Options, Derivatives, Risk Management


 August O’Neal’
 6 years ago
 Views:
Transcription
1 1/1 Options, Derivatives, Risk Management (Welch, Chapter 27) Ivo Welch UCLA Anderson School, Corporate Finance, Winter 2014 January 13, 2015 Did you bring your calculator? Did you read these notes and the chapter ahead of time?
2 2/1 Maintained Assumptions We assume perfect markets, so we assume 1. No differences in opinion. 2. No taxes. 3. No transaction costs. 4. No big sellers/buyers we have infinitely many clones that can buy or sell. We assume uncertainty and riskaversion, as in the portfolio optimization and CAPM chapters (Chapters 8 and 9).
3 3/1 Definition of Derivative A financial instrument whose payoff depends on some other asset. Often a (side)bet between investors. Thus, for every long there is a short. (Opposite=Stock is in positive net supply.) A priori, both should be better off contracts are voluntary. But after the fact, one will lose, one will win. Examples: Life Insurance. Car Insurance. A bet paying off $50 if the price of oil on December 31, 2020 will be > $100. The price of oil on December 31, 2020, minus $100. The price of oil, squared, on December 31, 2020, minus $100, squared. The most prominent financial derivatives: Forward and Future an agreement to buy or sell something for an agreed upon time in the future. Often written so that no money exchanges hands today. Future = settled every day to make price zero (reduces runaway default). Option an agreement that one party has the right but not the obligation to buy or sell something to the other party for an agreedupon time period. Many others, such as swaps.
4 4/1 Option The right but not obligation to transact at a predetermined strike price K at a predetermined time (or time range) in the future. The final time is usually abbreviated by capital T. Call option: The right to buy 1 share. Its value at expiration is C(K, T) = max(0, S T K) Put option: The right to sell 1 share. Its value at expiration is P(K, T) = max(0, K S T ) Jargon: Outofthemoney = if it expired now, you would get nothing. In the money = if it expired now, you would get something. At the money = right at the cusp. Abovethemoney = S > K. American option = the option holder can exercise anytime before the final moment. European option = exercise only at the final instant. Exchangetraded options have compensating rules for cases in which shares split, but not for dividend payments, even liquidating ones. PS: (Usually) sold in lots of 100 only, called a contract.
5 5/1 Call Option Example: IBM on May 31, 2002 The expiration date T, July 20, 2002, was years away. The prevailing interest rates were 1.77% over 1 month, and 1.95% over 6 months. Underlying Strike Call Put Base Asset S t Expiration T Price K Price C t Price P t IBM $80.50 July 20, 2002 $85 $1.900 $6.200 C Jul 20 = max(0, S Jul 20 $85) 31 = $1.90 P Jul 20 = max(0, $85 S Jul 20 ) 31 = $6.20 Different Strike Prices IBM $80.50 July 20, 2002 $75 $7.400 $1.725 IBM $80.50 July 20, 2002 $80 $4.150 $3.400 IBM $80.50 July 20, 2002 $90 $0.725 $ Different Expiration Dates IBM $80.50 Oct. 19, 2002 $85 $4.550 $8.700 IBM $80.50 Jan. 18, 2003 $85 $6.550 $10.200
6 Why would someone want to purchase a call option? 6/1
7 Why would someone want to sell a call option? 7/1
8 Does the seller of an option need to own the underlying (IBM) stock? 8/1
9 Why would someone want to purchase a put option? 9/1
10 Why would someone want to sell a put option? 10/1
11 As a function of the stock price at expiration T, what is the payoff table and payoff diagram of a call option with strike price K=$90? (Long and short. Final payoff only. Ignore upfront cost.) 11/1
12 As a function of the stock price at expiration T, what is the payoff table and payoff diagram of a put option with strike price K=$90? (Long and short. Final payoff only. Ignore upfront cost.) 12/1
13 Is a put option the exact flip side of a call option? That is, is it the same to buy 1 call option or to sell 1 put option? 13/1
14 Spread (Long and Short of Same Time): As a function of the stock price at expiration T, what is the payoff table and payoff diagram of a position with one put option long with strike price K=$90 and one put option short with strike K = $70? 14/1
15 15/1 Other Common Positions Spread: (Long Call, Short Call). Or (Long Put, Short Put). Combination: (Long Call, Short Put). (Short Call, Long Put). Straddle: (Long Call, Long Put). (Short Call, Short Put). Most popular position. Speculates on...? Your brokerage has special buttons to purchase many such special positions. (By smartly combining puts and calls, you can even construct binomial options, e.g., which pay off $1 when the price is between $50 and $51, and $0 otherwise.)
16 16/1 NoArbitrage Relationships (All Options:) C 0 S 0. C 0 0. P 0 0. C 0 (K Low ) C 0 (K High ) P 0 (K Low ) P 0 (K High ) (American Options w/o Dividends, but usually w/ Divs, too:) C 0 max(0, S 0 K). P 0 max(0, K S 0 ). P 0 (T later) P 0 (T earlier). C 0 (T later) C 0 (T earlier). (If I use subscript 0, it means any time before expiration.)
17 Say S = $80. C(K = $100) = $30. P(K = $100) = $50. To expiration, r = 10%. European. How do you get rich? 17/1
18 18/1 PutCall Parity For European call and put options without dividends C 0 (K) = P 0 (K) + S 0 PV 0 (K)
19 If there were no European put options, but you could buy/sell European call options, could you manufacture a European put option? 19/1
20 20/1 Assume zero dividends. 1. What is the value of immediate exercise for an American call option? 2. Is an American call option worth more exercised or unexercised? 3. What is the value of an American call option compared to a European call option?
21 21/1 Assume zero dividends. 1. What is the value of immediate exercise for an American put option? 2. Is an American put option worth more exercised or unexercised? 3. What is the value of an American put option compared to a European put option?
22 22/1 The American Put Why is the Put s American feature worthwhile, while the Call s American feature is not? Take an expiration date of +1 million years. If the stock price is $100 and the call s strike price is $50 (ITM), does time work for you or against you? If the stock price is $50 and the put s strike price is $100 (ITM), does time work for you or against you?
23 23/1 What is the Price of the Call? Our ultimate goal is still to price the following call: Stock Price Now S 0 $80.50 AgreedUpon Strike Price K $85.00 Time Remaining to Maturity t years Interest Rate on RiskFree Bonds R F 1.77% per year Volatility (Standard Deviation) σ 30% per year of the Underlying Stock If you know the put option, you can tell me the price of the call. But, without the put, you are stuck. The solution: binomial pricing.
24 24/1 Let s say you buy (hold) δ = 0.5 shares at a stock price of $120 and borrow $50 (flow b = ( $50)) in bonds. What is the net cost of your position today? If the price of shares will be S = $150 and the interest rate is 1% from now to next period, then what will your position be worth?
25 25/1 Binomial Stock Price Movements: up = 5%. down = 4%. rr= 0.1%. = u = d = r = Instant 0 = Now Instant 1 Instant 2 S0 = $ B = $100 ST1 = u S0 = $52.50 B = $100.1 ST1 = d S0 = $48.00 B = $100.1 ST2 = u 2 S0 = $ B = $100.2 ST2 = u d S0 = $50.40 B = $100.2 ST2 = d 2 S0 = $46.08 B = $100.2
26 What is the expected rate of return on the stock? 26/1
27 27/1 Binomial Pricing Price a call with a strike price $50, expiring at Instant 2. Instant 0 = Now Instant 1 Instant 2 S0 = $50.00 C 0 =? C u T1 =? ST1 = u S0 = $52.50 ST1 = d S0 = $48.00 C d T1 =? C uu T2 = $5.125 C du T2 = $0.40 ST2 = u 2 S0 = $ ST2 = u d S0 = $50.40 ST2 = d 2 S0 = $46.08 C dd T2 = $0.00 You can now forget about the contract we have used all its information (t and K). We could actually price anything that is a payoff that depends only on S T2.
28 28/1 Binomial Pricing: Price? Instant 0 = Now Instant 1 Instant 2 = Expiration Ignore Ignore Ignore Ignore C du T2 = $0.40 ST2 = u d S0 = $50.40 ST2 = d 2 S0 = $46.08 C dd T2 = $0.00
29 How many δ shares and how many bonds b do you have to issue (i.e., borrow) today in order to receive next instant $0.40 if S = $50.40 and $0.00 if S = $46.08? What are the equations? 29/1
30 What is the expected rate of return on the stock? Do we need it? 30/1
31 31/1 How much do have to lay out to hold shares if you borrow $4.262 and shares cost $48? Instant 0 = Now Instant 1 Instant 2 = Expiration Ignore Ignore Ignore ST1 = d S0 = $48.00 C d T1 =? (you are here)
32 32/1 Binomial Pricing: Working Backwards Instant 0 = Now Instant 1 Instant 2 = Expiration Ignore Ignore Ignore ST1 = d S0 = $48.00 C d T1 =? C du T2 = $0.40 ST2 = u d S0 = $50.40 (you are here) ST2 = d 2 S0 = $46.08 C dd T2 = $0.00 A portfolio consisting of shares and $4.262 borrowed from the bank costs $0.182 if S = $48. It is worth $0.40 if the stock goes to $50.40 and $0.00 if the stock goes to $46.08.
33 33/1 Can you do the upper branch? Instant 0 = Now Instant 1 Instant 2 Ignore C u T1 =? ST1 = u S0 = $52.50 Ignore C uu T2 = $5.125 C du T2 = $0.40 ST2 = u 2 S0 = $ ST2 = u d S0 = $50.40 Ignore
34 34/1 Can you do the left twig? Instant 0 = Now Instant 1 Instant 2 Ignore S0 = $50.00 C 0 =? ST1 = u S0 = $52.50 C u T1 = $2.550 ST1 = d S0 = $48.00 C d T1 = $0.182 Ignore Ignore
35 35/1 The Solved Tree (and Binomial Price) Instant 0 = Now Instant 1 Instant 2 S0 = $50.00 C0 = $1.26, δ 0.5 ST1 = u S0 = $52.50 C u T1 = $2.550, δ = 1 ST1 = d S0 = $48.00 C d T1 = $0.182, δ 0.1 C uu T2 = $5.125 C du T2 = $0.40 ST2 = u 2 S0 = $ ST2 = u d S0 = $50.40 ST2 = d 2 S0 = $46.08 C dd T2 = $0.00
36 How often do you have to readjust your mimicking stock+bond portfolio to have the same payoffs as the option? 36/1
37 Intuition You buy a fraction of the stock and borrow some money to create a portfolio that will respond just like a real option to a tiny change in the underlying stock market basis, at least over the next instant of time. By the law of one price, the two portfolios should cost the same amount of money. To replicate the call, you need to buy the stock and borrow some money. So, what matters for your own replication ability is the interest that you have to pay for borrowing money from now to the expiration of the put. In an imperfect market, this may not be the same as your lending interest rate. Also, in an imperfect market, you may be able to lend out your stock (to hedge funds who want to short), which can earn you extra fees. Net in net, BS type arbitrage is something that experts in the control of transaction costs should do, not you. (Warning: dayend prices can be misleading. the NYSE closing prices occur before the CBOE closing prices.) 37/1
38 Do Stock Prices (and Returns) Seem Binomial? 1 Binomial Outcome 5 Levels Levels Levels Probability Probability Stock Price (in $) Stock Price (in $) 50 Levels 500 Levels 0.12 Probability Levels Probability Levels Stock Price (in $) Stock Price (in $) Over an infinite number of periods, this would look lognormal. 38/1
39 39/1 What is the Price of the Call? Get back to at our original question. How do we price: Stock Price Now S 0 $80.50 AgreedUpon Strike Price K $85.00 Time Remaining to Maturity t years Interest Rate on RiskFree Bonds R F 1.77% per year Volatility (Standard Deviation) σ 30% per year of the Underlying Stock Let s say you have an infinite number of levels, not just 3 levels. Does this not make the problem even harder?
40 40/1 Nice BlackScholes Formula The five inputs are as follows: C 0 (S 0, K, t, R F, σ) = S 0 (d 1 ) PV(K) (d 2 ) d 1 = log N S0 /PV(K) (σ t) + 1 t) (σ 2 d 2 = d 1 σ t S 0 is the current stock price. t is the time left to maturity. K is the strike price. PV(K) is the present value of K. Thus, it depends on the riskfree rate, R F. σ is the standard deviation of the underlying stock s continuously compounded rate of return (i.e., of log(1 + r t )). It is often casually called just the stock volatility. is the cumulative normal distribution (Excel normsdist()) The time units must be the same on PV(K), sigma, and t. Often all annualized. log N is the natural logarithm, not the base10 logarithm. Calculators often use ln for this.
41 41/1 Insights S 0 ( ) PV(K) ( ) still looks like buy some stock and borrow (short some bonds). Hedge ratio : Instead of δ, we now have (d 1 ). (d [1,2] ) is like a probability: a number between 0 and 1. σ t is the standard deviation of logreturns to expiration. σ only enters this way. PV(K) is the discounted strike price. K enters only in this form. t enters only to scale K and σ. S/PV(K) is how much your call is in the money. The log thereof is positive iff S 0 > PV(K). If you are out of the money, and volatility to expiration is 0, d 1 =, so (d 1 ) = 0. If you are far in the money, and volatility to expiration is 0, d 1 = +, so (d 1 ) = 1.
42 42/1 Steps Calculate PV(K). Calculate σ t Calculate d 1 Calculate d 2 Calculate the rest. Let s do the full calculation once by hand.
43 43/1 S 0 = $ K = $85. t = 0.133y. R F = 1.78%/y. σ = 0.3/y. What is the PV(K)?
44 44/1 S 0 = $ PV(K) = $ t = 0.133y. σ = 0.3/y. What is d 1?
45 What is d 2? 45/1
46 What is ( )? What is ( ) 46/1
47 47/1 The Cumulative Normal Distribution n(z) 0.2 N(z) Area =15.87% 0.2 N( 1)=15.87% z z The rightside figure plots normsdist() in Excel.
48 48/1 Cumulative Normal Distribution z (z) z (z) z (z) z (z) z (z) z (z)
49 What is IBM s BlackScholes European Call Option Value? 49/1
50 50/1 QuasiBinomial BS Pricing Trust me IBM = $ Call Strike = $85. r= 1.77%/1 month, 1.95%/3 months. Time to Expiration = years. If IBM goes to $80.51, the call increases in value by cents. If IBM goes to $80.49, the call decreases in value by cents. Thus, if you buy 33.71% $80.50 = $27.14 of IBM stock, then a 1 cent change in IBM stock means your portfolio changes by cents. The $27.14 position and the option react the same way. You also need to finance this purchase, though, borrowing $ Your portfolio net cost is $1.86. Using such mimicking portfolios and the law of one price, you can work back an infinite tree from the final instant before expiration to determine the share price today. (Or just use BS.) The call price is thus determined by arbitrage. It is called dynamic arbitrage, because every instant, you may have to change your hedge portfolio a little.
51 If there were no options on a traded base asset, could you manufacture the payoffs of an option? 51/1
52 If IBM s European Call Option costs $1.86, what should be IBM s American Call Option value? 52/1
53 What is IBM s European Put Option value? 53/1
54 What is IBM s American Put Option value? 54/1
55 How do you get the BlackScholes inputs? 55/1
56 56/1 Remaining Problem How do you get the volatility??
57 57/1 Method 1: Historical Volatility Use Historical Volatility. Volatilities are easier to forecast than means. Why? Often modeled with complex GARCH etc. models: volatility is both strongly autoregressive and meanreverting.
58 58/1 Method 2: Implied Volatility S = $80.50, K = $85, t = 0.133, r = 1.78% 12 Call Option Value (in $) sigma=30.38% P=$ Sigma (in %) There is no closedform solution. You must plot the BS formula for all possible sigmas, and find the one that matches the actual price. (When not otherwise qualified, impliedvol refers to the BS model.)
59 59/1 Table With Implied Vols Underlying Expira Strike Option Option Implied Option Option Implied Base Asset tion T Price K Type Price Volatility Type Price Volatility IBM $80.50 July 20, 2002 $85 Call $ % Put $ % Different Strike Prices IBM $80.50 July 20, 2002 $75 Call $ % Put $ % IBM $80.50 July 20, 2002 $80 Call $ % Put $ % IBM $80.50 July 20, 2002 $90 Call $ % Put $ % Different Expiration Dates IBM $80.50 Oct. 19, 2002 $85 Call $ % Put $ % IBM $80.50 Jan. 18, 2003 $85 Call $ % Put $ % If the BS model held, all implied vols should be identical. Note: the implied vol is called delta. there are also other greeks : Vega: price sensitivity to changes in volatility. Theta: price sensitivity to passage of time. Rho: price sensitivity to changes in interest rate. Lambda, Omega: gearing (leverage). delta times S/V. Many other second derivatives.
60 60/1 Where BS works and where it fails. Belowofthemoney options have higher prices than BS suggests. This is probably due to sudden risk of catastrophic drops. It is also partly due to market imperfections if you want to sell $1 million of puts that are far below the money, your counterparty will worry that you know something that (s)he does not. Aboveofthemoney options have modestly higher prices than BS suggests. This is called the option smirk when the strike price is on the X axis and the imp vol is on the Y axis. There are more complex models than BS, e.g., Merton jump models. There are also models taking into account dividends and models that work with futures instead of stocks.
61 61/1 Vol of Vol? There is even an implied volatility index, the VIX. It is the implied volatility of various S&P500 options. You can buy and sell options on the VIX itself, too! You are then basically speculating whether the implied volatility will go up or down. You can speculate that the vol of the vol is lower than other people think! These are very popular (incl as hedges against increases in risk).
62 Comparative Statics: How does BS change with its parameters? 62/1
63 63/1 Volatility Estimation Volatility estimation is a big deal. There is a whole army of people on Wall Street (not just, but mostly quants) engaged in the business of forecasting it. If you can estimate volatility better than others, you can sell expensive options and buy cheap options! For example, if the market prices options at an implied volatility of 30% and you think it is 20%, then sell puts and calls!
64 Why is the expected rate of return on the stock not in the BS price? 64/1
65 65/1 With the Price at Time 0, you can do other things See next two figs.
66 66/1 BS Values Prior To Expiration 60 Current Call Option Value (in $) Years Remaining 1 Year Remaining 1 Day Remaining Current Stock Value (in $) Note that the yaxis here is the value at any point in time, not just the value at the instant of expiration.
67 67/1 BS Riskier Purchases Call option rate of return ( in %) Call(K=$100) Call(K=$90) Call(K=$70) Call(K=$0) (= buy the stock) Final stock value (in $) Note that the yaxis here is rates of return, not payoffs. The point is: calls with higher strike prices (and puts with lower strike prices) are riskier gambles. They don t pay off anything more often, but when they do, it could be much more.
68 Have you seen options before this chapter? 68/1
69 69/1 Corporate Risk Management and Hedging Uses (synthetic) securities to offset risk. E.g., a gold mine may sell calls on gold. or futures on gold. In a perfect market, investors can hedge and unhedge at will. So, hedging is irrelevant. Eliminating unnecessary risk (that is not the strength of the company) may reduce the probability of bankruptcy, and in a nonm&m world, may thus enhance value. BUT: Is it clear whether it is good or bad for Southwest Airlines if jet fuel increases in price? Should SWA really hedge? Without good selfdiscipline and controls, hedging can quickly deteriorate into gambling. Every few years, some 30year old trader gets caught having gambled away billions of dollars. (Most of the time, they get caught only having gambled away a few million dollars, and are let go quietly.) Most large publiclytraded firms, not in the business of speculation, should avoid riskmanagement, except in the most obvious of cases and with excellent controls.
Overview. Option Basics. Options and Derivatives. Professor Lasse H. Pedersen. Option basics and option strategies
Options and Derivatives Professor Lasse H. Pedersen Prof. Lasse H. Pedersen 1 Overview Option basics and option strategies Noarbitrage bounds on option prices Binomial option pricing BlackScholesMerton
More informationChapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.
Chapter 11 Options Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Part C Determination of riskadjusted discount rate. Part D Introduction to derivatives. Forwards
More informationOption Valuation. Chapter 21
Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of inthemoney options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price
More informationInstitutional Finance 08: Dynamic Arbitrage to Replicate Nonlinear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)
Copyright 2003 Pearson Education, Inc. Slide 081 Institutional Finance 08: Dynamic Arbitrage to Replicate Nonlinear Payoffs Binomial Option Pricing: Basics (Chapter 10 of McDonald) Originally prepared
More informationOption Values. Determinants of Call Option Values. CHAPTER 16 Option Valuation. Figure 16.1 Call Option Value Before Expiration
CHAPTER 16 Option Valuation 16.1 OPTION VALUATION: INTRODUCTION Option Values Intrinsic value  profit that could be made if the option was immediately exercised Call: stock price  exercise price Put:
More informationOptions: Valuation and (No) Arbitrage
Prof. Alex Shapiro Lecture Notes 15 Options: Valuation and (No) Arbitrage I. Readings and Suggested Practice Problems II. Introduction: Objectives and Notation III. No Arbitrage Pricing Bound IV. The Binomial
More informationOption Premium = Intrinsic. Speculative Value. Value
Chapters 4/ Part Options: Basic Concepts Options Call Options Put Options Selling Options Reading The Wall Street Journal Combinations of Options Valuing Options An OptionPricing Formula Investment in
More informationIntroduction to Options. Derivatives
Introduction to Options Econ 422: Investment, Capital & Finance University of Washington Summer 2010 August 18, 2010 Derivatives A derivative is a security whose payoff or value depends on (is derived
More informationCHAPTER 20. Financial Options. Chapter Synopsis
CHAPTER 20 Financial Options Chapter Synopsis 20.1 Option Basics A financial option gives its owner the right, but not the obligation, to buy or sell a financial asset at a fixed price on or until a specified
More informationLecture 21 Options Pricing
Lecture 21 Options Pricing Readings BM, chapter 20 Reader, Lecture 21 M. Spiegel and R. Stanton, 2000 1 Outline Last lecture: Examples of options Derivatives and risk (mis)management Replication and Putcall
More informationOptions/1. Prof. Ian Giddy
Options/1 New York University Stern School of Business Options Prof. Ian Giddy New York University Options Puts and Calls PutCall Parity Combinations and Trading Strategies Valuation Hedging Options2
More informationOptions Pricing. This is sometimes referred to as the intrinsic value of the option.
Options Pricing We will use the example of a call option in discussing the pricing issue. Later, we will turn our attention to the PutCall Parity Relationship. I. Preliminary Material Recall the payoff
More informationFundamentals of Futures and Options (a summary)
Fundamentals of Futures and Options (a summary) Roger G. Clarke, Harindra de Silva, CFA, and Steven Thorley, CFA Published 2013 by the Research Foundation of CFA Institute Summary prepared by Roger G.
More informationOption pricing. Vinod Kothari
Option pricing Vinod Kothari Notation we use this Chapter will be as follows: S o : Price of the share at time 0 S T : Price of the share at time T T : time to maturity of the option r : risk free rate
More information2. How is a fund manager motivated to behave with this type of renumeration package?
MØA 155 PROBLEM SET: Options Exercise 1. Arbitrage [2] In the discussions of some of the models in this course, we relied on the following type of argument: If two investment strategies have the same payoff
More informationChapter 8 Financial Options and Applications in Corporate Finance ANSWERS TO ENDOFCHAPTER QUESTIONS
Chapter 8 Financial Options and Applications in Corporate Finance ANSWERS TO ENDOFCHAPTER QUESTIONS 81 a. An option is a contract which gives its holder the right to buy or sell an asset at some predetermined
More informationFinance 436 Futures and Options Review Notes for Final Exam. Chapter 9
Finance 436 Futures and Options Review Notes for Final Exam Chapter 9 1. Options: call options vs. put options, American options vs. European options 2. Characteristics: option premium, option type, underlying
More informationInvesco Great Wall Fund Management Co. Shenzhen: June 14, 2008
: A Stern School of Business New York University Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008 Outline 1 2 3 4 5 6 se notes review the principles underlying option pricing and some of
More informationTPPE17 Corporate Finance 1(5) SOLUTIONS REEXAMS 2014 II + III
TPPE17 Corporate Finance 1(5) SOLUTIONS REEXAMS 2014 II III Instructions 1. Only one problem should be treated on each sheet of paper and only one side of the sheet should be used. 2. The solutions folder
More informationBUSM 411: Derivatives and Fixed Income
BUSM 411: Derivatives and Fixed Income 2. Forwards, Options, and Hedging This lecture covers the basic derivatives contracts: forwards (and futures), and call and put options. These basic contracts are
More informationLecture 11: The Greeks and Risk Management
Lecture 11: The Greeks and Risk Management This lecture studies market risk management from the perspective of an options trader. First, we show how to describe the risk characteristics of derivatives.
More informationChapter 21 Valuing Options
Chapter 21 Valuing Options Multiple Choice Questions 1. Relative to the underlying stock, a call option always has: A) A higher beta and a higher standard deviation of return B) A lower beta and a higher
More informationEXP 481  Capital Markets Option Pricing. Options: Definitions. Arbitrage Restrictions on Call Prices. Arbitrage Restrictions on Call Prices 1) C > 0
EXP 481  Capital Markets Option Pricing imple arbitrage relations Payoffs to call options Blackcholes model PutCall Parity Implied Volatility Options: Definitions A call option gives the buyer the
More information11 Option. Payoffs and Option Strategies. Answers to Questions and Problems
11 Option Payoffs and Option Strategies Answers to Questions and Problems 1. Consider a call option with an exercise price of $80 and a cost of $5. Graph the profits and losses at expiration for various
More informationCHAPTER 22 Options and Corporate Finance
CHAPTER 22 Options and Corporate Finance Multiple Choice Questions: I. DEFINITIONS OPTIONS a 1. A financial contract that gives its owner the right, but not the obligation, to buy or sell a specified asset
More informationSwing Trade Warrior Chapter 1. Introduction to swing trading and how to understand and use options How does Swing Trading Work? The idea behind swing trading is to capitalize on short term moves of stocks
More informationCall and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options
Call and Put Options A call option gives its holder the right to purchase an asset for a specified price, called the strike price, on or before some specified expiration date. A put option gives its holder
More informationChapter 20 Understanding Options
Chapter 20 Understanding Options Multiple Choice Questions 1. Firms regularly use the following to reduce risk: (I) Currency options (II) Interestrate options (III) Commodity options D) I, II, and III
More informationUse the option quote information shown below to answer the following questions. The underlying stock is currently selling for $83.
Problems on the Basics of Options used in Finance 2. Understanding Option Quotes Use the option quote information shown below to answer the following questions. The underlying stock is currently selling
More informationFINANCIAL ECONOMICS OPTION PRICING
OPTION PRICING Options are contingency contracts that specify payoffs if stock prices reach specified levels. A call option is the right to buy a stock at a specified price, X, called the strike price.
More informationFigure S9.1 Profit from long position in Problem 9.9
Problem 9.9 Suppose that a European call option to buy a share for $100.00 costs $5.00 and is held until maturity. Under what circumstances will the holder of the option make a profit? Under what circumstances
More informationAmerican and European. Put Option
American and European Put Option Analytical Finance I Kinda Sumlaji 1 Table of Contents: 1. Introduction... 3 2. Option Style... 4 3. Put Option 4 3.1 Definition 4 3.2 Payoff at Maturity... 4 3.3 Example
More informationTwoState Options. John Norstad. jnorstad@northwestern.edu http://www.norstad.org. January 12, 1999 Updated: November 3, 2011.
TwoState Options John Norstad jnorstad@northwestern.edu http://www.norstad.org January 12, 1999 Updated: November 3, 2011 Abstract How options are priced when the underlying asset has only two possible
More informationConsider a European call option maturing at time T
Lecture 10: Multiperiod Model Options BlackScholesMerton model Prof. Markus K. Brunnermeier 1 Binomial Option Pricing Consider a European call option maturing at time T with ihstrike K: C T =max(s T
More informationChapter 21: Options and Corporate Finance
Chapter 21: Options and Corporate Finance 21.1 a. An option is a contract which gives its owner the right to buy or sell an underlying asset at a fixed price on or before a given date. b. Exercise is the
More informationBINOMIAL OPTION PRICING
Darden Graduate School of Business Administration University of Virginia BINOMIAL OPTION PRICING Binomial option pricing is a simple but powerful technique that can be used to solve many complex optionpricing
More informationFinancial Options: Pricing and Hedging
Financial Options: Pricing and Hedging Diagrams Debt Equity Value of Firm s Assets T Value of Firm s Assets T Valuation of distressed debt and equitylinked securities requires an understanding of financial
More informationFIN40008 FINANCIAL INSTRUMENTS SPRING 2008. Options
FIN40008 FINANCIAL INSTRUMENTS SPRING 2008 Options These notes describe the payoffs to European and American put and call options the socalled plain vanilla options. We consider the payoffs to these
More information14 Greeks Letters and Hedging
ECG590I Asset Pricing. Lecture 14: Greeks Letters and Hedging 1 14 Greeks Letters and Hedging 14.1 Illustration We consider the following example through out this section. A financial institution sold
More informationFactors Affecting Option Prices
Factors Affecting Option Prices 1. The current stock price S 0. 2. The option strike price K. 3. The time to expiration T. 4. The volatility of the stock price σ. 5. The riskfree interest rate r. 6. The
More informationCaput Derivatives: October 30, 2003
Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor
More informationIntroduction to Binomial Trees
11 C H A P T E R Introduction to Binomial Trees A useful and very popular technique for pricing an option involves constructing a binomial tree. This is a diagram that represents di erent possible paths
More informationCHAPTER 22: FUTURES MARKETS
CHAPTER 22: FUTURES MARKETS PROBLEM SETS 1. There is little hedging or speculative demand for cement futures, since cement prices are fairly stable and predictable. The trading activity necessary to support
More informationDerivative Users Traders of derivatives can be categorized as hedgers, speculators, or arbitrageurs.
OPTIONS THEORY Introduction The Financial Manager must be knowledgeable about derivatives in order to manage the price risk inherent in financial transactions. Price risk refers to the possibility of loss
More information6. Foreign Currency Options
6. Foreign Currency Options So far, we have studied contracts whose payoffs are contingent on the spot rate (foreign currency forward and foreign currency futures). he payoffs from these instruments are
More informationThe Binomial Option Pricing Model André Farber
1 Solvay Business School Université Libre de Bruxelles The Binomial Option Pricing Model André Farber January 2002 Consider a nondividend paying stock whose price is initially S 0. Divide time into small
More informationINTRODUCTION TO OPTIONS MARKETS QUESTIONS
INTRODUCTION TO OPTIONS MARKETS QUESTIONS 1. What is the difference between a put option and a call option? 2. What is the difference between an American option and a European option? 3. Why does an option
More informationGAMMA.0279 THETA 8.9173 VEGA 9.9144 RHO 3.5985
14 Option Sensitivities and Option Hedging Answers to Questions and Problems 1. Consider Call A, with: X $70; r 0.06; T t 90 days; 0.4; and S $60. Compute the price, DELTA, GAMMA, THETA, VEGA, and RHO
More informationVALUATION IN DERIVATIVES MARKETS
VALUATION IN DERIVATIVES MARKETS September 2005 Rawle Parris ABN AMRO Property Derivatives What is a Derivative? A contract that specifies the rights and obligations between two parties to receive or deliver
More informationUCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014. MFE Midterm. February 2014. Date:
UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014 MFE Midterm February 2014 Date: Your Name: Your Equiz.me email address: Your Signature: 1 This exam is open book,
More informationUnderlying (S) The asset, which the option buyer has the right to buy or sell. Notation: S or S t = S(t)
INTRODUCTION TO OPTIONS Readings: Hull, Chapters 8, 9, and 10 Part I. Options Basics Options Lexicon Options Payoffs (Payoff diagrams) Calls and Puts as two halves of a forward contract: the PutCallForward
More informationFIN 411  Investments Option Pricing. Options: Definitions. Arbitrage Restrictions on Call Prices. Arbitrage Restrictions on Call Prices
FIN 411  Investments Option Pricing imple arbitrage relations s to call options Blackcholes model PutCall Parity Implied Volatility Options: Definitions A call option gives the buyer the right, but
More informationOPTIONS MARKETS AND VALUATIONS (CHAPTERS 16 & 17)
OPTIONS MARKETS AND VALUATIONS (CHAPTERS 16 & 17) WHAT ARE OPTIONS? Derivative securities whose values are derived from the values of the underlying securities. Stock options quotations from WSJ. A call
More informationChapter 15 OPTIONS ON MONEY MARKET FUTURES
Page 218 The information in this chapter was last updated in 1993. Since the money market evolves very rapidly, recent developments may have superseded some of the content of this chapter. Chapter 15 OPTIONS
More informationLecture 6: Option Pricing Using a Onestep Binomial Tree. Friday, September 14, 12
Lecture 6: Option Pricing Using a Onestep Binomial Tree An oversimplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond
More informationChapter 2 An Introduction to Forwards and Options
Chapter 2 An Introduction to Forwards and Options Question 2.1. The payoff diagram of the stock is just a graph of the stock price as a function of the stock price: In order to obtain the profit diagram
More informationFIN40008 FINANCIAL INSTRUMENTS SPRING 2008
FIN40008 FINANCIAL INSTRUMENTS SPRING 2008 Options These notes consider the way put and call options and the underlying can be combined to create hedges, spreads and combinations. We will consider the
More informationFinance 350: Problem Set 6 Alternative Solutions
Finance 350: Problem Set 6 Alternative Solutions Note: Where appropriate, the final answer for each problem is given in bold italics for those not interested in the discussion of the solution. I. Formulas
More informationLecture 12. Options Strategies
Lecture 12. Options Strategies Introduction to Options Strategies Options, Futures, Derivatives 10/15/07 back to start 1 Solutions Problem 6:23: Assume that a bank can borrow or lend money at the same
More informationChapter 17 Option Pricing with Applications to Real Options ANSWERS TO SELECTED ENDOFCHAPTER QUESTIONS
Chapter 17 Option Pricing with Applications to Real Options ANSWERS TO SELECTED ENDOFCHAPTER QUESTIONS 171 a. An option is a contract which gives its holder the right to buy or sell an asset at some
More informationIntroduction, Forwards and Futures
Introduction, Forwards and Futures Liuren Wu Zicklin School of Business, Baruch College Fall, 2007 (Hull chapters: 1,2,3,5) Liuren Wu Introduction, Forwards & Futures Option Pricing, Fall, 2007 1 / 35
More informationName Graph Description Payoff Profit Comments. commodity at some point in the future at a prespecified. commodity at some point
Name Graph Description Payoff Profit Comments Long Commitment to purchase commodity at some point in the future at a prespecified price S T  F S T F No premium Asset price contingency: Always Maximum
More informationTrading Strategies Involving Options. Chapter 11
Trading Strategies Involving Options Chapter 11 1 Strategies to be Considered A riskfree bond and an option to create a principalprotected note A stock and an option Two or more options of the same type
More informationSummary of Interview Questions. 1. Does it matter if a company uses forwards, futures or other derivatives when hedging FX risk?
Summary of Interview Questions 1. Does it matter if a company uses forwards, futures or other derivatives when hedging FX risk? 2. Give me an example of how a company can use derivative instruments to
More informationWeek 13 Introduction to the Greeks and Portfolio Management:
Week 13 Introduction to the Greeks and Portfolio Management: Hull, Ch. 17; Poitras, Ch.9: I, IIA, IIB, III. 1 Introduction to the Greeks and Portfolio Management Objective: To explain how derivative portfolios
More informationStock. Call. Put. Bond. Option Fundamentals
Option Fundamentals Payoff Diagrams hese are the basic building blocks of financial engineering. hey represent the payoffs or terminal values of various investment choices. We shall assume that the maturity
More informationOther variables as arguments besides S. Want those other variables to be observables.
Valuation of options before expiration Need to distinguish between American and European options. Consider European options with time t until expiration. Value now of receiving c T at expiration? (Value
More informationOptions (1) Class 19 Financial Management, 15.414
Options (1) Class 19 Financial Management, 15.414 Today Options Risk management: Why, how, and what? Option payoffs Reading Brealey and Myers, Chapter 2, 21 Sally Jameson 2 Types of questions Your company,
More information1 Introduction to Option Pricing
ESTM 60202: Financial Mathematics Alex Himonas 03 Lecture Notes 1 October 7, 2009 1 Introduction to Option Pricing We begin by defining the needed finance terms. Stock is a certificate of ownership of
More informationFutures Price d,f $ 0.65 = (1.05) (1.04)
24 e. Currency Futures In a currency futures contract, you enter into a contract to buy a foreign currency at a price fixed today. To see how spot and futures currency prices are related, note that holding
More informationSensex Realized Volatility Index
Sensex Realized Volatility Index Introduction: Volatility modelling has traditionally relied on complex econometric procedures in order to accommodate the inherent latent character of volatility. Realized
More informationThe Greeks Vega. Outline: Explanation of the greeks. Using greeks for short term prediction. How to find vega. Factors influencing vega.
The Greeks Vega 1 1 The Greeks Vega Outline: Explanation of the greeks. Using greeks for short term prediction. How to find vega. Factors influencing vega. 2 Outline continued: Using greeks to shield your
More informationConvenient Conventions
C: call value. P : put value. X: strike price. S: stock price. D: dividend. Convenient Conventions c 2015 Prof. YuhDauh Lyuu, National Taiwan University Page 168 Payoff, Mathematically Speaking The payoff
More informationCHAPTER 20: OPTIONS MARKETS: INTRODUCTION
CHAPTER 20: OPTIONS MARKETS: INTRODUCTION PROBLEM SETS 1. Options provide numerous opportunities to modify the risk profile of a portfolio. The simplest example of an option strategy that increases risk
More informationCS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options
CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common
More informationLecture 5: Forwards, Futures, and Futures Options
OPTIONS and FUTURES Lecture 5: Forwards, Futures, and Futures Options Philip H. Dybvig Washington University in Saint Louis Spot (cash) market Forward contract Futures contract Options on futures Copyright
More informationFINANCIAL ENGINEERING CLUB TRADING 201
FINANCIAL ENGINEERING CLUB TRADING 201 STOCK PRICING It s all about volatility Volatility is the measure of how much a stock moves The implied volatility (IV) of a stock represents a 1 standard deviation
More informationOn BlackScholes Equation, Black Scholes Formula and Binary Option Price
On BlackScholes Equation, Black Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. BlackScholes Equation is derived using two methods: (1) riskneutral measure; (2)  hedge. II.
More informationCHAPTER 8 SUGGESTED ANSWERS TO CHAPTER 8 QUESTIONS
INSTRUCTOR S MANUAL: MULTINATIONAL FINANCIAL MANAGEMENT, 9 TH ED. CHAPTER 8 SUGGESTED ANSWERS TO CHAPTER 8 QUESTIONS. On April, the spot price of the British pound was $.86 and the price of the June futures
More informationCHAPTER 21: OPTION VALUATION
CHAPTER 21: OPTION VALUATION 1. Put values also must increase as the volatility of the underlying stock increases. We see this from the parity relation as follows: P = C + PV(X) S 0 + PV(Dividends). Given
More informationThe Intuition Behind Option Valuation: A Teaching Note
The Intuition Behind Option Valuation: A Teaching Note Thomas Grossman Haskayne School of Business University of Calgary Steve Powell Tuck School of Business Dartmouth College Kent L Womack Tuck School
More informationCHAPTER 20 Understanding Options
CHAPTER 20 Understanding Options Answers to Practice Questions 1. a. The put places a floor on value of investment, i.e., less risky than buying stock. The risk reduction comes at the cost of the option
More informationSOCIETY OF ACTUARIES FINANCIAL MATHEMATICS. EXAM FM SAMPLE QUESTIONS Financial Economics
SOCIETY OF ACTUARIES EXAM FM FINANCIAL MATHEMATICS EXAM FM SAMPLE QUESTIONS Financial Economics June 2014 changes Questions 130 are from the prior version of this document. They have been edited to conform
More informationPart V: Option Pricing Basics
erivatives & Risk Management First Week: Part A: Option Fundamentals payoffs market microstructure Next 2 Weeks: Part B: Option Pricing fundamentals: intrinsic vs. time value, putcall parity introduction
More informationFor example, someone paid $3.67 per share (or $367 plus fees total) for the right to buy 100 shares of IBM for $180 on or before November 18, 2011
Chapter 7  Put and Call Options written for Economics 104 Financial Economics by Prof Gary R. Evans First edition 1995, this edition September 24, 2011 Gary R. Evans This is an effort to explain puts
More informationLecture Notes: Basic Concepts in Option Pricing  The Black and Scholes Model
Brunel University Msc., EC5504, Financial Engineering Prof Menelaos Karanasos Lecture Notes: Basic Concepts in Option Pricing  The Black and Scholes Model Recall that the price of an option is equal to
More informationCHAPTER 21: OPTION VALUATION
CHAPTER 21: OPTION VALUATION PROBLEM SETS 1. The value of a put option also increases with the volatility of the stock. We see this from the putcall parity theorem as follows: P = C S + PV(X) + PV(Dividends)
More information1 The BlackScholes model: extensions and hedging
1 The BlackScholes model: extensions and hedging 1.1 Dividends Since we are now in a continuous time framework the dividend paid out at time t (or t ) is given by dd t = D t D t, where as before D denotes
More information9 Basics of options, including trading strategies
ECG590I Asset Pricing. Lecture 9: Basics of options, including trading strategies 1 9 Basics of options, including trading strategies Option: The option of buying (call) or selling (put) an asset. European
More informationChapter 3: Commodity Forwards and Futures
Chapter 3: Commodity Forwards and Futures In the previous chapter we study financial forward and futures contracts and we concluded that are all alike. Each commodity forward, however, has some unique
More informationLecture 3: Put Options and DistributionFree Results
OPTIONS and FUTURES Lecture 3: Put Options and DistributionFree Results Philip H. Dybvig Washington University in Saint Louis put options binomial valuation what are distributionfree results? option
More informationNOTES ON THE BANK OF ENGLAND OPTIONIMPLIED PROBABILITY DENSITY FUNCTIONS
1 NOTES ON THE BANK OF ENGLAND OPTIONIMPLIED PROBABILITY DENSITY FUNCTIONS Options are contracts used to insure against or speculate/take a view on uncertainty about the future prices of a wide range
More informationVolatility as an indicator of Supply and Demand for the Option. the price of a stock expressed as a decimal or percentage.
Option Greeks  Evaluating Option Price Sensitivity to: Price Changes to the Stock Time to Expiration Alterations in Interest Rates Volatility as an indicator of Supply and Demand for the Option Different
More informationOPTIONS CALCULATOR QUICK GUIDE. Reshaping Canada s Equities Trading Landscape
OPTIONS CALCULATOR QUICK GUIDE Reshaping Canada s Equities Trading Landscape OCTOBER 2014 Table of Contents Introduction 3 Valuing options 4 Examples 6 Valuing an American style nondividend paying stock
More informationK 1 < K 2 = P (K 1 ) P (K 2 ) (6) This holds for both American and European Options.
Slope and Convexity Restrictions and How to implement Arbitrage Opportunities 1 These notes will show how to implement arbitrage opportunities when either the slope or the convexity restriction is violated.
More informationChapter 1  Introduction
Chapter 1  Introduction Derivative securities Futures contracts Forward contracts Futures and forward markets Comparison of futures and forward contracts Options contracts Options markets Comparison of
More informationOption Basics. c 2012 Prof. YuhDauh Lyuu, National Taiwan University Page 153
Option Basics c 2012 Prof. YuhDauh Lyuu, National Taiwan University Page 153 The shift toward options as the center of gravity of finance [... ] Merton H. Miller (1923 2000) c 2012 Prof. YuhDauh Lyuu,
More informationLecture 4: Derivatives
Lecture 4: Derivatives School of Mathematics Introduction to Financial Mathematics, 2015 Lecture 4 1 Financial Derivatives 2 uropean Call and Put Options 3 Payoff Diagrams, Short Selling and Profit Derivatives
More information