entropy ISSN 1099-4300 www.mdpi.org/entropy/



Similar documents
An E mpir ical Analysis of Stock and B ond M ar ket Liquidity

E S T A D O D O C E A R Á P R E F E I T U R A M U N I C I P A L D E C R U Z C Â M A R A M U N I C I P A L D E C R U Z

P R E F E I T U R A M U N I C I P A L D E J A R D I M

L a h ip e r t e n s ió n a r t e r ia l s e d e f in e c o m o u n n iv e l d e p r e s ió n a r t e r ia l s is t ó lic a ( P A S ) m a y o r o

T c k D E GR EN S. R a p p o r t M o d u le Aa n g e m a a k t o p 19 /09 /2007 o m 09 :29 u u r BJB M /V. ja a r.

A n d r e w S P o m e r a n tz, M D

EM EA. D is trib u te d D e n ia l O f S e rv ic e

w ith In fla m m a to r y B o w e l D ise a se. G a s tro in te s tin a l C lin ic, , K a s h iw a z a, A g e o C ity, S a ita m a

/*

B a rn e y W a r f. U r b a n S tu d ie s, V o l. 3 2, N o. 2, ±3 7 8

The fast Fourier transform method for the valuation of European style options in-the-money (ITM), at-the-money (ATM) and out-of-the-money (OTM)

An important observation in supply chain management, known as the bullwhip effect,

W h a t is m e tro e th e rn e t

AN EVALUATION OF SHORT TERM TREATMENT PROGRAM FOR PERSONS DRIVING UNDER THE INFLUENCE OF ALCOHOL P. A. V a le s, Ph.D.

UFPA Brazil. d e R e d e s Ó p tic a s e s e u s Im p a c to s n o F u tu r o d a In te r n e t

C + + a G iriş 2. K o n tro l y a p ıla rı if/e ls e b re a k co n tin u e g o to sw itc h D ö n g ü le r w h ile d o -w h ile fo r

B rn m e d s rlig e b e h o v... 3 k o n o m i S s k e n d e tils k u d o g k o n o m is k frip la d s... 7 F o r ld re b e ta lin g...

J a re k G a w o r, J o e B e s te r, M a th e m a tic s & C o m p u te r. C o m p u ta tio n In s titu te,

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner

Clôtures tous types. Serrurerie sur mesure. Portails / Automatisme. Aménagements extérieurs. Maçonnerie. Terrasse / Allée.

CIS CO S Y S T E M S. G u ille rm o A g u irre, Cis c o Ch ile , C is c o S y s te m s, In c. A ll rig h ts re s e rv e d.

SCO TT G LEA SO N D EM O Z G EB R E-

M P L S /V P N S e c u rity , C is c o S y s te m s, In c. A ll rig h ts re s e rv e d.

Erfa rin g fra b y g g in g a v

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

Lecture 12: The Black-Scholes Model Steven Skiena. skiena


Four Derivations of the Black-Scholes Formula by Fabrice Douglas Rouah

Master of Mathematical Finance: Course Descriptions

Load Balancing Mechanism in Agent-based Grid

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y

Stochastic Derivation of an Integral Equation for Probability Generating Functions

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price

OPTIONS and FUTURES Lecture 2: Binomial Option Pricing and Call Options

Frederikshavn kommunale skolevæsen

Finite Differences Schemes for Pricing of European and American Options

DESIGNING A HYBRID DOMESTIC VIOLENCE PROSECUTION CLINIC:

Campus Sustainability Assessment and Related Literature

University of Piraeus. M.Sc. in Banking and Finance

A Summary on Pricing American Call Options Under the Assumption of a Lognormal Framework in the Korn-Rogers Model

THE UNIVERSITY OF SAN DIEGO CRIMINAL CLINIC: IT'S ALL IN THE MIX

V e r d e s I s t v á n a l e z r e d e s V Á L T O Z Á S O K. F E L A D A T O K. GONDOK A S O R K A TO N A I

F inding the optimal, or value-maximizing, capital

Journal of Financial and Economic Practice

Lecture 4: The Black-Scholes model

Combinación de bandas óptima para la discriminación de sabanas colombianas, usando imagen Landsat ETM+ZYXWVUTSRQPONMLKJIHGFEDCB

The Black-Scholes Formula

How To Price Garch

How To Read A Book

T ra d in g A c tiv ity o f F o re ig n In s titu tio n a l In v e s to rs a n d V o la tility


Re-Dispatch Approach for Congestion Relief in Deregulated Power Systems

Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13.

Derivation of Local Volatility by Fabrice Douglas Rouah

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.

Lecture 21 Options Pricing

Arbitrage-Free Pricing Models

第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model

Up c om i n g Events

Risk/Arbitrage Strategies: An Application to Stock Option Portfolio Management

OPTION PRICING FOR WEIGHTED AVERAGE OF ASSET PRICES

The Black-Scholes pricing formulas

C o m p u te r M o d e lin g o f M o le c u la r E le c tro n ic S tru c tu re

Lecture 1: Stochastic Volatility and Local Volatility


Mathematical Finance

IMPLIED VOLATILITY SKEWS AND STOCK INDEX SKEWNESS AND KURTOSIS IMPLIED BY S&P 500 INDEX OPTION PRICES

Call Price as a Function of the Stock Price

FINANCIAL ECONOMICS OPTION PRICING

LOG-TYPE MODELS, HOMOGENEITY OF OPTION PRICES AND CONVEXITY. 1. Introduction

CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options

Research on Option Trading Strategies

Sebastiani Cabernet Sauvignon 2000 Sonoma. Beaucanon estate 1999 Cabernet Sauvignon Napa valley. Benziger Cabernet Sauvignon 2001 Sonoma

Application of options in hedging of crude oil price risk

VALUING REAL OPTIONS USING IMPLIED BINOMIAL TREES AND COMMODITY FUTURES OPTIONS

C e r t ifie d Se c u r e W e b

Lecture 6 Black-Scholes PDE

On Software Piracy when Piracy is Costly

CUSTOMER INFORMATION SECURITY AWARENESS TRAINING

BENEFITS OF AN INTEGRATED (PROSECUTION & DEFENSE) CRIMINAL LAW CLINIC

A MOST PROBABLE POINT-BASED METHOD FOR RELIABILITY ANALYSIS, SENSITIVITY ANALYSIS AND DESIGN OPTIMIZATION

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování

BINOMIAL OPTION PRICING

Monitoring Frequency of Change By Li Qin

IMPLIED VOLATILITY SKEWS AND STOCK INDEX SKEWNESS AND KURTOSIS IMPLIED BY S&P 500 INDEX OPTION PRICES

Robust portfolio choice with CVaR and VaR under distribution and mean return ambiguity

arxiv: v2 [q-fin.pr] 25 Aug 2011

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem

No-Arbitrage Condition of Option Implied Volatility and Bandwidth Selection

MATHEMATICAL FINANCE and Derivatives (part II, PhD)

Fundamentals of Actuarial Mathematics. 3rd Edition

Stock Option Pricing Using Bayes Filters

P h o t o g r a p h y. Vá c l a v J i r á s e k 瓦 茨 拉 夫 伊 拉 塞 克 I n f e c t i o n. I n d u s t r i a. U p s y c h 蔓. 工 业. 痴

Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic.

Call and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options

Pricing American Options on Leveraged Exchange. Traded Funds in the Binomial Pricing Model

The h o rtic u ltu r e in. Jammu and Kashmir. State i s one of the oldest industries and. economy. It s contribution to the State economy

A Simple Model of Pricing, Markups and Market. Power Under Demand Fluctuations

Transcription:

Entroy 2000, 2, 70-77 entroy ISSN 1099-4300 www.mdi.org/entroy/ Simle Entroic Derivation of a Generalized Black-Scholes Otion Pricing Model Michael J. Stutzer Det. of Finance, 108 PBAB, Univ. of Iowa, Iowa City, IA., USA E-mail: michael-stutzer@uiowa.edu Received: 19 January 2000 / Acceted: 24 March 2000 / Published: 4 Aril 2000 Abstract: A straightforward derivation of the celebrated Black-Scholes Otion Pricing model is obtained by solution of a simle constrained minimization of relative entroy. The derivation leads to a natural generalization of it, which is consistent with some evidence from stock index otion markets. Keywords: Otion Pricing, Entroic Martingale Measure, Black-Scholes, Asset Pricing. 2000 by the author. Reroduction is ermitted for noncommercial uroses.

E n t r o y 2000, 2 7 1 1 A Simle B lack-scholes Der ivation Co n s id e r t h e fo llo win g d is c r e t e t im e a r o xim a t io n o f a s t o c h a s t ic r o c e s s fo r a n a s s e t 's r a t e o f r e t u r n o ve r e r io d s o f le n g t h t: = ¹ t + ¾ t z ( 1 ) In ( 1 ), t h e r a n d o m s h o c ks t z» N( 0 ; t) o c c u r in d e e n d e n t ly a t e a c h t im e s t e, wh ic h in t h e c o n t in u o u s t im e lim it t! 0 r o d u c e t h e in d e e n d e n t s t a n d a r d W e in e r r o c e s s in c r e m e n t s o f t h a t c o n t in u o u s t im e r o c e s s. In ( 1 ), t h e m e a n r e t u r n is ¹ t a n d t h e r e t u r n va r ia n c e is ¾ 2 t, a n d we c o m m e n s u r a t e ly a s s u m e t h a t t h e r is kle s s r a t e o f r e t u r n is r t. N o w c o n s id e r t h e g e n e r a l r o b le m o f r ic in g a d e r iva t ive s e c u r it y in a d is c r e t e t im e e c o n o m y, wh o s e a yo a t s o m e t im e T ( ye a r s ) d e e n d s s o le ly o n t h e r ic e o f a s in g le u n d e r lyin g a s s e t, e.g. a E u r o e a n c a ll o t io n o n a t r a d e d s t o c k. In t h e a b s e n c e o f a r b it r a g e o o r t u n it ie s c o n s t r u c t e d b y fr ic t io n le s s t r a d in g o f t h e u n d e r lyin g a n d r is kle s s a s s e t s wit h c o m le t e m a r ke t s, t h e r ic e o f a n y d e r iva t ive s e c u r it y wit h a yo a t t im e T ( ye a r s ) will b e t h e r is kle s s ly d is c o u n t e d, e x e c t e d va lu e o f it s a yo u n d e r a n equivalent martingale measure [1 8 ]. W h e n t h e u n d e r lyin g a s s e t 's r e t u r n = is IID, a s in ( 1 ), t h e d e n s it y o f t h e m a r t in g a le m e a s u r e is t h e [T= t]-fo ld r o d u c t o f t h e conditional risk neutral density =dp a t e a c h t r a d in g t im e, wh e r e t h e in t e g e r [T= t] is t h e n u m b e r o f t r a d in g e r io d s t o e x ir a t io n a n d P d e n o t e s t h e a c t u a l c o n d it io n a l r e t u r n d is t r ib u t io n. Th e c o n d it io n a l r is k n e u t r a l d e n s it y =dp m u s t s a t is fy t h e s o -c a lle d martingale restriction [2 2 ]: 1 r t E " # = 0 ( 2 ) dp N o w c o n s id e r t h e relative entroy minimizing conditional risk neutral density s o lvin g t h e lin e a r in ve r s e r o b le m wit h c o n s t r a in t ( 2 ), i.e. a r g m in dp Z lo g s:t: ( 2 ) : ( 3 ) dp Th e s o lu t io n t o t h e lin e a r in ve r s e r o b le m ( 3 ) is t h e fo llo win g Gibbs Canonical d e n s it y: dp = E e ^w e ^w : ( 4 ) 1 The martingale restriction (2) may alternatively be written as the constraint that the risklessly discounted, conditional risk neutral exected ayo of the underlying asset at s + t must be its current rice.

E n t r o y 2000, 2 7 2 wh e r e ^w = a r g m a x r tw lo g E e w ( 5 ) Fo r r o o fs o f t h is we ll-kn o wn s o lu t io n ( 4 ) a n d ( 5 ), s e e B e n -t a l [4, s e c.3 ], B u c kle w [6,.3 0-3 2 ] a n d Cs is z a r [8, s e c.3 a ]. Th e fo llo win g r o o s it io n a lie s ( 3 ) t o t h e r o b le m o f r ic in g a c a ll o t io n o n a n a s s e t wit h r e t u r n r o c e s s ( 1 ) wit h n o r m a lly d is t r ib u t e d s h o c ks. P R OP OS ITION : W hen asset returns are generated by the IID rocess (1) with normally distributed shocks z t» N( 0 ; t), the martingale (i.e roduct) density formed from the conditional density (3) is that used to calculate the B lack-scholes otion ricing formula. P R OOF OF P R OP OS ITION : S u b s t it u t e ( 1 ) in t o ( 5 ), a n d fa c t o r t h e ( n o n s t o c h a s t ic ) d r ift t e r m o u t o f t h e e x e c t a t io n t o o b t a in : ^w = a r g m a xw( r ¹) t lo g E h e w¾ t z i ( 6 ) B e c a u s e ¾ t z» N( 0 ;¾ 2 t), t h e la t t e r t e r m in ( 6 ) is t h e lo g m o m e n t g e n e r a t in g fu n c t io n o f t h is n o r m a lly d is t r ib u t e d r a n d o m va r ia b le. S u b s t it u t in g t h is qu a d r a t ic fu n c t io n o f w in t o ( 6 ) yie ld s wh o s e s o lu t io n is : ^w = a r g m a xw( r ¹) t w 2¾2 t 2 ^w = ( r ¹) ( 7 ) ¾ 2 S u b s t it u t in g ( 7 ) a n d ( 1 ) in t o ( 4 ), n o t e t h a t t h e d r ift t e r m c a n c e ls, yie ld in g t h e r e la t ive e n t r o y m in im iz in g c o n d it io n a l r is k n e u t r a l d e n s it y: dp = e E P [e t z t z) ] wh e r e ¹ r, a n d t h e e x e c t a t io n is t a ke n wit h r e s e c t t o P» N( 0 ; t). ¾ N o w t a ke t h e lo g a r it h m o f t h e [T= t]-fo ld r o d u c t o f t h e d e n s it y ( 8 ), a n d s im lify t o n d : lo g [T= t] Y s=1 dp = W T 1 2 ( 8 ) 2T ( 9 ) wh e r e W T» N( 0 ;T). In a le n g t h y d e r iva t io n u s in g m a r t in g a le t h e o r y, D o t h a n [9,.2 1 0-2 1 4 ] s h o ws t h a t ( 9 ) is t h e lo g o f t h e d e n s it y o f t h e e qu iva le n t m a r t in g a le m e a s u r e u s e d t o c o m u t e t h e B la c k-s c h o le s o t io n r ic in g fo r m u la a s a r is kle s s ly d is c o u n t e d e x e c t e d r e s e n t va lu e o f a c a ll o t io n 's a yo.

E n t r o y 2000, 2 7 3 1.1 E n t r o ic O t io n P r ic in g L it e r a t u r e R e vie w Th e r e a r e m a n y o t h e r u s e s o f e n t r o y in n a n c e a n d e c o n o m ic s. B e c a u s e t h is is a n o t io n r ic in g a e r, t h is r e vie w will fo c u s o n e n t r o ic r e a s o n in g a lie d t o o t io n r ic in g { a lit e r a t u r e t h a t h a s d e ve lo e d in s m a ll o c ke t s wit h in n a n c e, a c t u a r ia l, o e r a t io n s r e s e a r c h, m a t h e m a t ic s, a n d s t a t is t ic s d e a r t m e n t s t h a t a r e la r g e ly is o la t e d fr o m o n e a n o t h e r. Fr o m m y e r s e c t ive a s a n a n c e r o fe s s o r, t h e n o ve lt y o f t h e a b o ve d e r iva t io n lie s in it s s t r a ig h t fo r wa r d u s e o f t h e r o c e s s r o b a b ilit ie s fr o m ( 1 ), wit h n o r m a lly d is t r ib u t e d s h o c ks, t o c o m u t e t h e B la c k-s c h o le s m a r t in g a le m e a s u r e a s t h e r o d u c t o f t h e r e la t ive e n t r o y m in im iz in g conditional r is k-n e u t r a l r o b a b ilit ie s. A 1 9 9 4 u b lic a t io n o f m in e ( S t u t z e r [2 6 ]) u s e d H u a H e 's [2 0 ] in c o m le t e m a r ke t, d is c r e t e m u lt in o m ia l r e r e s e n t a t io n o f t h e lo g n o r m a l s t o c k r ic e r o c e s s, in s t e a d o f ( 1 ). A s a r e s u lt, t h e B la c k-s c h o le s m a r t in g a le m e a s u r e c o u ld o n ly b e d e r ive d a s a c o n t in u o u s t im e lim it o f t h e d is c r e t e -t im e r o d u c t m e a s u r e. Th a t a e r r e vie we d e a r lie r u s e s o f e n t r o y in n a n c e a n d e c o n o m ic s, n o t in g t h a t Co z z o lin o a n d Za h n e r [7 ] d e r ive d t h e lo g n o r m a l s t o c k r ic e d is t r ib u t io n it s e lf, a s t h a t m a xim iz in g S h a n n o n e n t r o y a m o n g d is t r ib u t io n s wit h r e s c r ib e d m e a n and va r ia n c e. U s in g t h is r e a s o n in g a s a r t o f h is P h.d d is s e r t a t io n, Gu lko [1 6 ] r e s c r ib e d t h e r is kfr e e m e a n a n d t h e a c t u a l va r ia n c e t o d e r ive t h e r is k-n e u t r a l lo g n o r m a l r ic e d is t r ib u t io n u s e d b y m a n y, e.g. S t o ll a n d W h a le y [2 5, Ch a.1 1 ], t o d e r ive t h e B la c k-s c h o le s fo r m u la a s a r is kle s s ly d is c o u n t e d e x e c t e d va lu e o f t h e o t io n 's a yo a t e x ir a t io n. A r e c e n t u b lic a t io n b y Fr it e lli [1 4 ] d e r ive s t h e r e la t ive e n t r o y m in im iz in g m a r t in g a le m e a s u r e u n d e r in c o m le t e m a r ke t s 2, a n d d e m o n s t r a t e s t h e c o n n e c t io n b e t we e n it a n d m a xim iz a t io n o f e x o n e n t ia l u t ilit y. Th is c o n n e c t io n wa s a ls o n o t e d b y S a m e r i [2 4 ]. In t h e r e la t e d c o n t e xt o f a r b it r a g e -fr e e, d is c r e t e t im e a s s e t r ic in g m o d e l d ia g n o s t ic s, t h e e x o n e n t ia l u t ilit y c o n n e c t io n wa s e s t a b lis h e d e a r lie r b y S t u t z e r [2 7, s e c.3.2.3 ]. P e r h a s t h e b e s t e n t r o ic d e r iva t io n s o f o t h e r o t io n r ic in g fo r m u la e a r e r e s e n t e d in Ge r b e r a n d S h iu [1 5 ] a n d in H e s t o n [2 1 ], wh ic h a lie s a s o m e wh a t b r o a d e r c la s s o f r is k-n e u t r a l t r a n s fo r - m a t io n s t o a lt e r n a t ive r ic e r o c e s s e s. A r ic e r o c e s s -fr e e, e n t r o ic m e t h o d o f o t io n r ic in g is r e s e n t e d in S t u t z e r [2 8 ], a lie d b y Zo u a n d D e r m a n [2 9 ], a n d e xt e n d e d in Fo s t e r a n d W h it e m a n [1 3 ]. A ll o f t h e s e a e r s r e d ic t o t io n r ic e s wit h o u t u s e o f o t h e r o b s e r ve d m a r ke t o t io n r ic e s. B u t a r e la t e d \ in ve r s e " r o b le m u s e s r e la t ive e n t r o y m in im iz a t io n ( o r m a xim iz a t io n o f S h a n n o n e n t r o y) t o d e r ive a r is k-n e u t r a l d is t r ib u t io n t h a t is constrained t o b e c o n s is t e n t wit h a s u b s e t o f o b s e r ve d o t io n r ic e s. A r n o ld Ze lln e r o in t e d o u t t o m e t h a t e r h a s t h e e a r lie s t a e r o n t h is in ve r s e r o b le m wa s Ma s s im b [2 3 ], b u t t h e id e a wa s d e ve lo e d fu r t h e r b y B u c h e n a n d K e lly [5 ], a n d a ls o b y H a wkin s, R u b in s t e in, a n d D a n ie ll [1 9 ]. L a t e r g e n e r a liz a t io n s o f t h e id e a a r e s e e n in A ve lla n a d a [2 ], wh o c o n s t r a in s t h e m e a s u r e t o b e c o n s is t e n t wit h o b s e r ve d m a r ke t fo r wa r d r a t e 2 Stutzer [26] noted the earlier term\minimal" martingale measure of Follmer and Schweizer [12]

E n t r o y 2000, 2 7 4 a g r e e m e n t s a n d in t e r e s t r a t e s wa s. 2 N on-n or mality: Reinter r eting the B lack Scholes Volatility P ar ameter Th e B la c k-s c h o le s o t io n r ic in g fo r m u la d o e s n o t wo r k we ll wh e n t h e u n d e r lyin g a s s e t is a n in d e x o r t fo lio o f s t o c ks. B a t e s [3,.2 5 ] r e o r t s t h a t u o n in ve r t in g t h e B la c k-s c h o le s c a ll o t io n r ic in g fo r m u la BS( ¾) 3 t o n d t h e d i e r e n t n u m b e r ¾ im t h a t m a ke s t h e B la c k S c h o le s fo r m u la va lu e e qu a l t o e a c h o b s e r ve d o t io n m a r ke t r ic e, s u c h imlied volatilities a r e \ u wa r d ly b ia s e d r e la t ive t o r e a liz e d vo la t ilit y...". Th is u wa r d b ia s in s t o c k in d e x vo la t ilit y wa s a ls o n o t ic e d in a s ys t e m a t ic s t u d y o f S&P 1 0 0 in d e x o t io n r ic e s b y Fle m in g [1 1 ], wh o s e r e s u lt s a r e s u m m a r iz e d la t e r a s r o vid in g e m ir ic a l e vid e n c e fo r t h e fo llo win g m o d e l. B e c a u s e t h is b ia s is in d ic a t ive o f n o n -n o r m a lly d is t r ib u t e d r e t u r n s, we a d o t t h e e n t r o ic h y- o t h e s is ( 4 ) a n d ( 5 ) wit h a o s s ib ly n o n -n o r m a lly d is t r ib u t e d t z in t h e r e t u r n r o c e s s ( 1 ). In o r d e r t o r e t a in t h e s im lic it y a n d fa m ilia r it y o f t h e B la c k-s c h o le s fo r m u la, u s e a t im e s e r ie s o f a s s e t r e t u r n s t o n o n a r a m e t r ic a lly e s t im a t e t h e s o lu t io n ^w t o ( 5 ) a n d t h e n u s e t h e s t a n d a r d d e via t io n o f t h e r e s u lt in g e s t im a t e d d e n s it y ( 4 ) t o c o m u t e a a r a m e t e r, c a lle d ^¾, t h a t will r e la c e t h e r e a liz e d a s s e t vo la t ilit y ¾ in t h e B la c k S c h o le s fo r m u la. BS( ^¾) c a n b e c o m u t e d a n d c o m a r e d t o b o t h t h e u n c o r r e c t e d B la c k S c h o le s va lu e BS( ¾) a n d t h e m a r ke t r ic e BS( ¾ im ). The result will thus be a reinterretation of the volatility arameter in the B lack Scholes formula, needed to hel correct for non-normalities. 4 S e c i c a lly, o b t a in a t im e s e r ie s s a m le o f t-r e t u r n s =, a n d s u b s t it u t e t h e s a m le a ve r a g e c o r r e s o n d in g t o t h e e x e c t a t io n o e r a t o r u s e d t o d e n e ( 5 ). Th e n, u s e t h e N e wt o n -R a h s o n m e t h o d t o n u m e r ic a lly m a xim iz e t h e r e s u lt in g s a m le c o u n t e r a r t o f ( 5 ), r o d u c in g a n e s t im a t e ~w o f ^w. U n d e r m ild r e g u la r it y c o n d it io n s, A m e m iya [1 ] s h o ws t h a t t h e extremum estimator ~w is a c o n s is t e n t e s t im a t o r o f ^w. S u b s t it u t e ~w in t o t h e d e n s it y ( 4 ), d ivid e t h is d e n s it y's va r ia n c e ^¾ 2 t b y t a n d t a ke t h e s qu a r e r o o t t o r o d u c e t h e r e qu ir e d ^¾ fo r s u b s t it u t io n in t o t h e B la c k S c h o le s fo r m u la. 3 This notation for the Black Scholes formula suresses the notation for its other variables, i.e. the riskless rate of return r, the time to exiration T, the current rice of the underlying security, and the exercise rice. 4 A somewhat related contribution of Duan [10] used GARCH to model the actual underlying return rocess, assumed that the risk neutral conditional return distribution is still normal (albeit with altered mean), and assumed that its variance would equal the actual conditional variance. HÄardle and Hafner [17] showed that the normal distribution with the smallest entroy relative to the actual normal distribution must have the same variance (albeit with altered mean).

E n t r o y 2000, 2 7 5 2.1 E m ir ic a l Im le m e n t a t io n To fa c ilit a t e c o m a r is o n wit h r io r a n a lys e s, t h is r o c e d u r e wa s a lie d u s in g S & P 5 0 0 r e t u r n s b e t we e n S e t e m b e r 1 9 8 5 a n d Ju ly 1 9 9 4, t h e s a m e d a t a e r io d u s e d in S t u t z e r [2 8,.1 6 4 7 ]. Fu r - t h e r m o r e, t h e e e c t s o f d ivid e n d s a r e b u ilt in t o t h e s e c a lc u la t io n s, u s in g t h e m e t h o d d e s c r ib e d t h e r e. Th e h is t o r ic a l vo la t ilit y o ve r t h e e n t ir e e r io d ( in c lu d in g t h e Cr a s h o f 1 9 8 7 ) wa s a r o u n d ¾ = 1 5 %, wit h s m a ll va r ia t io n s d e e n d e n t o n t h e t u s e d t o e s t im a t e it. Fo r o t io n s wit h 4 we e ks t o e x ir a t io n, t h e ^¾ ¾ wa s a b o u t +2 :5 e r c e n t a g e o in t s. Fo r o t io n s wit h 1 2 we e ks t o e x ir a t io n, ^¾ ¾ r o s e t o +3 :5 e r c e n t a g e o in t s. Fo r o t io n s wit h lo n g e r t im e t o e x ir a t io n s, ^¾ ¾ wa s lo we r, d r o in g b a c k t o a r o u n d +2 :5 e r c e n t a g e o in t s fo r o t io n s wit h 2 4 we e ks t o e x ir a t io n. If t h is r e in t e r r e t a t io n o f t h e B la c k-s c h o le s vo la t ilit y a r a m e t e r h a s m e r it, t h e s e u wa r d a d ju s t m e n t s s h o u ld b e c lo s e t o t h e a ve r a g e d i e r e n c e o ve r t h e e s t im a t io n e r io d o f t h e o t io n -im lie d vo la t ilit ie s ¾ im fr o m t h e r e a liz e d a s s e t vo la t ilit ie s. E m ir ic a l e vid e n c e in Fle m in g ( o.c it.) is c o n s is t e n t wit h t h e s e r e d ic t e d u wa r d a d ju s t m e n t s. Ove r t h e e r io d Oc t o b e r 1 9 8 5 t h r o u g h A r il 1 9 9 2, wh ic h o ve r la s wit h o u r e r io d b u t excludes the Crash of 1987, Fle m in g c o m a r e d t h e im lie d vo la t ilit ie s o f n e a r e s t -t o -t h e -m o n e y S & P 1 0 0 in d e x o t io n s t h a t we r e c lo s e s t t o e x ir a t io n ( b e t we e n 1 5 a n d 4 7 d a ys ), t o t h e ir c o r r e s o n d in g r e a liz e d a s s e t vo la t ilit y t o e x ir a t io n. Fle m in g 's Ta b le 1 s h o ws t h a t t h e a ve r a g e u wa r d b ia s o f c a ll o t io n im lie d vo la t ilit ie s o ve r r e a liz e d a s s e t vo la t ilit ie s wa s 1 :9 e r c e n t a g e o in t s, wh ile t h a t fo r u t o t io n s wa s +2 :5 e r c e n t a g e o in t s. W h ile Fle m in g 's c a ll o t io n b ia s e s t im a t e s a r e s o m e wh a t lo we r t h a n t h e a fo r e m e n t io n e d ^¾ ¾ = +2 :5 e r c e n t a g e o in t s r e d ic t e d fo r o t io n s e x ir in g in t h is r a n g e, Fle m in g 's e s t im a t e s wo u ld h a ve b e e n h ig h e r h a d t h e y in c o r o r a t e d d a t a s u r r o u n d in g t h e Cr a s h o f Oc t o b e r 1 9 8 7, a s t h e r e d ic t io n s d id. Fo r a s n o t e d b y Fle m in g ( o.c it.,.7 ), \ in c lu d in g t h e s e d a t a a c t u a lly in c r e a s e s t h e b ia s s in c e t h e c r a s h in d u c e d a s u b s e qu e n t lo n g - t e r m in c r e a s e in im lie d vo la t ilit y wh ic h o u t we ig h s t h e u n d e r s t a t e m e n t o f vo la t ilit y o n Oc t o b e r 1 9." In summary, the only ublished quantitative evidence, the direction and magnitude of B lack- Scholes stock index otion ricing errors during a lengthy historical eriod that includes the Crash of 1987, is consistent with the entroic hyothesis. 5 3 Conclusions In t h e t h e o r y o f c o n t in g e n t c la im s va lu a t io n wit h c o m le t e, fr ic t io n le s s m a r ke t s, t h e r ic e o f a c o n - t in g e n t c la im wr it t e n o n u n d e r lyin g a s s e t s is it s e x e c t e d r e s e n t va lu e, u s in g a r is kle s s d is c o u n t r a t e a n d a n equivalent martingale measure t o c o m u t e t h e e x e c t a t io n. In t h e b e s t kn o wn c a s e o f a ( c a ll) o t io n t o b u y a s in g le u n d e r lyin g a s s e t wit h IID n o r m a l r e t u r n a t a r e d e t e r m in e d e xe r c is e 5 Clearly, more extensive emirical testing should be the subject of another aer.

Entroy 2000, 2 76 rice, relative entroy minimization rovides a simle way to comute the martingale measure that yields the imortant Black-Scholes otion ricing formula. The Black-Scholes formula deends on a arameter that is usually interreted as the volatility of the underlying (normal) asset return rocess. But when returns are non-normal, the relative entroy calculation indicates an adjustment of this "volatility" arameter that hels cature the effects of non-normality. Existing emirical evidence for S&P 500 stock index otions is consistent with this generalization of the Black-Scholes model. References and Notes 1. Amemiya, T. Advanced Econometrics; HarvardUniversity Press, 1985. 2. Avellanada, M. Minimum relative-entroy calibration of asset-ricing models. International Journal of Theoretical and Alied Finance 1998, 1, 447-472. 3. Bates, D.S. Post-'87 Crash fears in S&P 500 futures otions. Finance Det., College of Business Administration, University of Iowa, Iowa City, IA 52242-1000, June 1997. 4. Ben-Tal, A. The entroy enalty aroach to stochastic rogramming. Mathematics of Oerational Research 1985, 10(2), 263-279. 5. Buchen, P.W.; Kelly, M. The maximum entroy distribution of an asset inferred from otion rices. Journal of Financial and Quantitative Analysis 1996, 31, 143-159. 6. Bucklew, J.A. Large Deviation Techniques in Decision, Simulation, and Estimation; Wiley, 1990. 7. Cozzolino, J.M.; Zahner, M.J. The maximum entroy distribution of the future market rice of a stock. Oerations Research 1973. 8. Csiszar, I. I-divergence geometry of robability distributions and minimization roblems. Annals of Probability 1975, 3(1), 146-158. 9. Dothan, M.U. Prices in Financial Markets; Oxford University Press, 1990. 10. Duan, J.-Ch. The GARCH otion ricing model. Mathematical Finance 1995, 5(1), 13-32. 11. Fleming, J. The quality of market volatility forecasts imlied by S& P 100 index otion rices. Jones Graduate School of Administration, Rice University, Houston, TX 77005, Feb. 17, 1997. 12. Follmer, H.; Schweizer, M. Hedging of contingent claims under incomlete information. In Alied Stochastic Analysis; Davis, M.H.A; Elliott, R.J., Eds.; Gordon and Breach, 1990. 13. Fosterand, F.D.; Whiteman, C.H. An alication of Bayesian otion ricing to the soybean market. American Journal of Agricultural Economics 1999, 81, 722-272. 14. Fritelli, M. The minimal entroy martingale measure and the valuation roblem in incomlete markets. Mathematical Finance 2000, 10. 15. Gerber, H.; Shiu, E. Otion ricing by Esscher Transforms. Transactions of the Society of Actuaries 1994, 46, 99-140. 16. Gulko, L. The entroy theory of otion ricing. Working Paer, Deartment of Finance, Yale University, 1995. 17. Hardle, W.; Hafner, C. Discrete time otion ricing with fexible volatility estimation. Institut für

Entroy 2000, 2 77 Statistik and Okonometrie, Humboldt Universität zu Berlin, Sandauer Str.1, D-10178 Berlin, Germany; June1997. 18. Harrison, M.; Kres, D. Martingales and arbitrage in multieriod securities markets. Journal of Economic Theory 1979, 20, 381-408. 19. Hawkins, R.J.; Rubinstein, M.; Daniell, G.J. Reconstruction of the robability density function imlicit in otion rices from incomlete and noisy data. In Maximum Entroy and Bayesian Methods; Hanson, K.; Silver, R., Eds.; Kluwer, 1996. 20. He, H. Convergence from discrete to continuous-time contingent claim rices. Review of Financial Studies 1990, 3(4), 523-546. 21. Heston, S.L. Otion ricing with infitely divisible distributions. Working Paer, Goldman Sachs Asset Management, 1997. 22. Longstaff, F.A. Otion ricing and the martingale restriction. The Review of Financial Studies 1995, 8(4), 1091-1124. 23. Massimb, M. Reconstruction of the risk-neutral distribution of stock rices. Investment Section, Harris Bank, Chicago, IL, December 30, 1992. 24. Sameri, D. Entroy and statistical model selection for asset ricing and risk management. Working Paer, Sameri Research, January 1999. 25. Stoll, H.; Whaley, R. Futures and Otions; South-Western, 1993. 26. Stutzer, M. The statistical mechanics of asset rices. In Differential Equations, Dynamical Systems, and Control Science; Elworthy, K.D.; Everett, W.N.; Lee, E.B.; Eds.; Volume 152 of Lecture Notes in Pure and Alied Mathematics; Marcel Dekker, 1994: 321-342. 27. Stutzer, M. A Bayesian aroach to diagnosis of asset ricing models. Journal of Econometrics 1995, 68, 367-397. 28. Stutzer, M. A simle nonarametric aroach to derivative security valuation. Journal of Finance 1996, 51(4), 1633-1652. 29. Zou, J.; Derman, E. Strike adjusted sread: A new metric for estimating the value of equity otions. Quantitative Strategies Research Note, Goldman, SachsandCo., July 1999. 2000 by the author. Reroduction is ermitted for noncommercial uroses.