How To Value Options In Black-Scholes Model
|
|
|
- Colleen Clarke
- 5 years ago
- Views:
Transcription
1 Option Pricing Basics Aswath Damodaran Aswath Damodaran 1
2 What is an option? An option provides the holder with the right to buy or sell a specified quantity of an underlying asset at a fixed price (called a strike price or an exercise price) at or before the expiration date of the option. Since it is a right and not an obligation, the holder can choose not to exercise the right and allow the option to expire. There are two types of options - call options (right to buy) and put options (right to sell). Aswath Damodaran 2
3 Call Options A call option gives the buyer of the option the right to buy the underlying asset at a fixed price (strike price or K) at any time prior to the expiration date of the option. The buyer pays a price for this right. At expiration, If the value of the underlying asset (S) > Strike Price(K) Buyer makes the difference: S - K If the value of the underlying asset (S) < Strike Price (K) Buyer does not exercise More generally, the value of a call increases as the value of the underlying asset increases the value of a call decreases as the value of the underlying asset decreases Aswath Damodaran 3
4 Payoff Diagram on a Call Net Payoff on Call Strike Price Price of underlying asset Aswath Damodaran 4
5 Put Options A put option gives the buyer of the option the right to sell the underlying asset at a fixed price at any time prior to the expiration date of the option. The buyer pays a price for this right. At expiration, If the value of the underlying asset (S) < Strike Price(K) Buyer makes the difference: K-S If the value of the underlying asset (S) > Strike Price (K) Buyer does not exercise More generally, the value of a put decreases as the value of the underlying asset increases the value of a put increases as the value of the underlying asset decreases Aswath Damodaran 5
6 Payoff Diagram on Put Option Net Payoff On Put Strike Price Price of underlying asset Aswath Damodaran 6
7 Determinants of option value Variables Relating to Underlying Asset Value of Underlying Asset; as this value increases, the right to buy at a fixed price (calls) will become more valuable and the right to sell at a fixed price (puts) will become less valuable. Variance in that value; as the variance increases, both calls and puts will become more valuable because all options have limited downside and depend upon price volatility for upside. Expected dividends on the asset, which are likely to reduce the price appreciation component of the asset, reducing the value of calls and increasing the value of puts. Variables Relating to Option Strike Price of Options; the right to buy (sell) at a fixed price becomes more (less) valuable at a lower price. Life of the Option; both calls and puts benefit from a longer life. Level of Interest Rates; as rates increase, the right to buy (sell) at a fixed price in the future becomes more (less) valuable. Aswath Damodaran 7
8 American versus European options: Variables relating to early exercise An American option can be exercised at any time prior to its expiration, while a European option can be exercised only at expiration. The possibility of early exercise makes American options more valuable than otherwise similar European options. However, in most cases, the time premium associated with the remaining life of an option makes early exercise sub-optimal. While early exercise is generally not optimal, there are two exceptions: One is where the underlying asset pays large dividends, thus reducing the value of the asset, and of call options on it. In these cases, call options may be exercised just before an ex-dividend date, if the time premium on the options is less than the expected decline in asset value. The other is when an investor holds both the underlying asset and deep inthe-money puts on that asset, at a time when interest rates are high. The time premium on the put may be less than the potential gain from exercising the put early and earning interest on the exercise price. Aswath Damodaran 8
9 A Summary of the Determinants of Option Value Factor Call Value Put Value Increase in Stock Price Increases Decreases Increase in Strike Price Decreases Increases Increase in variance of underlying asset Increases Increases Increase in time to expiration Increases Increases Increase in interest rates Increases Decreases Increase in dividends paid Decreases Increases Aswath Damodaran 9
10 Creating a replicating portfolio The objective in creating a replicating portfolio is to use a combination of riskfree borrowing/lending and the underlying asset to create the same cashflows as the option being valued. Call = Borrowing + Buying of the Underlying Stock Put = Selling Short on Underlying Asset + Lending The number of shares bought or sold is called the option delta. The principles of arbitrage then apply, and the value of the option has to be equal to the value of the replicating portfolio. Aswath Damodaran 10
11 The Binomial Model Aswath Damodaran 11
12 The Replicating Portfolio Stock Price Call Option Details K = $ 40 t = 2 r = 11% Β = Β = 10 = 1, Β = Call = 1 * = Call = Β = Β = = , Β = Call = * = Call = Call = Β = Β = 0 = 0.4, Β = 9.01 Call = 0.4 * = Aswath Damodaran 12
13 The Limiting Distributions. As the time interval is shortened, the limiting distribution, as t -> 0, can take one of two forms. If as t -> 0, price changes become smaller, the limiting distribution is the normal distribution and the price process is a continuous one. If as t->0, price changes remain large, the limiting distribution is the poisson distribution, i.e., a distribution that allows for price jumps. The Black-Scholes model applies when the limiting distribution is the normal distribution, and explicitly assumes that the price process is continuous and that there are no jumps in asset prices. Aswath Damodaran 13
14 The Black-Scholes Model The version of the model presented by Black and Scholes was designed to value European options, which were dividend-protected. The value of a call option in the Black-Scholes model can be written as a function of the following variables: S = Current value of the underlying asset K = Strike price of the option t = Life to expiration of the option r = Riskless interest rate corresponding to the life of the option σ 2 = Variance in the ln(value) of the underlying asset Aswath Damodaran 14
15 The Black Scholes Model Value of call = S N (d 1 ) - K e -rt N(d 2 ) where, d 1 = ln S K + (r ) t t d 2 = d 1 - σ t The replicating portfolio is embedded in the Black-Scholes model. To replicate this call, you would need to Buy N(d1) shares of stock; N(d1) is called the option delta Borrow K e -rt N(d 2 ) Aswath Damodaran 15
16 The Normal Distribution N(d1) d1 d N(d) d N(d) d N(d) Aswath Damodaran 16
17 Adjusting for Dividends If the dividend yield (y = dividends/ Current value of the asset) of the underlying asset is expected to remain unchanged during the life of the option, the Black-Scholes model can be modified to take dividends into account. C = S e -yt N(d 1 ) - K e -rt N(d 2 ) where, ln S 2 K + (r-y+ 2 ) t d 1 = t d 2 = d 1 - σ t The value of a put can also be derived: P = K e -rt (1-N(d 2 )) - S e -yt (1-N(d 1 )) Aswath Damodaran 17
Option Pricing Theory and Applications. Aswath Damodaran
Option Pricing Theory and Applications Aswath Damodaran What is an option? An option provides the holder with the right to buy or sell a specified quantity of an underlying asset at a fixed price (called
The Promise and Peril of Real Options
1 The Promise and Peril of Real Options Aswath Damodaran Stern School of Business 44 West Fourth Street New York, NY 10012 [email protected] 2 Abstract In recent years, practitioners and academics
CHAPTER 5 OPTION PRICING THEORY AND MODELS
1 CHAPTER 5 OPTION PRICING THEORY AND MODELS In general, the value of any asset is the present value of the expected cash flows on that asset. In this section, we will consider an exception to that rule
Option Valuation. Chapter 21
Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of in-the-money options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price
Financial Options: Pricing and Hedging
Financial Options: Pricing and Hedging Diagrams Debt Equity Value of Firm s Assets T Value of Firm s Assets T Valuation of distressed debt and equity-linked securities requires an understanding of financial
Chapter 8 Financial Options and Applications in Corporate Finance ANSWERS TO END-OF-CHAPTER QUESTIONS
Chapter 8 Financial Options and Applications in Corporate Finance ANSWERS TO END-OF-CHAPTER QUESTIONS 8-1 a. An option is a contract which gives its holder the right to buy or sell an asset at some predetermined
Option Values. Determinants of Call Option Values. CHAPTER 16 Option Valuation. Figure 16.1 Call Option Value Before Expiration
CHAPTER 16 Option Valuation 16.1 OPTION VALUATION: INTRODUCTION Option Values Intrinsic value - profit that could be made if the option was immediately exercised Call: stock price - exercise price Put:
Chapter 21 Valuing Options
Chapter 21 Valuing Options Multiple Choice Questions 1. Relative to the underlying stock, a call option always has: A) A higher beta and a higher standard deviation of return B) A lower beta and a higher
Options Pricing. This is sometimes referred to as the intrinsic value of the option.
Options Pricing We will use the example of a call option in discussing the pricing issue. Later, we will turn our attention to the Put-Call Parity Relationship. I. Preliminary Material Recall the payoff
Finance 436 Futures and Options Review Notes for Final Exam. Chapter 9
Finance 436 Futures and Options Review Notes for Final Exam Chapter 9 1. Options: call options vs. put options, American options vs. European options 2. Characteristics: option premium, option type, underlying
The Value of Intangibles. Aswath Damodaran 1
The Value of Intangibles 1 Start with the obvious Intangible assets are worth a lot and accountants don t do a good job in assessing their value Leonard Nakamura of the Federal Reserve Bank of Philadelphia
Option Values. Option Valuation. Call Option Value before Expiration. Determinants of Call Option Values
Option Values Option Valuation Intrinsic value profit that could be made if the option was immediately exercised Call: stock price exercise price : S T X i i k i X S Put: exercise price stock price : X
Options: Valuation and (No) Arbitrage
Prof. Alex Shapiro Lecture Notes 15 Options: Valuation and (No) Arbitrage I. Readings and Suggested Practice Problems II. Introduction: Objectives and Notation III. No Arbitrage Pricing Bound IV. The Binomial
2. Exercising the option - buying or selling asset by using option. 3. Strike (or exercise) price - price at which asset may be bought or sold
Chapter 21 : Options-1 CHAPTER 21. OPTIONS Contents I. INTRODUCTION BASIC TERMS II. VALUATION OF OPTIONS A. Minimum Values of Options B. Maximum Values of Options C. Determinants of Call Value D. Black-Scholes
Chapter 20 Understanding Options
Chapter 20 Understanding Options Multiple Choice Questions 1. Firms regularly use the following to reduce risk: (I) Currency options (II) Interest-rate options (III) Commodity options D) I, II, and III
Overview. Option Basics. Options and Derivatives. Professor Lasse H. Pedersen. Option basics and option strategies
Options and Derivatives Professor Lasse H. Pedersen Prof. Lasse H. Pedersen 1 Overview Option basics and option strategies No-arbitrage bounds on option prices Binomial option pricing Black-Scholes-Merton
Call and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options
Call and Put Options A call option gives its holder the right to purchase an asset for a specified price, called the strike price, on or before some specified expiration date. A put option gives its holder
American and European. Put Option
American and European Put Option Analytical Finance I Kinda Sumlaji 1 Table of Contents: 1. Introduction... 3 2. Option Style... 4 3. Put Option 4 3.1 Definition 4 3.2 Payoff at Maturity... 4 3.3 Example
Options/1. Prof. Ian Giddy
Options/1 New York University Stern School of Business Options Prof. Ian Giddy New York University Options Puts and Calls Put-Call Parity Combinations and Trading Strategies Valuation Hedging Options2
Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.
Chapter 11 Options Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Part C Determination of risk-adjusted discount rate. Part D Introduction to derivatives. Forwards
Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)
Copyright 2003 Pearson Education, Inc. Slide 08-1 Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs Binomial Option Pricing: Basics (Chapter 10 of McDonald) Originally prepared
CHAPTER 21: OPTION VALUATION
CHAPTER 21: OPTION VALUATION 1. Put values also must increase as the volatility of the underlying stock increases. We see this from the parity relation as follows: P = C + PV(X) S 0 + PV(Dividends). Given
CHAPTER 21: OPTION VALUATION
CHAPTER 21: OPTION VALUATION PROBLEM SETS 1. The value of a put option also increases with the volatility of the stock. We see this from the put-call parity theorem as follows: P = C S + PV(X) + PV(Dividends)
Option Premium = Intrinsic. Speculative Value. Value
Chapters 4/ Part Options: Basic Concepts Options Call Options Put Options Selling Options Reading The Wall Street Journal Combinations of Options Valuing Options An Option-Pricing Formula Investment in
Lecture 4: Properties of stock options
Lecture 4: Properties of stock options Reading: J.C.Hull, Chapter 9 An European call option is an agreement between two parties giving the holder the right to buy a certain asset (e.g. one stock unit)
Use the option quote information shown below to answer the following questions. The underlying stock is currently selling for $83.
Problems on the Basics of Options used in Finance 2. Understanding Option Quotes Use the option quote information shown below to answer the following questions. The underlying stock is currently selling
Online Appendix: Payoff Diagrams for Futures and Options
Online Appendix: Diagrams for Futures and Options As we have seen, derivatives provide a set of future payoffs based on the price of the underlying asset. We discussed how derivatives can be mixed and
Lecture 4: Derivatives
Lecture 4: Derivatives School of Mathematics Introduction to Financial Mathematics, 2015 Lecture 4 1 Financial Derivatives 2 uropean Call and Put Options 3 Payoff Diagrams, Short Selling and Profit Derivatives
Introduction to Options
Introduction to Options By: Peter Findley and Sreesha Vaman Investment Analysis Group What Is An Option? One contract is the right to buy or sell 100 shares The price of the option depends on the price
On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price
On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. Black-Scholes Equation is derived using two methods: (1) risk-neutral measure; (2) - hedge. II.
CHAPTER 20. Financial Options. Chapter Synopsis
CHAPTER 20 Financial Options Chapter Synopsis 20.1 Option Basics A financial option gives its owner the right, but not the obligation, to buy or sell a financial asset at a fixed price on or until a specified
Figure S9.1 Profit from long position in Problem 9.9
Problem 9.9 Suppose that a European call option to buy a share for $100.00 costs $5.00 and is held until maturity. Under what circumstances will the holder of the option make a profit? Under what circumstances
Call Price as a Function of the Stock Price
Call Price as a Function of the Stock Price Intuitively, the call price should be an increasing function of the stock price. This relationship allows one to develop a theory of option pricing, derived
ECMC49F Options Practice Questions Suggested Solution Date: Nov 14, 2005
ECMC49F Options Practice Questions Suggested Solution Date: Nov 14, 2005 Options: General [1] Define the following terms associated with options: a. Option An option is a contract which gives the holder
Introduction to Options. Derivatives
Introduction to Options Econ 422: Investment, Capital & Finance University of Washington Summer 2010 August 18, 2010 Derivatives A derivative is a security whose payoff or value depends on (is derived
Lecture 21 Options Pricing
Lecture 21 Options Pricing Readings BM, chapter 20 Reader, Lecture 21 M. Spiegel and R. Stanton, 2000 1 Outline Last lecture: Examples of options Derivatives and risk (mis)management Replication and Put-call
9 Basics of options, including trading strategies
ECG590I Asset Pricing. Lecture 9: Basics of options, including trading strategies 1 9 Basics of options, including trading strategies Option: The option of buying (call) or selling (put) an asset. European
Stock. Call. Put. Bond. Option Fundamentals
Option Fundamentals Payoff Diagrams hese are the basic building blocks of financial engineering. hey represent the payoffs or terminal values of various investment choices. We shall assume that the maturity
EXP 481 -- Capital Markets Option Pricing. Options: Definitions. Arbitrage Restrictions on Call Prices. Arbitrage Restrictions on Call Prices 1) C > 0
EXP 481 -- Capital Markets Option Pricing imple arbitrage relations Payoffs to call options Black-choles model Put-Call Parity Implied Volatility Options: Definitions A call option gives the buyer the
Option Payoffs. Problems 11 through 16: Describe (as I have in 1-10) the strategy depicted by each payoff diagram. #11 #12 #13 #14 #15 #16
Option s Problems 1 through 1: Assume that the stock is currently trading at $2 per share and options and bonds have the prices given in the table below. Depending on the strike price (X) of the option
CHAPTER 22 Options and Corporate Finance
CHAPTER 22 Options and Corporate Finance Multiple Choice Questions: I. DEFINITIONS OPTIONS a 1. A financial contract that gives its owner the right, but not the obligation, to buy or sell a specified asset
The Option to Delay!
The Option to Delay! When a firm has exclusive rights to a project or product for a specific period, it can delay taking this project or product until a later date. A traditional investment analysis just
Fundamentals of Futures and Options (a summary)
Fundamentals of Futures and Options (a summary) Roger G. Clarke, Harindra de Silva, CFA, and Steven Thorley, CFA Published 2013 by the Research Foundation of CFA Institute Summary prepared by Roger G.
CHAPTER 20: OPTIONS MARKETS: INTRODUCTION
CHAPTER 20: OPTIONS MARKETS: INTRODUCTION PROBLEM SETS 1. Options provide numerous opportunities to modify the risk profile of a portfolio. The simplest example of an option strategy that increases risk
UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014. MFE Midterm. February 2014. Date:
UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014 MFE Midterm February 2014 Date: Your Name: Your Equiz.me email address: Your Signature: 1 This exam is open book,
Caput Derivatives: October 30, 2003
Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor
Factors Affecting Option Prices
Factors Affecting Option Prices 1. The current stock price S 0. 2. The option strike price K. 3. The time to expiration T. 4. The volatility of the stock price σ. 5. The risk-free interest rate r. 6. The
Manual for SOA Exam FM/CAS Exam 2.
Manual for SOA Exam FM/CAS Exam 2. Chapter 7. Derivatives markets. c 2009. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall
Week 13 Introduction to the Greeks and Portfolio Management:
Week 13 Introduction to the Greeks and Portfolio Management: Hull, Ch. 17; Poitras, Ch.9: I, IIA, IIB, III. 1 Introduction to the Greeks and Portfolio Management Objective: To explain how derivative portfolios
FINANCIAL ECONOMICS OPTION PRICING
OPTION PRICING Options are contingency contracts that specify payoffs if stock prices reach specified levels. A call option is the right to buy a stock at a specified price, X, called the strike price.
Convenient Conventions
C: call value. P : put value. X: strike price. S: stock price. D: dividend. Convenient Conventions c 2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 168 Payoff, Mathematically Speaking The payoff
Fin 3710 Investment Analysis Professor Rui Yao CHAPTER 14: OPTIONS MARKETS
HW 6 Fin 3710 Investment Analysis Professor Rui Yao CHAPTER 14: OPTIONS MARKETS 4. Cost Payoff Profit Call option, X = 85 3.82 5.00 +1.18 Put option, X = 85 0.15 0.00-0.15 Call option, X = 90 0.40 0.00-0.40
Lecture 12. Options Strategies
Lecture 12. Options Strategies Introduction to Options Strategies Options, Futures, Derivatives 10/15/07 back to start 1 Solutions Problem 6:23: Assume that a bank can borrow or lend money at the same
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008. Options
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Options These notes describe the payoffs to European and American put and call options the so-called plain vanilla options. We consider the payoffs to these
Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13.
Week 11 The Black-Scholes Model: Hull, Ch. 13. 1 The Black-Scholes Model Objective: To show how the Black-Scholes formula is derived and how it can be used to value options. 2 The Black-Scholes Model 1.
American Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan American Options
American Options An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Early Exercise Since American style options give the holder the same rights as European style options plus
Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008
: A Stern School of Business New York University Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008 Outline 1 2 3 4 5 6 se notes review the principles underlying option pricing and some of
11 Option. Payoffs and Option Strategies. Answers to Questions and Problems
11 Option Payoffs and Option Strategies Answers to Questions and Problems 1. Consider a call option with an exercise price of $80 and a cost of $5. Graph the profits and losses at expiration for various
understanding options
Investment Planning understanding options Get acquainted with this versatile investment tool. Understanding Options This brochure discusses the basic concepts of options: what they are, common investment
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Options These notes consider the way put and call options and the underlying can be combined to create hedges, spreads and combinations. We will consider the
CHAPTER 22: FUTURES MARKETS
CHAPTER 22: FUTURES MARKETS PROBLEM SETS 1. There is little hedging or speculative demand for cement futures, since cement prices are fairly stable and predictable. The trading activity necessary to support
Chapter 17 Option Pricing with Applications to Real Options ANSWERS TO SELECTED END-OF-CHAPTER QUESTIONS
Chapter 17 Option Pricing with Applications to Real Options ANSWERS TO SELECTED END-OF-CHAPTER QUESTIONS 17-1 a. An option is a contract which gives its holder the right to buy or sell an asset at some
第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model
1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American
Options. Moty Katzman. September 19, 2014
Options Moty Katzman September 19, 2014 What are options? Options are contracts conferring certain rights regarding the buying or selling of assets. A European call option gives the owner the right to
OPTIONS MARKETS AND VALUATIONS (CHAPTERS 16 & 17)
OPTIONS MARKETS AND VALUATIONS (CHAPTERS 16 & 17) WHAT ARE OPTIONS? Derivative securities whose values are derived from the values of the underlying securities. Stock options quotations from WSJ. A call
How To Value Real Options
FIN 673 Pricing Real Options Professor Robert B.H. Hauswald Kogod School of Business, AU From Financial to Real Options Option pricing: a reminder messy and intuitive: lattices (trees) elegant and mysterious:
Option pricing. Vinod Kothari
Option pricing Vinod Kothari Notation we use this Chapter will be as follows: S o : Price of the share at time 0 S T : Price of the share at time T T : time to maturity of the option r : risk free rate
FIN 3710. Final (Practice) Exam 05/23/06
FIN 3710 Investment Analysis Spring 2006 Zicklin School of Business Baruch College Professor Rui Yao FIN 3710 Final (Practice) Exam 05/23/06 NAME: (Please print your name here) PLEDGE: (Sign your name
Goals. Options. Derivatives: Definition. Goals. Definitions Options. Spring 2007 Lecture Notes 4.6.1 Readings:Mayo 28.
Goals Options Spring 27 Lecture Notes 4.6.1 Readings:Mayo 28 Definitions Options Call option Put option Option strategies Derivatives: Definition Derivative: Any security whose payoff depends on any other
Quantitative Strategies Research Notes
Quantitative Strategies Research Notes December 1992 Valuing Options On Periodically-Settled Stocks Emanuel Derman Iraj Kani Alex Bergier SUMMARY In some countries, for example France, stocks bought or
Lecture 6: Option Pricing Using a One-step Binomial Tree. Friday, September 14, 12
Lecture 6: Option Pricing Using a One-step Binomial Tree An over-simplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond
Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 12: The Black-Scholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The Black-Scholes-Merton Model
www.optionseducation.org OIC Options on ETFs
www.optionseducation.org Options on ETFs 1 The Options Industry Council For the sake of simplicity, the examples that follow do not take into consideration commissions and other transaction fees, tax considerations,
Underlying (S) The asset, which the option buyer has the right to buy or sell. Notation: S or S t = S(t)
INTRODUCTION TO OPTIONS Readings: Hull, Chapters 8, 9, and 10 Part I. Options Basics Options Lexicon Options Payoffs (Payoff diagrams) Calls and Puts as two halves of a forward contract: the Put-Call-Forward
Equity Value and Per Share Value: A Test
Equity Value and Per Share Value: A Test Assume that you have done an equity valuation of Microsoft. The total value for equity is estimated to be $ 400 billion and there are 5 billion shares outstanding.
ACTS 4302 SOLUTION TO MIDTERM EXAM Derivatives Markets, Chapters 9, 10, 11, 12, 18. October 21, 2010 (Thurs)
Problem ACTS 4302 SOLUTION TO MIDTERM EXAM Derivatives Markets, Chapters 9, 0,, 2, 8. October 2, 200 (Thurs) (i) The current exchange rate is 0.0$/. (ii) A four-year dollar-denominated European put option
CHAPTER 7: PROPERTIES OF STOCK OPTION PRICES
CHAPER 7: PROPERIES OF SOCK OPION PRICES 7.1 Factors Affecting Option Prices able 7.1 Summary of the Effect on the Price of a Stock Option of Increasing One Variable While Keeping All Other Fixed Variable
b. June expiration: 95-23 = 95 + 23/32 % = 95.71875% or.9571875.9571875 X $100,000 = $95,718.75.
ANSWERS FOR FINANCIAL RISK MANAGEMENT A. 2-4 Value of T-bond Futures Contracts a. March expiration: The settle price is stated as a percentage of the face value of the bond with the final "27" being read
Black Scholes Merton Approach To Modelling Financial Derivatives Prices Tomas Sinkariovas 0802869. Words: 3441
Black Scholes Merton Approach To Modelling Financial Derivatives Prices Tomas Sinkariovas 0802869 Words: 3441 1 1. Introduction In this paper I present Black, Scholes (1973) and Merton (1973) (BSM) general
Hedging with Futures and Options: Supplementary Material. Global Financial Management
Hedging with Futures and Options: Supplementary Material Global Financial Management Fuqua School of Business Duke University 1 Hedging Stock Market Risk: S&P500 Futures Contract A futures contract on
Week 12. Options on Stock Indices and Currencies: Hull, Ch. 15. Employee Stock Options: Hull, Ch. 14.
Week 12 Options on Stock Indices and Currencies: Hull, Ch. 15. Employee Stock Options: Hull, Ch. 14. 1 Options on Stock Indices and Currencies Objective: To explain the basic asset pricing techniques used
Stock Options. Definition
Stock Options Definition Contractual instruments whereby two parties enter into an agreement To give something of value to each other Option contract gives the holder the right to buy/ sell a certain amount
FIN 411 -- Investments Option Pricing. Options: Definitions. Arbitrage Restrictions on Call Prices. Arbitrage Restrictions on Call Prices
FIN 411 -- Investments Option Pricing imple arbitrage relations s to call options Black-choles model Put-Call Parity Implied Volatility Options: Definitions A call option gives the buyer the right, but
Session X: Lecturer: Dr. Jose Olmo. Module: Economics of Financial Markets. MSc. Financial Economics. Department of Economics, City University, London
Session X: Options: Hedging, Insurance and Trading Strategies Lecturer: Dr. Jose Olmo Module: Economics of Financial Markets MSc. Financial Economics Department of Economics, City University, London Option
Lecture 5: Put - Call Parity
Lecture 5: Put - Call Parity Reading: J.C.Hull, Chapter 9 Reminder: basic assumptions 1. There are no arbitrage opportunities, i.e. no party can get a riskless profit. 2. Borrowing and lending are possible
Other variables as arguments besides S. Want those other variables to be observables.
Valuation of options before expiration Need to distinguish between American and European options. Consider European options with time t until expiration. Value now of receiving c T at expiration? (Value
Lecture 7: Bounds on Options Prices Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 7: Bounds on Options Prices Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Option Price Quotes Reading the
The Black-Scholes Formula
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the
INTRODUCTION TO OPTIONS MARKETS QUESTIONS
INTRODUCTION TO OPTIONS MARKETS QUESTIONS 1. What is the difference between a put option and a call option? 2. What is the difference between an American option and a European option? 3. Why does an option
Value of Equity and Per Share Value when there are options and warrants outstanding. Aswath Damodaran
Value of Equity and Per Share Value when there are options and warrants outstanding Aswath Damodaran 1 Equity Value and Per Share Value: A Test Assume that you have done an equity valuation of Microsoft.
OPTIONS and FUTURES Lecture 2: Binomial Option Pricing and Call Options
OPTIONS and FUTURES Lecture 2: Binomial Option Pricing and Call Options Philip H. Dybvig Washington University in Saint Louis binomial model replicating portfolio single period artificial (risk-neutral)
Before we discuss a Call Option in detail we give some Option Terminology:
Call and Put Options As you possibly have learned, the holder of a forward contract is obliged to trade at maturity. Unless the position is closed before maturity the holder must take possession of the
Valuation of Razorback Executive Stock Options: A Simulation Approach
Valuation of Razorback Executive Stock Options: A Simulation Approach Joe Cheung Charles J. Corrado Department of Accounting & Finance The University of Auckland Private Bag 92019 Auckland, New Zealand.
Hedging. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Hedging
Hedging An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Introduction Definition Hedging is the practice of making a portfolio of investments less sensitive to changes in
1 The Black-Scholes Formula
1 The Black-Scholes Formula In 1973 Fischer Black and Myron Scholes published a formula - the Black-Scholes formula - for computing the theoretical price of a European call option on a stock. Their paper,
Example 1. Consider the following two portfolios: 2. Buy one c(s(t), 20, τ, r) and sell one c(s(t), 10, τ, r).
Chapter 4 Put-Call Parity 1 Bull and Bear Financial analysts use words such as bull and bear to describe the trend in stock markets. Generally speaking, a bull market is characterized by rising prices.
