavetotcurvestotheedgelsalong theterminalsandcomputetheirintersectionswiththestraightlines. 4Errorsinmotion Whenprocessingimagesequencessomerepresentationofimagemotionmustbederivedas arststage.itisbelievedthatthehumanvisualsystemcomputestwo-dimensionalimage measurementswhichcorrespondtovelocitymeasurementsofimagepatterns,calledoptical Figure18:Muller-Lyerillusion. perpendiculartolinearfeaturesarecomputedfromlocalimagemeasurements.inthecomputationalliteraturethisone-dimensionalvelocitycomponentisreferredtoas\normalow"and theambiguityinthevelocitycomponentparalleltotheedgeisreferredtoasthe\aperture ow.theresultingeldofmeasurements,theopticaloweld,representsanapproximation problem."inasecondstagetheopticalowisestimatedbycombining,inasmallregionof totheprojectionoftheeldofmotionvectorsof3dscenepointsontheimage. isbiased. theimage,normalowmeasurementsfromfeaturesindierentdirections,butthisestimate Opticalowisderivedinatwo-stageprocess.Inarststagethevelocitycomponents velocityofanimagepointinthex-andy-directionsby~u=(u;v),thefollowingconstraint isobtained: derivativesoftheimagegrayleveli(x;y;t)byix;iy,thetemporalderivativebyit,andthe isthatimagegrayleveldoesnotchangeoverasmalltimeinterval.denotingthespatial Weconsideragradient-basedapproachtoderivingthenormalow.Thebasicassumption thedirectionofthegradient[14].weassumetheopticalowtobeconstantwithinaregion. Eachofthenmeasurementsintheregionprovidesanequationoftheform(8)andthuswe Thisequation,calledtheopticalowconstraintequation,denesthecomponentoftheowin Ixu+Iyv+It=0 21

obtaintheover-determinedsystemofequations whereisdenotes,asbefore,thematrixofspatialgradients(ixi;iyi),~itthevectoroftemporal derivatives,and~u=(u;v)theopticalow.theleast-squaressolutionto(9)isgivenby Asanoisemodelweconsiderzero-meani.i.d.noiseinthespatialandtemporalderivatives.As ~u=?(itsis)?1its~it: Is~u+~It=0; (9) thetwodirectionsandweassumethathigherthansecond-ordernoisetermscanbeignored. expectedvalueoftheow,usingasecond-ordertaylorexpansion,isderivedintheappendix; intheprevioussection,weassumeequalvariance2sforthenoiseinthespatialderivativesin itconvergesinprobabilitytoplim Thestatisticsof(10)arewellunderstood,astheseareclassicallinearequations.The ThebiasisproportionaltothenegativeproductofM0?1withtheactualow.Inthecase where,asbefore,theactualvaluesaredenotedbyprimes. ofauniformdistributionofimagegradientsintheregionwheretheowiscomputed,m0 thecomputedopticalow;thereisanunderestimation.inaregionwherethereisaunique (andthusm0?1)isamultipleoftheidentitymatrix,leadingtoabiassolelyinthelengthof Equation(11)isverysimilarto(7)andtheinterpretationgiventhereapplieshereaswell. n!1e(~u)=~u0?n2sm0?1~u0; gradientvector,m0willbeofrank1;thisistheapertureproblem.inthegeneralcase,the eigenvectorwiththelargereigenvalueisinthedirectionoffewermeasurements;thusthere ismoreunderestimationinthisdirectionandlessunderestimationinthedirectionofmore measurements.theestimatedowthereforeisbiaseddownwardinsizeandbiasedtowardthe majororientationofthegradients. thebiascanbeunderstoodrathereasily.theeigenvectorsofm0?1areinthedirectionsof entationsurroundinganinnerring.smallretinalmotions,orslightmovementsofthepaper, manynormalowmeasurementsinonedirectionastheother.forsuchagradientdistribution oflengthtowidthisfour,leadingtoagradientdistributioninasmallregionwithfourtimesas causeasegmentationoftheinsetpattern,andmotionoftheinsetrelativetothesurround. oftworectangularcheckerboardpatternsorientedinorthogonaldirections abackgroundori- Thetilesusedtomakeupthepatternarelongerthantheyarewide;inFigure19theratio Figure19showsavariantofapatterncreatedbyHajimeOuchi[27].Thepatternconsists Figure20b,whichhasitsminimumat0anditsmaximumat=2(thatis,when~u0isaligned withthemajorgradientdirection).theerrorinangleisgreatestfor=4(thatis,when~u0is opticowandthedominantgradientdirection.theplotsarebasedontheexactsecond-order Figure20showstherelationshipbetweentheopticowbiasandtheanglebetweentheactual thetwogradientmeasurements,withthelargereigenvaluecorrespondingtofewergradients. nearlyeliminatedwhenitisalignedwiththeow(thatis,intheouchipattern,whenthelong edgeoftheblockisperpendiculartothemotion).thebiasforanglesbetween=2and exactlybetweenthetwoeigenvectorsofm0?1)anditis0for0and=2(figure20c).overall, Taylorexpansion. thismeansthebiasislargestwhenthemajorgradientdirectionisnormaltotheowandis As~u0=(0;1),thenoisetermin(11)leadstoabiasinlength,asshownbythecurvein 22

Figure19:ApatternsimilartotheonebyOuchi. 23

fewer measurements (a) y u 0 θ more measurements x -0.03 0.035-0.04 0.03 betweentheexpectedowandtheactualow.theerrorhass=0:15. andoflength1.(b)expectederrorinlength.(c)expectederrorinangle,measuredinradians, Figure20:(a)16measurementsareinthedirectionmakinganglewiththepositivexaxis and4measurementsareinthedirection+=2.theopticalowisalongthepositiveyaxis (c) 0.025-0.05 0.02-0.06 0.015-0.07 0.01-0.08 0.005-0.09 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4 theta theta 24

errorintheangle. gradientdirectiondierintheinsetandthesurround,sotheregionalvelocityestimatesare isobtainedfromtheaboveplotsbyreectingthecurvesin=2andchangingthesignofthe forallanglesthedierencebetweentheerrorvectorintheinsetandtheerrorvectorinthe biasedindierentways.when,insteadoffreelyviewingthepatternoffigure19,thepage ismovedindierentdirections,weobservethattheillusionarymotionoftheinsetismostly surroundingareaprojectedonthedominantgradientdirectionoftheinsetisinthisdirection. anglewiththemotionofthepaperislessthan90.usingfigure20,itcanbeveriedthat aslidingmotionorthogonaltothelongeredgesoftherectangleandinthedirectionwhose IntheOuchipattern,therelativeanglesbetweentherealmotionandthepredominant aperceivedmotiontotheright.ifthemotionofthepaperisupward,thedierencevectoris downward;itsprojectiononthemajorgradientdirectionoftheinsetiszero,andthushardly anyillusionarymotionisperceived.figure21shows,forasetoftruemotions,thebiasesin Forexample,whenthemotionisalongtherstmeridian(totherightandup),theerrorin theinsetisfoundinthegraphatangle==4andinthesurroundat=3=4.thetwo theperceivedmotion. motionofthepaperistotheright,thedierenceinerrorvectorsisduetolength,resultingin estimatedmotionvectorsareofthesamelength,eachinthedirectiontowardthegradients ofthelongeredges,andtheprojectionoftheresultingdierencevectoristotheright.ifthe s=t=0:1;in(c),s=t=0:2. thetruemotion.thenoiseisgaussianandthespatialgradientmagnitudeis1.in(a)and(b), betweentheerrorintheinsetandtheerrorinthesurround,andprojecttheresultingvector thetruemotionandthecalculatedmotion.toderivetheslidingmotion,computethedierence onthedominantgradientdirectionintheinset.thelinefromthecenterisinthedirectionof Figure21:Theregionalmotionerrorvectoreld.Thevectorsshownarethedierencesbetween (b) (c) easilyexperienced. oftheinsetforalargerangeofangles(thatis,directionsofeyemovements),theillusionis underfreeviewingconditions,thetriggeringmotionisduetoeyemovements,whichcanbe vectorsoftheinsetandsurroundhasasignicantprojectiononthedominantgradientdirection whichiswhyaclearrelativemotionoftheinsetisseen.whenexperiencingtheouchiillusion approximatedthroughrandom,fronto-paralleltranslations.sincethedierenceinthebias In[34]HelmholtzdescribesanexperimentwiththeZollnerpatternwhichcausesillusionary Weassumethatinadditiontocomputingow,thevisualsystemalsoperformssegmentation, motion.whenthepointofaneedleismadetotraversezollner'spattern(figure13a)hori- 25 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bandsoccurs.therst,third,fthandseventhblackbandsascend,whilethesecond,fourth, zontallyfromrighttoleft,itsmotionbeingfollowedbytheeye,aperceptionofmotioninthe andsixthdescend;itisjusttheoppositewhenthedirectionofthemotionisreversed. opticalowfromlefttoright.foreachbandtherearetwodierentgradientdirections,i.e., therearetwodierentnormalowcomponentsineachneighborhood.fortheoddbandsthe y-component),andthiscomponentalongthey-axisisperceivedasupwardmotionofthebands twonormalowcomponentsareinthedirectionoftheowanddiagonallytotherightandup. Thustheestimatedowmakesapositiveanglewiththeactualow(thatis,ithasapositive (seefigure22).forevenbandstheestimatedowisbiaseddownward,causingtheperception ofdescentofthebands.similarly,ifthemotionoftheeyeisreversedtheestimatedowhasa Thebiasexplainsthiseectasfollows:Amotionoftheeyesfromrighttoleftgivesriseto negativey-componentintheoddbandsandapositivey-componentintheevenbands,leading toareversalintheperceivedmotionsofthebands. Figure22:Theeyemotiongivesrisetoowu0andnormalowvectorsn1andn2.The theband. 5Theinherentproblem Animportantquestionarises.Istherebiasbecauseofthearchitectureofthevisionsystem? estimatedow,u,hasapositivey-component,whichcausesillusionarymotionupwardin Isthebiasduetothelinearestimationonly?Coulditbecorrectedusingmoresophisticated variables,butanymethodofcompensatingforthebiasrequiresknowledgeofthestatisticsof statisticaltechniques,orcoulditbeavoided? oftenitisnotpossibletoobtainaccurateenoughestimatesofthenoiseparameterstoimprove majorproblem,however,liesintheacquisitionofthestatisticsofthenoise.wearguethat thenoise.inthenoisemodelsconsideredintheprevioussections,thisamountstoknowledge ofthecovariancematrixofthenoise.ifthiswereavailable,inverselterscouldbeappliedto reconstructthegraylevelsignal,andthecorrectedleastsquaresestimatorcouldbeusedto removetheasymptoticbiaswhensolvinglinearsystemsonthebasisofimagederivatives.the Itiswellknownthatlinearestimationisbiasedifthereareerrorsinallthemeasurement thesolution. arefrequencydomainandcorrelationmodels,butcomputationallytheyarenotverydierent. dicultiesoccur,andnoisyestimatesleadtobias.foranextensivediscussionofthestatistics Inallthemodelsthereisastageinwhichsmoothnessassumptionsaremadeandmeasurements withinaregionarecombinedtoobtainmoreexactmeasurements.atthisstagestatistical Thereexistothermodelsforcomputingopticalow.Besidesgradient-basedmodelsthere 26 n 1 n 2 u u

ofopticalowestimationsee[8]. A~x=~b,thereiserrorinthevariablesinmatrixAinadditiontotheerrorinthevariablesin hasreceivedalotofattention.theproblematicbiasarisesbecauseinthesystemofequations position,butinformationaboutnoiseratiosisdiculttocompute.itcanbeobtainedonly ables,thatis,theratiosofthetwospatialandtemporalderivativenoisetermsorthenoisein distributed.thismeansthatwehavetoknowtherelativeamountsofnoiseintheerrorvaricallyunbiasedsolutionforsuchsystems,ifthenoisevariablesareindependentandidentically vector~b.thenonlineartotalleastsquaresestimatorhasbeenshowntoprovideanasymptoti- Inrecentyearsthetechniqueoftotalleastsquaresforsolvingsystemsoflinearequations thistechnique:thevarianceislarger.totalleastsquaresisknowntoperformverypoorlyif fromthevariationintheestimatedvariablesovertheimage.thereisanotherproblemwith outliersarepresent,andthesearediculttodetectfromafewmeasurements. acquireenoughdatatocloselyapproximatetheseparameters,butusuallythenoiseparameters longedgesandbarsneedtobedetected,andinthecaseofmotion,discontinuitiesdueto changesindepthanddierentlymovingentitiesneedtobedetectedandthescenesegmented. goodnoisestatisticalotofdataisrequired,sodataneedstobetakenfromlargespatialareas acquiredoveraperiodoftime,butthemodelsusedfortheestimationcanonlybeassumedto holdlocally.thustointegratemoredata,modelsofthesceneneedtobeacquired.specically, Ifthenoiseparametersstayedxedforextendedperiodsoftimeitwouldbepossibleto Whyisitsodiculttoobtainaccurateestimatesofthenoiseparameters?Toacquirea theobjectsbeingviewed,theorientationoftheviewerin3dspace,andthesequenceofeye movementsallhaveinuencesonthenoise.asidefromallthesefactors,inordertoestimate derivatives(ortocomputefouriertransforms)thesystemneedstointerpolate.theaccuracy ofinterpolationcandependincomplexwaysonthepatternofgraylevelsintheimage. othersourcesofnoisebesidessensornoise.thelightingconditions,thephysicalpropertiesof donotstayxedlongenough.sensorcharacteristicsmaystayxed,buttherearemany whichallowittoimprovetheestimates. example,whenviewingastaticpatternwithcontrolledeyemovementsorwhenxatingona thepatternsweakensafterextendedviewing,inparticularwhensubjectsareaskedtoxate. Inthiscasethevisualsystemmayacquirereasonableapproximationsofthenoiseparameters pointintheimageforsometime.thismayexplainwhytheillusionaryperceptioninsomeof Undercontrolledconditionsitmaybepossibletokeepthenoiseparametersxed,for 6DiscussionandSummary Scholarshaveclassiedpatternsasgeometricalopticalillusionsonthebasisofhowtheyare formed(theyarelinedrawings)andtheoreticianshavebeenchallengedtoprovideexplanations forallofthem.thereis,however,noreasontoexpectallillusionaryeectsinvolvingblack largenumberofgeometricalopticalillusions.otherillusionsinthiscategorywhichwehaven't andwhitepatternstobeduetothesamecause. dealtwithare:thecontrasteect(thatis,theoverestimationoflargeextentsnexttosmall guresenclosedbetweenconverginglines(thegurenearertheintersectionofthelinesis intervalseparatedbylinesintosubintervals);theponzoillusions,whichinvolvetwoequal anunlledextent(anexampleistheoppel-kundtillusion anunlledintervalnexttoan unlledextents,thatis,theeectthatalledextentisoverestimatedwhencomparedwith onesandtheunderestimationofsmallextentsnexttolargeones);theillusionsoflledand Inthispaperweadvancedatheoryaboutbiasinthevisualsystemwhichaccountsfora perceptuallyenlarged);thevertical-horizontalillusion,thatis,thephenomenonofjudginga 27

areofgreatimportanceinsomeoftheseillusions.thecontrasteectoccursonlyforacertain verticallinetobelongerthanahorizontallineofthesameextent;theframingeect,thatis, (withamaximumofabout2:3),andafterthataninectionoccurs,thatis,forlargerratiosthe oneperceptuallydecreasedandtheinneroneincreased occursuptoarangeofabout1:2 rangeofsizeratios.forexample,thedelboeufillusion twoconcentriccircleswiththeouter atteningofarcs,thatis,theeectthatshortarcsareperceptuallyattened.sizeparameters is,whencertaingureswhichencloseidenticalareasarecompared,andpartoftheboundaryof theoverestimationofframedobjects,andtheeectofoverestimatingunboundedgures,that smallercirclechangesfrombeingoverestimatedtobeingunderestimated.similarly,framing leadstounderestimationofthesizeoftheframedobjectforratiosoftheobjecttotheframe oneismissing,thedimensionwhichistherebyundenedatoneendisoverestimated;andthe closeto1:1. explainedtheillusionnamedafterhimintermsoftheelongationofthearmsofanobtuseangle ascomparedwiththoseofanacuteangle,whilebrentano'sexplanation[2]wasintermsofthe nowadaysasaddinglittletoameredescriptionoftheillusion.thusmuller-lyerhimself theoriesareaimedonlyatonespecicillusionandmostoftheearlytheorieswouldbeseen perceptualenlargementofacuteanglesandthereductionofobtuseangles. Theoriesaboutillusionshavebeenformulatedeversincetheirdiscovery.Manyofthe mathematicalnaturebasedonthegeometryandstatisticsofcapturinglightraysandcomputing ofthebrain(forexample,lateralinhibition).incontrast,thetheoryproposedhereisofa basedonphysicalanalogies,orgeneralobservationsaboutthephysiologyandarchitecture system,articialorbiological.however,onemightndthatourtheoryresemblessomeexisting theirproperties(grayvaluesandspatiotemporalderivatives),andthusitappliestoanyvision toexplaintheworkingsofhumanvisualperception.thesemechanismsareeitherhypothetical, morenoticeinrecentyearsarebasedonaspecicsortofmechanismwhichhasbeensuggested Theorieswhichattempttoexplainabroadspectrumofillusionsandwhichhaveattracted theblurringanddiusingeectofthemediumandtheconstructionoftheeye.theperceived locationsofthelinesareatthepeaksoftheirdistributions;thustwocloselinesinuenceeach fallingontoascreenfromtwoslitsourcesinthestudyofdiractionpatterns.thisisbecauseof theoriesiftheyareputinastatisticalframework. togetheraectoneanother.helikenedthelightcomingintotheeyefromtwolinestothelight other'slocationsandbecomeonewhenthesumoftheirdistributionsformsasinglepeak. Thisleadstoanoverestimationofacuteangles,andprovidesanexplanationoftheZollner, Poggendor,andrelatedillusionsaswellastheMuller-Lyereect.Thediractionamountsto Chiang[6]proposedaretinaltheorythatappliestopatternsinwhichlinesrunningclose data.chiang'smodel,however,ismuchmorelimited.itonlyappliestolines,andconsiders thewholeprocesstotakeplaceintheretina. uncertaintyinthelocationoftheperceivedgraylevelvalues,oritcanbeinterpretedasnoisy inuencethenoisedistributionandthusthebiasperceived,butthereareothernoisesources theyarearelevantsourceofnoise.theparticulareyemovementsmadeinlookingatapattern besideseyemovements,andthisexplainstheexistenceofillusionaryeectsforsomepatterns evenunderxationortachistoscopicviewing. causativefactorinillusions.ourtheoryalsoproposesthateyemovementsplayarolebecause Thereareanumberoftheoriesinwhicheyemovementsareadvancedasanimportant overunlledthanlledelements.inthemuller-lyergurestheeyesmovemorefreelyoverthe healsoexpresseddoubtthattheycouldbethemainsource,asotherillusionsarenotinuenced bythem.carr[5]proposedthattheeyesreacttoaccessorylinesandasaresultpassmoreeasily Helmholtzsuggestedin[34]thatocularmovementsareofimportanceinsomeillusions,but 28

gurewithoutgoingnsthanovertheonewithingoingns,andinthepoggendorandzollner guresdeectionsandhesitationsintheeyemovementsareassociatedwiththeintersections distortion. arelinearandrectilinear,horizontalorvertical.whenviewinglineswhichlieothevertical orhorizontal,aneyemovementcorrectionmusttakeplaceandthiscangiverisetoperceptual theeld.virsu[33]suggestedthatatendencytoeyemovements,thatis,instructionsforeye movements,hasaperceptualeect.hesuggeststhattheeyemovementsmostreadilymade Centrationonpartoftheeldcausesanoverestimationofthatpartrelativetotherestof ofthelonglineswiththeobliques.piaget[28]proposeda\lawofrelativecentrations."by \centration"hereferstoakindofcenteringofattentionwhichisverymuchrelatedtoxation. projectionsofthree-dimensionaldisplays[31,32].themostdetailedandmostpopularsuch aftereectsappliedtoillusions[11,18].inthesetheoriesinterferencebetweennearbylines occursbecauseofsatiationinthecortexorlateralinhibitionprocesses.therearealsotheories basedontheassumptionthattheperceptualsysteminterpretsillusionarypatternsasat theoryisduetogregory[12],whoinvokes\sizeconstancyscaling,"whichcanbetriggeredin twodierentways,eitherunconsciouslyorbyhigher-levelawareness,toexplainillusions. Otherfamoustheoriesincludetheorieswhosemainobjectivewastheexplanationofgural aseriousproblemforearlyvisualprocessesandunavoidablyleadstobias.anartifactofthe biasisillusionaryperceptionsinvolvingpatternswherethebiasishighlypronounced.noise intheimagedata thatis,theimagegraylevelanditsspatialandtemporalderivatives causes andtemporalintegrationofdatathatmovingsystemsareconfrontedwith,andduetothe ispresentinanyvisualdata.itisduetothesensingprocess,andinparticularthespatial operationsinvolvedincomputingderivatives,orinestimatingandlocatingcertainfrequency componentsofthesignal.theproblemisthatthenoiseparametersusuallycannotbeestimated Inthispaperwehavediscussedamajorhurdlethatvisionsystemshavetodealwith.Noise anyreferencetotheparticularsettingsthathumanvisionsystemsarefacing,neitherwhat datatobecollected. well,astheychangewiththelightingandviewingconditions,oftentoorapidlytoallowenough smallamountofnoise,andthisallowedustoexplainalargenumberofthegeometricaloptical oftheamountofnoiseandtherelationshipofeyemovementstothenoise.wehaveassumeda thespecicprocessesareandhowtheyareimplementedintheneuralhardware,norinwhich illusions.otherillusionscouldbeexplainediflargeamountsofnoisewerepresent,forexample, usingpsychophysicalandphysiologicalmethodsitshouldbefeasibletoconductinvestigations rangestheuncertaintyinthedatalies.theseareissuesthatneedtobeexamined.inparticular, Thebiashasbeendemonstratedforverygeneralmathematicalmodels.Wehaven'tmade theponzoillusionsorthedelboeufcircles. ofsmoothing,willcausebothcirclesinthemiddleoffigure23atocontract.ifweincrease outercirclewillcontractandtheinnercirclewillexpand,andeventuallythetwocircleswill collapseintoone.thusaratherlargeamountofnoise largeenoughtoaccountformutual theamountofnoisesothatthetwocirclesaecteachotherunderthesmoothing,thenthe inuencesincirclesofsmallersizeratios,butnotlargeenoughtoaccountformutualinuences incirclesoflargersizeratios explainsthendingsinparametricstudiesofthedelboeuf circles.thatis,suchnoisecausesanoverestimationoftheinnercircleforsmallsizeratiosand ConsidertheDelboeufcirclesinFigure23a.Smallamountsofnoise,thatis,smallamounts lineclosertotheintersectionofthelines,causesanexpansionofthisline. seenthatnoiselargeenoughtocausesmoothing,whichaectsoneofthelinesandthevertical anunderestimationforlargerratios.similarly,fortheponzoillusioninfigure23b,itcanbe Theimageformationprocessshouldnotgiverisetolargeamountsofnoise,buttheremay 29

informationtoneuronsoflargerreceptiveelds,andviceversa.itisclearthatthehigher-level resolution.thereisevidence[35]thatwithinthehumanvisualsystemtherearehierarchiesof leadsustobelievethattheremustexistsomeprocessesthatcombineinformationfromlocal processesofsegmentationandrecognitionneedinformationfromlargepartsoftheimage.this employingmultiplelevelsofimageresolutioncouldaccountforafairamountofnoise;even neuronsofincreasinglylargereceptiveelds,withneuronsofsmallerreceptiveeldsproviding beothernoiseduetotheprocessinginthevisualsystem.forexample,ascalespaceframework Forexample,tointerpretanyoftheillusionarypatternsinFigure23requiresthatthewhole neighborhoodsintorepresentationsofglobalinformation,andtheseprocessescarryuncertainty. verysmallamountsofnoiseatlowimageresolutiontranslatetolargeamountsofnoiseathigh patternbeunderstoodasjudgmentsofthesizesofdierentpartsofthepatternaremade. Thereisstillmuchresearchtobedonealongtheselines.Visualrecognition,ofcourse,isnot understoodandscalespaceanalysishasbeenlookedatonlywithrespecttothetransformation ofimagefeatures,notwithrespecttoitsutilitarianfunctioninfacilitatingvisualcomputations. Opticalillusionsmighthelpinprovidinginsightsintotheseprocesses. fromphysicsthatthereisuncertaintyinanymeasurement,butvisionresearchershavenot itcausesbias.thusthelocationofalineintheimagemaynotproperlyreectitslocation realizedthattheuncertaintyinthevisualdatahasmajorconsequencesforvisualprocesses; Thendingsofthispaperarealsoofimportanceforpracticalapplications.Itiswellknown Figure23:(a)Delboeufillusion.(b)AversionofthePonzoillusion. (b) inthe3dworldandthelocationoftheintersectionoftwolinesdoesnotcorrespondtoa physicalintersectioninspace.asaconsequence,thereisgreatuncertaintyintheestimation AppendixAExpectedValueoftheLeastSquaresSolution ofcorrespondingfeatures;thisshouldbecleartoallpractitionersofvisionwhoconsiderpoint correspondencesastheirstartingpointforfurthercomputation. Inthissectionasecond-orderTaylorexpansionoftheexpectedvaluesoftheleastsquares solutionforboththeintersectionpoint(section3)andtheow(section4)isgiven. Asthenoiseisassumedtobeindependentandzero-mean,therst-ordertermsaswellasthe IsisthematrixconsistingofthespatialderivativesIxi;Iyi.~CinSection3isthevectorof temporalderivativesitiand~cinsection4isthevectorwhoseelementsareixix0i+iyiy0i. Let~ybethevectortobeestimated,thatis,eithertheintersectionpoint~xortheow~u. second-ordertermsinthenoiseofthetemporalderivatives(orthepositionalparameters)vanish. TheexpectedvalueE(~y)oftheleastsquaressolutionisgivenby E(~y)=E(ItsIs)?1(Its~C) 30

Thismeansthatitisonlythenoiseinthespatialderivativeswhichcausesbiasinthemean. TheexpansionatpointsN=0(i.e.,Ixi=Iyi=Iti=0orIxi=Iyi=x0i=y0i=0) canbewrittenase(~y)=~y0+xi Fornotationalsimplicity,wedene M0=I0stIs0 M=ItsIsand~b=Its~C @I2xi%N=0E(I2xi) @2~y 2+@2~y ~b0=is0t~c0 @I2yicN=0E(I2yi) 2! Tocomputethepartialderivatives,theexplicittermsofthematrixMare andthetermsof~bare M=264PiI0xi+IxiI0yi+Iyi PiI0xi+Ixi2 ~b=24pii0xi+ixii0ti+iti PiI0yi+IyiI0ti+Iti35 PiI0xi+IxiI0yi+Iyi PiI0yi+Iyi2 375 and~b=264pii0xi+ixi2(x0oi+xoi)+i0xi+ixii0yi+iyi?y0oi+yoi wendtherst-orderandsecond-orderderivativestobe UsingthefactthatforanarbitrarymatrixQ PiI0xi+IxiI0yi+Iyi(x0oi+xoi)+I0yi+Iyi2?y0oi+yoi375 @Ixi=?M?1"2IxiIyi @I2xi=2M?1"2IxiIyi @2~y @~y?@q?1 @x=q?1@q Iyi0#M?1~b+M?1@~b @xq?1?2m?1"2ixiiyi?m?1"20 Iyi0#M?1"2IxiIyi 00#M?1~b Iyi0#M?1@~b @Ixi+M?1@2~b Iyi0#M?1~b @Ixi andsimilarlywehavesymmetricexpressionsfor @Iyiand@2~y @~y @I2yi @I2xi 31

SinceweassumeE(I2xi)=E(I2yi),theexpansioncanthusbesimpliedto E(~y)=~y0?nM0?1~y02s+Pni=1M0?1@2~b0 @I2xi+@2~b0 @I2yiN=02s 2 +Pi(M0?1 "2Ixi0Iyi0 Iyi00#M0?1"2Ixi0Iyi0 Iyi00# +"0Ixi0 Ixi02Iyi0#M0?1"0Ixi0 Ixi02Iyi0#!~y0?M0?1 "2Ixi0Iyi0 Iyi00#M0?1@~b @IxiN=0 +"0Ixi0 Ixi02Iyi0#M0?1@~b @IyiN=0!)2s wherewehaveunderlinedthetermsthatdonotdependonn(wherenisthenumberof measurementsbeingcombinedinaregion).thesetermswillgiveaconsistent,statistically constantresponse.therestofthetermsdiminishproportionallyto1n.informalexperiments showthatthesetermsbecomenegligibleforn>5,anumberclearlysmallerthanthenumber oftermslikelytobecombinedinanyrealsystem. IntheanalysisofSection3,theelementsof~CareIxix0i+Iyiy0i;thus @~b @IxiN=0="2Ixix0i+Iyiy0i Iyix0i#@2~b @I2xiN=0="2x0i 0# @~b @IyiN=0="Ixiy0i Ixix0i+2Iyiy0i#@2~b @I2yiN=0="0 2y0i# andthemaintermsintheexpectedvalueoftheintersectionpointe(~x)are E(~x)=~x0?nM0?1~x02s+M0?1"x0i y0i#2s or E(~x)=~x0+nM0?1(~x0?~x0)2s; where~x0denotesthemeanofthevalues~x0i. IntheanalysisinSection4theelementsof~CareIti.Thustherst-orderderivativesare @~b @Ixi%N=0="Iti 0#and@~b @Iyi%N=0="0 Iti#; andthesecond-orderderivativesvanish.theexpectedvalueoftheowe(~u)simpliesto E(~u)=~u0?nM0?1~u02s: References [1]http://www.akita-u.ac.jp/~kmori/img/kitaoka.html. [2]F.Brentano.UbereinoptischesParadoxen.Z.Psychologie,3:349{358,1892. 32

[3]J.Canny.Acomputationalapproachtoedgedetection.IEEETransactionsonPattern [4]R.H.S.Carpenter.MovementsoftheEye.Pion,London,1988. [5]H.A.Carr.AnIntroductiontoSpacePerception.Longmans,Green,NewYork,1935. [6]C.Chiang.Anewtheorytoexplaingeometricalillusionsproducedbycrossinglines. AnalysisandMachineIntelligence,8:679{698,1986. [8]C.Fermuller,D.Shulman,andY.Aloimonos.Thestatisticsofopticalow.Computer [7]J.A.Feldman.Fourframessuce:Aprovisionalmodelofvisionandspace.Behavioral andbrainsciences,8:265{313,1985. Percept.Psychophys.,3:174{176,1968. [10]W.Fuller.MeasurementErrorModels.Wiley,NewYork,1987. [12]R.L.Gregory.Distortionofvisualspaceasinappropriateconstancyscaling.Nature, [11]L.Ganz.MechanismoftheF.A.E.'s.Psychol.Rev.,73:128{150,1966. [9]J.Fraser.Anewvisualillusionofdirection.Brit.J.Psychol.,2:307{320,1908. VisionandImageUnderstanding,2001.Toappear. [13]E.Hering.BeitragezurPsychologie,volume1.Engelman,Leipzig,1861. [14]B.K.P.Horn.RobotVision.McGrawHill,NewYork,1986. [15]D.H.HubelandT.N.Wiesel.Integrativeactioninthecat'slateralgeniculatebody.J. 119:678,1963. [18]W.KohlerandH.Wallach.Figuralafter-eects:Aninvestigationofvisualprocesses.Proc. [16]http://www.illusionworks.com. [17]http://www.illusionworks.com/html/cafe-wall.html. Physiol.(Lond.),155:385{398,1961. [19]A.A.Kundt.UntersuchungenuberAugenmaundoptischeTauschungen.Pogg.Ann., [20]T.Lindeberg.Scale-SpaceTheoryinComputerVision.Kluwer,Boston,1994. Amer.Philos.Soc.,88:269{357,1944. [22]D.MarrandE.C.Hildreth.Atheoryofedgedetection.Proc.RoyalSociety,LondonB, [21]L.MaeiandF.W.Campbell.Neurophysiologicallocalizationofthehorizontaland 207:187{217,1980. verticalcomponentsinman.science,167:386{387,1970. 120:118{158,1863. [23]F.C.Muller-Lyer.ZurLehrevondenoptischenTauschungen:UberKontrastundKon- [24]H.Munsterberg.DieverschobeneSchachbrettgur.Z.Psychol.,15:184{188,1897. uxion.z.psychologie,9:1{16,1896. 33

[25]H.-H.Nagel.Opticalowestimationandtheinteractionbetweenmeasurementerrorsat [26]J.J.Oppel.Ubergeometrisch-optischeTauschungen.Jahresberichtphys.ver.Frankfurt, adjacentpixelpositions.internationaljournalofcomputervision,15:271{288,1995. [29]J.O.Robinson.ThePsychologyofVisualIllusion.Hutchinson,London,1972. [27]H.Ouchi.JapaneseandGeometricalArt.Dover,NewYork,1977. [28]J.Piaget.LesMechanismesPerceptifs.PressesUniversitairesdeGravee,1961.Translated byg.n.seagrimasthemechanismsofperception,routledge&keganpaul,london, 1969. pages37{47,1855. [30]R.W.RodieckandJ.Stone.Analysisofreceptiveeldsofcatretinalganglioncells.J. [31]R.Tausch.OptischeTauschungenalsartizielleEektederGestaltungsprozessevon [32]A.Thiery.UbergeometrischoptischeTauschunge.Phil.Stud.,12:67{126,1896. [33]V.Virsu.Tendenciestoeyemovement,andmisperceptionofcurvature,directionand Neurophysiology,28:833{849,1965. 24:299{348,1954. GroenundFormkonstanzindernaturlichenRaumwahrnehmung.Psychol.Forsch., [35]S.M.Zeki.AVisionoftheBrain.Blackwell,London,1993. [34]H.L.F.vonHelmholtz.TreatiseonPhysiologicalOptics,volumeIII.Dover,NewYork, 1962.TranslatedfromtheThirdGermanEditionbyJ.P.C.Southall. length.percept.psychophys.,9:339{347,1971. 34