Options. Pricing. Binomial models. Black-Scholes model. Greeks



Similar documents
Bonds with Embedded Options and Options on Bonds

CURRENCY OPTION PRICING II

Underlier Filters Category Data Field Description

Additional questions for chapter 4

Options: Valuation and (No) Arbitrage

1 The Black-Scholes model: extensions and hedging

Finance 436 Futures and Options Review Notes for Final Exam. Chapter 9

Ross Recovery Empirical Project

Using GPU to Compute Options and Derivatives

Hull, Chapter 11 + Sections 17.1 and 17.2 Additional reference: John Cox and Mark Rubinstein, Options Markets, Chapter 5

Options/1. Prof. Ian Giddy

Overview. Option Basics. Options and Derivatives. Professor Lasse H. Pedersen. Option basics and option strategies

Lectures. Sergei Fedotov Introduction to Financial Mathematics. No tutorials in the first week

Black-Scholes model: Greeks - sensitivity analysis

Lecture 11. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 7

Lecture 8. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 1

Binomial trees and risk neutral valuation

Option Valuation. Chapter 21

where N is the standard normal distribution function,

Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.

Caput Derivatives: October 30, 2003

How to use the Options/Warrants Calculator?

Option Values. Determinants of Call Option Values. CHAPTER 16 Option Valuation. Figure 16.1 Call Option Value Before Expiration

Call and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options

How To Understand The Greeks

Hedging. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Hedging

Option Calculators User Manual

Lecture 6: Option Pricing Using a One-step Binomial Tree. Friday, September 14, 12

Exam MFE Spring 2007 FINAL ANSWER KEY 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D

Or part of or all the risk is dynamically hedged trading regularly, with a. frequency that needs to be appropriate for the trade.

Option Premium = Intrinsic. Speculative Value. Value

ACTS 4302 SOLUTION TO MIDTERM EXAM Derivatives Markets, Chapters 9, 10, 11, 12, 18. October 21, 2010 (Thurs)

Figure S9.1 Profit from long position in Problem 9.9

Valuation, Pricing of Options / Use of MATLAB

GAMMA.0279 THETA VEGA RHO

UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter MFE Midterm. February Date:

Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 9. Binomial Trees : Hull, Ch. 12.

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

Chapter 13 The Black-Scholes-Merton Model

Lecture 21 Options Pricing

Fundamentals of Futures and Options (a summary)

Option Pricing with S+FinMetrics. PETER FULEKY Department of Economics University of Washington

Martingale Pricing Applied to Options, Forwards and Futures

FINANCIAL ENGINEERING CLUB TRADING 201

Week 13 Introduction to the Greeks and Portfolio Management:

Options 1 OPTIONS. Introduction

CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options

Option Payoffs. Problems 11 through 16: Describe (as I have in 1-10) the strategy depicted by each payoff diagram. #11 #12 #13 #14 #15 #16

( ) = ( ) = {,,, } β ( ), < 1 ( ) + ( ) = ( ) + ( )

Consider a European call option maturing at time T

TABLE OF CONTENTS. A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13

Lecture 11: The Greeks and Risk Management

Lecture 5: Put - Call Parity

Sensitivity Analysis of Options. c 2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 264

Risk Management for Derivatives

Lecture 9. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 8

Option pricing. Vinod Kothari

Introduction Pricing Effects Greeks Summary. Vol Target Options. Rob Coles. February 7, 2014

1 The Black-Scholes Formula

14 Greeks Letters and Hedging

S 1 S 2. Options and Other Derivatives

CHAPTER 15. Option Valuation

The Black-Scholes pricing formulas

Lecture 17/18/19 Options II

第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model

Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)

The Black-Scholes Formula

Lecture 12: The Black-Scholes Model Steven Skiena. skiena

Hedging of Financial Derivatives and Portfolio Insurance

Lecture 12. Options Strategies

The Greeks Vega. Outline: Explanation of the greeks. Using greeks for short term prediction. How to find vega. Factors influencing vega.

VALUATION IN DERIVATIVES MARKETS

9 Basics of options, including trading strategies

Financial Options: Pricing and Hedging

Jung-Soon Hyun and Young-Hee Kim

Option Values. Option Valuation. Call Option Value before Expiration. Determinants of Call Option Values

BINOMIAL OPTION PRICING

Introduction to Options. Derivatives

Options, Derivatives, Risk Management

OPTIONS CALCULATOR QUICK GUIDE. Reshaping Canada s Equities Trading Landscape

Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13.

TABLE OF CONTENTS. Introduction Delta Delta as Hedge Ratio Gamma Other Letters Appendix

Other variables as arguments besides S. Want those other variables to be observables.

How To Value Options In Black-Scholes Model

LECTURE 15: AMERICAN OPTIONS

Lecture 3: Put Options and Distribution-Free Results

b. June expiration: = /32 % = % or X $100,000 = $95,

Hedging Barriers. Liuren Wu. Zicklin School of Business, Baruch College (

10 Binomial Trees One-step model. 1. Model structure. ECG590I Asset Pricing. Lecture 10: Binomial Trees 1

Part V: Option Pricing Basics

Ch 7. Greek Letters and Trading Strategies

Factors Affecting Option Prices

Options Pricing. This is sometimes referred to as the intrinsic value of the option.

7: The CRR Market Model

Option pricing in detail

DERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options

Lecture 1: Asset pricing and the equity premium puzzle

1 Pricing options using the Black Scholes formula

Transcription:

Options. Priing. Binomial moels. Blak-Sholes moel. Greeks 1. Binomial moel,. Blak-Sholes moel, assmptions, moifiations (iviens, rreny options, options on ftres 3. Implie volatility 4. Sensitivity measres The binomial moel has the avantage of allowing to prie Amerian options. This is a isrete time moel. Senarios are shown on a binomial tree. The proess of valing an option is often alle risk-netral valation. The BSM moel is a ontinos time moel se to prie only Eropean options. Simple Binomial Priing Moel [ox, Ross an Rbinstein] Serity S S S all Option Max (, S - E Max (, S - E Figre. 1. Simple Binomial Priing Moel. all Option (1 q + (1 - q (1 + r T ( q S (1 + r T - S S - S

Derivatives on Finanial Market 4391-345 Two-Perio Binomial Priing Moel Serity S S S S S all Option S Figre. Two-Perio Binomial Priing Moel. all Option q + (1 q rt S rt S q S S S rt S q S S q [ q + (1 q ] + (1 q [ q + (1 q ] rt

Derivatives on Finanial Market 4391-345 Blak-Sholes option priing moel Aoring to the Blak-Sholes moel, the vale of a all option is given as rt (1 SN(1 Ee N( where ln(s/e + (r + σs /T 1 σ T s 1 σs T σs is the variane of the asset s retrns N(x is the mlative probability for a nit normal variable allate at a vale of x. Assmptions 1 Retrns for the nerlying asset are log normally istribte an inepenent over time. onstant variane 3 onstant interest rate 4 No iviens 5 No early exerise Table 1. Option Priing. Eqity an Debt as Options Option Priing Eqity an Debt premim eqity S spot prie maret vale of assets E exerise prie book vale of ebt S- ebt T matrity matrity of ebt * R B risk-free rate risk-free rate σ s volatility of retrns volatility of ROA Sensitivity Measres Table. Sensitivity Measres Miernik Notaja all Pt Delta N( 1 1 p S Gamma Theta Rho Vega γ S n( Sσ 1 γ p Sσn(1 rt θ θ ree N( T T ρ rt ρ TEe N( r υ σ T υ S Tn(1 θ ρ p p γ γ θ ρ + ree TEe υ υ p rt rt where: e / n( π 3

Derivatives on Finanial Market 4391-345 Problem 1. Binomial Priing Moel The rrent serity prie is $1. The exerise prie on the option is $11. It will either go p to $15 or own to $9. The riskless rate of interest is 5%. Matrity is 36 ays, T 1. (a allate the prie of the all option, the hege ratio, probabilities of the p an own movements sing ox, Ross an Rbinstein moel. ompare the reslt with the prie allate sing BSM moel. allate the present vale of the ening payoff. (b allate the weights for the repliating strategy, the ening payoff of the all, option an the prie of the all option. The bon prie is $1. Soltion (a Serity prie Exerise The payoff of the The hege ratio: prie all option (S S 15 11 4 h -1,5 ( 9 11 The ening payoff B S + h 9, B S + h 9, q + (1 q,5 9,5 (1 + rt The option premim sing Blak-Sholes moel: BS 1,3 The present vale of the ening payoff : B B rt 85,7 B S + h 85,7 (b S(1 + rt S q S S w w a b S S w as + w S - S ( S S P b P 1 h 66,7% -6,% 4 w as + w w S + w a b b P P 9,5 4

Derivatives on Finanial Market 4391-345 Problem. Binomial Priing Moel. Mlti-perio Binomial Moel. Dration an onvexity 1 3 4 5 T 1, 1, 1, 1, 1, f,%,4%,8% 4,% 5,% z,%,1998%,3995%,7973% 3,341% z+shift,%,1998%,3995%,7973% 3,341% σ 1% 1% 9% 1% 1% 5,% E 1, 1, 1, OAS,8% Reqire allate the prie of a bon with a all option. allate the effetive ration an onvexity. 5, S 1, 5, r 11,977% S 97,143 5, r 8,885% 5, S 98,5 S 1, 5, r 4,8133% 5, r 9,916% S 1, S 98,345 r 3,851% 5, r 6,7673% 5, S 1,14 S 99,78 S 1, r,8% 5, r 4,15% 5, r 8,591% S 1, S 99,351 r 3,% 5, r 5,6856% 5, S 1, S 1, r 3,6% 5, r 6,97% S 1, r 4,8% 5, S 1, r 5,8% ena opji 15-1,14,86 V- V+ D V y V- + V+ V V y (,44791 1,14 -,5% 1,799 53,764,5% 11,549 5

Derivatives on Finanial Market 4391-345 Problem 3. Blak-Sholes Moel With the following parameteres S spot prie 1, E exerise prie 11, Time to expiration (nmber of ays 36 Risk free interest rate 5% σ volatility 36,1% (a allate the prie of the all option sing the Blak-Sholes moel. (b allate the prie of the pt option sing pt-all parity. Soltion (a S N ( rt Ee N ( 1 1 ln( S / E + ( r + σ / T σ s T s σ T 1 s T,9863 1,511 -,376 N(1,54 N(,379 e^(-rt,95 Ee^(-rT 14,769 1,33 (b The prie of the pt option rt [ ( 1] [ ( 1] rt 1 P S + Ee S N Ee N 17,4 6

Derivatives on Finanial Market 4391-345 Problem 4. Implie. Volatility S spot prie 1 E exerise prie 1 Time to expiration (nmber of ays 45 Risk free interest rate 7% all prie 4 Reqire allate the implie volatility sing sensitivity ananlysis. Soltion Expete volatility all Premim 1% 3,8 11% 3,38 1% 3,49 13% 3,61 14% 3,7 15% 3,84 16% 3,97 < above this vale 17% 4,9 18% 4, 19% 4,35 % 4,47 1% 4,6 % 4,74 3% 4,87 4% 5, 5% 5,13 7

Derivatives on Finanial Market 4391-345 Problem 5. Sensitivity Measres The all option has the following parameters S spot prie 11 E exerise prie 1 Time to expiration (nmber of ays 3 Risk free interest rate 5% σ volatility % (a allte sensitivity measres for the all option, pt option, overe all protete pt, strale, bll all sprea, bear all sprea. (b Show the sensitivity of sensitivity measres on prie hanges 8-1. Soltion (a 1 3 4 5 Delta Gamma Theta Rho Vega all Option 1,96,1 -,,8,3 Pt Option -,4,1 -,1,,3 overe all 3,4 -,1, -,8,3 Protetive pt 4,96,1 -,1,,3 Strale 5,9,3 -,3,7,5 Bll all Sprea 6,14 -,3,,1 -,6 Bear all Sprea 7 -,4,1 -,1,, (b all option Spot Delta Gamma Theta Rho Vega Pt option Prie 8,,,,, 85,,,,, 9,4, -,1,, 95,1,5 -,3,,8 1,54,7 -,4,4,11 15,83,4 -,4,7,8 11,96,1 -,,8,3 115,99, -,,8,1 1 1,, -,1,8, Spot Delta Gamma Theta Rho Vega Prie 8-1,,,1 -,8, 85-1,,,1 -,8, 9 -,96,,1 -,8, 95 -,79,5 -, -,7,8 1 -,46,7 -,3 -,4,11 15 -,17,4 -, -,,8 11 -,4,1 -,1,,3 115 -,1,,,,1 1,,,,, 8

Derivatives on Finanial Market 4391-345 Delta Delta 1,5 1,,5, 8 -,5 85 9 95 1 15 11 115 1-1, Pt all -1,5 Spot Prie all option Sensitivity Measres,14,1,1,8,6,4,, -, 8 85 9 95 1 15 11 115 1 -,4 -,6 Spot prie Gamma Theta Rho Vega Pt option,15 Sensitivity Measres,1,5, 8 85 9 95 1 15 11 115 1 -,5 Gamma Theta Rho Vega -,1 Spot Prie 9