The effective theory of type IIA AdS 4 compactifications on nilmanifolds and cosets



Similar documents
Non-Supersymmetric Seiberg Duality in orientifold QCD and Non-Critical Strings

old supersymmetry as new mathematics

5-brane webs and 5d, 6d SCFTs

Counting BPS states in E-string theory. Kazuhiro Sakai

INVARIANT METRICS WITH NONNEGATIVE CURVATURE ON COMPACT LIE GROUPS

Black holes in gauged supergravity

3. Open Strings and D-Branes

Axion/Saxion Cosmology Revisited

Monodromies, Fluxes, and Compact Three-Generation F-theory GUTs

Lecture 17: Conformal Invariance

Invariant Metrics with Nonnegative Curvature on Compact Lie Groups

De Sitter Vacua and Inflation in no-scale String Models

Extrinsic geometric flows

Electromagnetic scattering of vector mesons in the Sakai-Sugimoto model.

Problem set on Cross Product

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

ASCII CODES WITH GREEK CHARACTERS

Localization of scalar fields on Branes with an Asymmetric geometries in the bulk

CURRICULUM VITAE. GUARINO, Adolfo.

State of Stress at Point

Complex Numbers. w = f(z) z. Examples

9 Multiplication of Vectors: The Scalar or Dot Product

Gauge theories and the standard model of elementary particle physics

Hedging Options In The Incomplete Market With Stochastic Volatility. Rituparna Sen Sunday, Nov 15

arxiv: v1 [hep-th] 23 Dec 2013

Chapter 2. Parameterized Curves in R 3

α = u v. In other words, Orthogonal Projection

8.1 Examples, definitions, and basic properties

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

Mutual Inductance and Transformers F3 3. r L = ω o

4. Expanding dynamical systems

Euclidean quantum gravity revisited

Construction and asymptotics of relativistic diffusions on Lorentz manifolds

The future of string theory

Mathematical Physics, Lecture 9

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

Critically Periodic Cubic Polynomials

SUSY Breaking and Axino Cosmology

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Computation of crystal growth. using sharp interface methods

A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant

arxiv:hep-ph/ v1 9 Feb 1999

Topologically Massive Gravity with a Cosmological Constant

Università degli Studi di Milano-Bicocca SUPERSYMMETRY ON CURVED SPACES AND HOLOGRAPHY

3 Orthogonal Vectors and Matrices

A note on Dulac functions for a sum of vector fields

A power series about x = a is the series of the form

THREE DIMENSIONAL GEOMETRY

CONTINUOUS REINHARDT DOMAINS PROBLEMS ON PARTIAL JB*-TRIPLES

Fuzzy Differential Systems and the New Concept of Stability

The Einstein field equations

Geometric evolution equations with triple junctions. junctions in higher dimensions

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

Fuzzballs, Firewalls, and all that..

Quantum Sheaf Cohomology I

Finite dimensional C -algebras

Implied Volatility Surface

Smarandache Curves in Minkowski Space-time

arxiv:hep-th/ v1 25 Jul 2005

1 The Black-Scholes model: extensions and hedging

MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL

Quantum Oscillations Can Prevent the Big Bang Singularity in an. An Einstein-Dirac cosmology. Felix Finster, Regensburg

FINITE ELEMENT : MATRIX FORMULATION. Georges Cailletaud Ecole des Mines de Paris, Centre des Matériaux UMR CNRS 7633

FIVE MOST RESISTANT PROBLEMS IN DYNAMICS. A. Katok Penn State University

Increasing Returns and Economic Geography

Epipolar Geometry. Readings: See Sections 10.1 and 15.6 of Forsyth and Ponce. Right Image. Left Image. e(p ) Epipolar Lines. e(q ) q R.

arxiv:hep-th/ v2 8 Dec 1999

26 Ideals and Quotient Rings

arxiv: v2 [physics.acc-ph] 27 Oct 2014

Lecture 6 Black-Scholes PDE

SUPERSYMMETRY: COMPACTIFICATION, FLAVOR, AND DUALITIES

Chapter 17. Orthogonal Matrices and Symmetries of Space

Quantum Mechanics and Representation Theory

ASEN Structures. MDOF Dynamic Systems. ASEN 3112 Lecture 1 Slide 1

Parabolic Equations. Chapter 5. Contents Well-Posed Initial-Boundary Value Problem Time Irreversibility of the Heat Equation

Hedging Barriers. Liuren Wu. Zicklin School of Business, Baruch College (

RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis

Degree two Brownian Sheet in Dimension three

Section 4.4 Inner Product Spaces

COMPLEX NUMBERS AND DIFFERENTIAL EQUATIONS

Time domain modeling

Numerical Analysis Lecture Notes

THE UNIVERSITY OF CHICAGO CLIFFORD ALGEBRAS AND SHIMURA S LIFT FOR THETA-SERIES A DISSERTATION SUBMITTED TO

Mathematicians look at particle physics. Matilde Marcolli

Metric Spaces. Chapter Metrics

Wavelet analysis. Wavelet requirements. Example signals. Stationary signal 2 Hz + 10 Hz + 20Hz. Zero mean, oscillatory (wave) Fast decay (let)

Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Dr Glenn Vinnicombe HANDOUT 3. Stability and pole locations.

STARTPAGE HUMAN RESOURCES AND MOBILITY (HRM) ACTIVITY. MARIE CURIE ACTIONS Research Training Networks (RTNs) PART B.

1 Introduction to Matrices

Flavor Ratios of Extragalactical Neutrinos and Neutrino Shortcuts in Extra Dimensions [arxiv: ]

Second Order Linear Partial Differential Equations. Part I

Introduction to String Theory

1. Introduction. O. MALI, A. MUZALEVSKIY, and D. PAULY

Solution to Homework 2

Chapter 2: Binomial Methods and the Black-Scholes Formula

Data Mining: Algorithms and Applications Matrix Math Review

RR charges of D2-branes in the WZW model

Galois Theory III Splitting fields.

Transcription:

The effective theory of type IIA AdS 4 compactifications on nilmanifolds and cosets Based on: 0804.0614 (PK, Tsimpis, Lüst), 0806.3458 (Caviezel, PK, Körs, Lüst, Tsimpis, Zagermann) Paul Koerber Max-Planck-Institut für Physik, Munich Zürich, 11 August 2008 1 / 24

Motivation Type IIB orientifold with D3/D7-branes on conformal CY: well-studied 2 / 24

Motivation Type IIB orientifold with D3/D7-branes on conformal CY: well-studied stabilization Kähler moduli through non-perturbative effects uplift susy vacuum to ds, models of inflation 2 / 24

Motivation Type IIB orientifold with D3/D7-branes on conformal CY: well-studied stabilization Kähler moduli through non-perturbative effects uplift susy vacuum to ds, models of inflation Type IIA compactifications with AdS 4 space-time 2 / 24

Motivation Type IIB orientifold with D3/D7-branes on conformal CY: well-studied stabilization Kähler moduli through non-perturbative effects uplift susy vacuum to ds, models of inflation Type IIA compactifications with AdS 4 space-time Early type IIA models on torus orientifolds: Derendinger et al., DeWolfe et al., Cámara et al. All moduli can be stabilized at tree level 2 / 24

Motivation Type IIB orientifold with D3/D7-branes on conformal CY: well-studied stabilization Kähler moduli through non-perturbative effects uplift susy vacuum to ds, models of inflation Type IIA compactifications with AdS 4 space-time Early type IIA models on torus orientifolds: Derendinger et al., DeWolfe et al., Cámara et al. All moduli can be stabilized at tree level Uplift susy vacuum to ds, models of inflation: problems 2 / 24

Motivation Type IIB orientifold with D3/D7-branes on conformal CY: well-studied stabilization Kähler moduli through non-perturbative effects uplift susy vacuum to ds, models of inflation Type IIA compactifications with AdS 4 space-time Early type IIA models on torus orientifolds: Derendinger et al., DeWolfe et al., Cámara et al. All moduli can be stabilized at tree level Uplift susy vacuum to ds, models of inflation: problems No-go theorem modular inflation: fluxes, D6/O6 Hertzberg, Kachru, Taylor, Tegmark 2 / 24

Motivation Type IIB orientifold with D3/D7-branes on conformal CY: well-studied stabilization Kähler moduli through non-perturbative effects uplift susy vacuum to ds, models of inflation Type IIA compactifications with AdS 4 space-time Early type IIA models on torus orientifolds: Derendinger et al., DeWolfe et al., Cámara et al. All moduli can be stabilized at tree level Uplift susy vacuum to ds, models of inflation: problems No-go theorem modular inflation: fluxes, D6/O6 Hertzberg, Kachru, Taylor, Tegmark Way-out: geometric fluxes, NS5-branes, non-geometric fluxes 2 / 24

Motivation Type IIB orientifold with D3/D7-branes on conformal CY: well-studied stabilization Kähler moduli through non-perturbative effects uplift susy vacuum to ds, models of inflation Type IIA compactifications with AdS 4 space-time Early type IIA models on torus orientifolds: Derendinger et al., DeWolfe et al., Cámara et al. All moduli can be stabilized at tree level Uplift susy vacuum to ds, models of inflation: problems No-go theorem modular inflation: fluxes, D6/O6 Hertzberg, Kachru, Taylor, Tegmark Way-out: geometric fluxes, NS5-branes, non-geometric fluxes 2 / 24

Motivation Type IIB orientifold with D3/D7-branes on conformal CY: well-studied stabilization Kähler moduli through non-perturbative effects uplift susy vacuum to ds, models of inflation Type IIA compactifications with AdS 4 space-time Early type IIA models on torus orientifolds: Derendinger et al., DeWolfe et al., Cámara et al. All moduli can be stabilized at tree level Uplift susy vacuum to ds, models of inflation: problems No-go theorem modular inflation: fluxes, D6/O6 Hertzberg, Kachru, Taylor, Tegmark Way-out: geometric fluxes, NS5-branes, non-geometric fluxes Geometric fluxes: deviation from Calabi-Yau 2 / 24

Motivation Type IIB orientifold with D3/D7-branes on conformal CY: well-studied stabilization Kähler moduli through non-perturbative effects uplift susy vacuum to ds, models of inflation Type IIA compactifications with AdS 4 space-time Early type IIA models on torus orientifolds: Derendinger et al., DeWolfe et al., Cámara et al. All moduli can be stabilized at tree level Uplift susy vacuum to ds, models of inflation: problems No-go theorem modular inflation: fluxes, D6/O6 Hertzberg, Kachru, Taylor, Tegmark Way-out: geometric fluxes, NS5-branes, non-geometric fluxes Geometric fluxes: deviation from Calabi-Yau Other application: type IIA on AdS 4 CP 3 AdS/CFT Aharony, Bergman, Jafferis, Maldacena M2-branes 2 / 24

Type IIA susy vacua with AdS 4 space-time Lüst, Tsimpis RR-forms: Romans mass F 0 = m, F 2, F 4, NSNS 3-form: H, dilaton: Φ SU(3)-structure: J, Ω 3 / 24

Type IIA susy vacua with AdS 4 space-time Lüst, Tsimpis Solution susy equations: 3 / 24

Type IIA susy vacua with AdS 4 space-time Lüst, Tsimpis Solution susy equations: Constant warp factor 3 / 24

Type IIA susy vacua with AdS 4 space-time Lüst, Tsimpis Solution susy equations: Constant warp factor Geometric flux i.e. non-zero torsion classes: dj = 3 2 Im(W1Ω ) + W 4 J + W 3 dω = W 1J J + W 2 J + W 5 Ω 3 / 24

Type IIA susy vacua with AdS 4 space-time Lüst, Tsimpis Solution susy equations: Constant warp factor Geometric flux i.e. non-zero torsion classes: dj = 3 2 Im(W1Ω ) dω = W 1J J + W 2 J with W 1 = 4i 9 eφ f W 2 = ie Φ F 2 3 / 24

Type IIA susy vacua with AdS 4 space-time Lüst, Tsimpis Solution susy equations: Constant warp factor Geometric flux i.e. non-zero torsion classes: dj = 3 2 Im(W1Ω ) dω = W 1J J + W 2 J with W 1 = 4i 9 eφ f W 2 = ie Φ F 2 Form-fluxes: AdS 4 superpotential W: H = 2m 5 eφ ReΩ F 2 = f 9 J + F 2 F 4 = fvol 4 + 3m 10 J J µζ = 1 2 Wγµζ+ definition We iθ = 1 5 eφ m + i 3 eφ f 3 / 24

Bianchi identities Automatically satisfied except for df 2 + HF 0 = j 6 4 / 24

Bianchi identities Automatically satisfied except for df 2 + HF 0 = j 6 Source j 6 (O6/D6) must be calibrated (here SLAG): j 6 J = 0 j 6 ReΩ = 0 4 / 24

Bianchi identities Automatically satisfied except for df 2 + HF 0 = j 6 Source j 6 (O6/D6) must be calibrated (here SLAG): j 6 J = 0 j 6 ReΩ = 0 j 6 = 2 5 e Φ µreω + w 3 w 3 simple (1,2)+(2,1) 4 / 24

Bianchi identities Automatically satisfied except for df 2 + HF 0 = j 6 Source j 6 (O6/D6) must be calibrated (here SLAG): j 6 J = 0 j 6 ReΩ = 0 j 6 = 2 5 e Φ µreω + w 3 w 3 simple (1,2)+(2,1) µ > 0: net orientifold charge, µ < 0: net D-brane charge 4 / 24

Bianchi identities Automatically satisfied except for df 2 + HF 0 = j 6 Source j 6 (O6/D6) must be calibrated (here SLAG): j 6 J = 0 j 6 ReΩ = 0 j 6 = 2 5 e Φ µreω + w 3 w 3 simple (1,2)+(2,1) µ > 0: net orientifold charge, µ < 0: net D-brane charge Bianchi: e 2Φ m 2 = µ + 5 ( 3 W1 2 W 2 2) 0 16 w 3 = ie Φ (2,1)+(1,2) dw 2 4 / 24

Smeared orientifolds Warp factor constant only smeared orientifolds 5 / 24

Smeared orientifolds Warp factor constant only smeared orientifolds Solutions without orientifolds: 5 / 24

Smeared orientifolds Warp factor constant only smeared orientifolds Solutions without orientifolds: possible! No-go theorem Maldacena,Núñez only for Minkowski, not AdS 4 5 / 24

Smeared orientifolds Warp factor constant only smeared orientifolds Solutions without orientifolds: possible! No-go theorem Maldacena,Núñez only for Minkowski, not AdS 4 We will introduce orientifolds to obtain N = 1 5 / 24

Smeared orientifolds Warp factor constant only smeared orientifolds Solutions without orientifolds: possible! No-go theorem Maldacena,Núñez only for Minkowski, not AdS 4 We will introduce orientifolds to obtain N = 1 Smearing: j 6 = T O6 δ(x 4, x 5, x 6 )dx 4 dx 5 dx 6 T Op c dx 4 dx 5 dx 6 5 / 24

Smeared orientifolds Warp factor constant only smeared orientifolds Solutions without orientifolds: possible! No-go theorem Maldacena,Núñez only for Minkowski, not AdS 4 We will introduce orientifolds to obtain N = 1 Smearing: j 6 = T O6 δ(x 4, x 5, x 6 )dx 4 dx 5 dx 6 T Op c dx 4 dx 5 dx 6 We will still associate orientifold involution: O6 : dx 4 dx 4, dx 5 dx 5, dx 6 dx 6 5 / 24

Smeared orientifolds Warp factor constant only smeared orientifolds Solutions without orientifolds: possible! No-go theorem Maldacena,Núñez only for Minkowski, not AdS 4 We will introduce orientifolds to obtain N = 1 Smearing: j 6 = T O6 δ(x 4, x 5, x 6 )dx 4 dx 5 dx 6 T Op c dx 4 dx 5 dx 6 We will still associate orientifold involution: O6 : dx 4 dx 4, dx 5 dx 5, dx 6 dx 6 Write j 6 as sum of decomposable forms 5 / 24

Smeared orientifolds Warp factor constant only smeared orientifolds Solutions without orientifolds: possible! No-go theorem Maldacena,Núñez only for Minkowski, not AdS 4 We will introduce orientifolds to obtain N = 1 Smearing: j 6 = T O6 δ(x 4, x 5, x 6 )dx 4 dx 5 dx 6 T Op c dx 4 dx 5 dx 6 We will still associate orientifold involution: O6 : dx 4 dx 4, dx 5 dx 5, dx 6 dx 6 Write j 6 as sum of decomposable forms B, H,F 2,ReΩ odd, F 0, F 4,ImΩ even 5 / 24

Calabi-Yau solution Calabi-Yau solution Acharya, Benini, Valandro j 6 = 2 5 e Φ µreω + w 3 e 2Φ m 2 = µ + 5 ( 3 W1 2 W 2 2) 16 6 / 24

Calabi-Yau solution Calabi-Yau solution Acharya, Benini, Valandro Put W 1 = 0, W 2 = 0 w 3 = 0 j 6 = 2 5 e Φ µreω + w 3 e 2Φ m 2 = µ + 5 ( 3 W1 2 W 2 2) 16 6 / 24

Calabi-Yau solution Calabi-Yau solution Acharya, Benini, Valandro Put W 1 = 0, W 2 = 0 w 3 = 0 j 6 = 2 5 e Φ µreω e 2Φ m 2 = µ 6 / 24

Calabi-Yau solution Calabi-Yau solution Acharya, Benini, Valandro Put W 1 = 0, W 2 = 0 w 3 = 0 j 6 = 2 5 e Φ µreω e 2Φ m 2 = µ Torus orientifolds 6 / 24

What about equations of motion? IIA: Lüst,Tsimpis, IIB: Gauntlett, Martelli, Sparks, Waldram With sources: PK, Tsimpis 0706.1244 Under mild conditions (subtleties time direction): 7 / 24

What about equations of motion? IIA: Lüst,Tsimpis, IIB: Gauntlett, Martelli, Sparks, Waldram With sources: PK, Tsimpis 0706.1244 Under mild conditions (subtleties time direction): Bulk supersymmetry conditions Bianchi identities form-fields with source Supersymmetry conditions source = generalized calibration conditions PK; Martucci, Smyth 7 / 24

What about equations of motion? IIA: Lüst,Tsimpis, IIB: Gauntlett, Martelli, Sparks, Waldram With sources: PK, Tsimpis 0706.1244 Under mild conditions (subtleties time direction): imply Bulk supersymmetry conditions Bianchi identities form-fields with source Supersymmetry conditions source = generalized calibration conditions PK; Martucci, Smyth Einstein equations with source Dilaton equation of motion with source Form field equations of motion 7 / 24

Some older solutions Nearly-Kähler: only W 1 0 Behrndt, Cveti c SU(2) SU(2) and the coset spaces G 2 SU(3), Sp(2) S(U(2) U(1)), SU(3) U(1) U(1) 8 / 24

Some older solutions Nearly-Kähler: only W 1 0 Behrndt, Cveti c SU(2) SU(2) and the coset spaces Iwasawa manifold Lüst, Tsimpis: G 2 SU(3), Sp(2) S(U(2) U(1)), A certain nilmanifold or twisted torus = a group manifold associated to a nilpotent algebra Left-invariant forms e i obeying Maurer-Cartan relation: de i = 1 2 fi jke j e k Singular limit of T 2 bundle over K3 SU(3) U(1) U(1) 8 / 24

Group manifolds SU(3)-structures with J,Ω constant in terms of left-invariant forms on a group manifold: fertile source of examples algebraic relations de i = 1 2 fi jke j e k 9 / 24

Group manifolds SU(3)-structures with J,Ω constant in terms of left-invariant forms on a group manifold: fertile source of examples algebraic relations SU(2) SU(2) de i = 1 2 fi jke j e k Nilmanifolds (divide discrete group: compact) Only Iwasawa & torus Needs smeared orientifolds Solvmanifolds (compact?): no solution Extend to cosets 9 / 24

Coset manifolds Tomasiello: W 2 0 on two examples PK, Lüst, Tsimpis: classification Sp(2) S(U(2) U(1)), SU(3) U(1) U(1) 10 / 24

Coset manifolds Tomasiello: W 2 0 on two examples PK, Lüst, Tsimpis: classification Maurer-Cartan more complicated: Sp(2) S(U(2) U(1)), de i = 1 2 fi jke j e k f i ajω a e j SU(3) U(1) U(1) 10 / 24

Coset manifolds Tomasiello: W 2 0 on two examples PK, Lüst, Tsimpis: classification Maurer-Cartan more complicated: Sp(2) S(U(2) U(1)), de i = 1 2 fi jke j e k f i ajω a e j SU(3) U(1) U(1) Condition left-invariance p-form φ: constant and components f j a[i 1 φ i2...i p]j = 0 10 / 24

Type IIA AdS 4 susy vacua on coset manifolds PK, Lüst, Tsimpis 0804.0614 SU(2) SU(2) SU(3) U(1) U(1) Sp(2) S(U(2) U(1)) G 2 SU(3) SU(3) U(1) SU(2) # of parameters 2 4 4 3 2 4 W 2 0 No Yes Yes Yes No Yes j 6 ReΩ Yes No Yes Yes Yes No Note: geometric flux: W 1 0, W 2 0 11 / 24

Type IIA AdS 4 susy vacua on coset manifolds PK, Lüst, Tsimpis 0804.0614 SU(2) SU(2) SU(3) U(1) U(1) Sp(2) S(U(2) U(1)) G 2 SU(3) SU(3) U(1) SU(2) # of parameters 2 4 4 3 2 4 W 2 0 No Yes Yes Yes No Yes j 6 ReΩ Yes No Yes Yes Yes No Note: geometric flux: W 1 0, W 2 0 Parameters: Geometric: scale and shape J = ae 12 + be 34 + ce 56 Scale a and shape ρ = b/a, σ = c/a: Orientifold charge µ 11 / 24

Generalization SU(3) SU(3) susy ansatz: 10d 4d for IIA/IIB ǫ 1 =ζ + η (1) + + (c.c.) ǫ 2 =ζ + η (2) + (c.c.) 12 / 24

Generalization SU(3) SU(3) susy ansatz: 10d 4d for IIA/IIB ǫ 1 =ζ + η (1) + + (c.c.) ǫ 2 =ζ + η (2) + (c.c.) Strict SU(3)-structure: η (2) + = e iθ η (1) + Type: (0,3) 12 / 24

Generalization SU(3) SU(3) susy ansatz: 10d 4d for IIA/IIB ǫ 1 =ζ + η (1) + + (c.c.) ǫ 2 =ζ + η (2) + (c.c.) Strict SU(3)-structure: η (2) + = e iθ η (1) + Type: (0,3) Static SU(2)-structure: η (1), η (2) orthogonal everywhere Type: (2,1) 12 / 24

Generalization SU(3) SU(3) susy ansatz: 10d 4d for IIA/IIB ǫ 1 =ζ + η (1) + + (c.c.) ǫ 2 =ζ + η (2) + (c.c.) Strict SU(3)-structure: η (2) + = e iθ η (1) + Type: (0,3) Static SU(2)-structure: η (1), η (2) orthogonal everywhere Type: (2,1) intermediate SU(2)-structure: η (1), η (2) fixed angle, but neither a zero angle nor a right angle Type: (0,1) 12 / 24

Generalization SU(3) SU(3) susy ansatz: 10d 4d for IIA/IIB ǫ 1 =ζ + η (1) + + (c.c.) ǫ 2 =ζ + η (2) + (c.c.) Strict SU(3)-structure: η (2) + = e iθ η (1) + Type: (0,3) Static SU(2)-structure: η (1), η (2) orthogonal everywhere Type: (2,1) intermediate SU(2)-structure: η (1), η (2) fixed angle, but neither a zero angle nor a right angle Type: (0,1) dynamic SU(3) SU(3)-structure: angle changes, type may change 12 / 24

SU(3) SU(3)-structure susy equations Graña, Minasian, Petrini, Tomasiello with d H ( e 4A Φ ImΨ 1 ) = 3e 3A Φ Im(W Ψ 2 ) + e 4A F d H [ e 3A Φ Re(W Ψ 2 ) ] = 2 W 2 e 2A Φ ReΨ 1 d H [ e 3A Φ Im(W Ψ 2 ) ] = 0 d H ( e 2A Φ ReΨ 1 ) = 0. d H = d + H Ψ 1 = Ψ, Ψ 2 = Ψ ± /Ψ + = 8 η (1) η (2) η(1) + η(2) +, /Ψ = 8 η (1) η (2) η(1) + η(2). 13 / 24

SU(3) SU(3)-structure susy equations Graña, Minasian, Petrini, Tomasiello ( d H e 4A Φ ) ImΨ 1 = 3e 3A Φ Im(W Ψ 2 ) + e 4A F [ d H e 3A Φ Re(W Ψ 2 ) ] = 2 W 2 e 2A Φ ReΨ 1 [ d H e 3A Φ Im(W Ψ 2 ) ] = 0 ( d H e 2A Φ ) ReΨ 1 = 0. Example: strict SU(3)-structure in IIA Ψ 1 = Ψ = Ω, Ψ 2 = Ψ + = e iθ e ij leads to susy equations Lüst, Tsimpis 13 / 24

SU(3) SU(3)-structure susy equations Graña, Minasian, Petrini, Tomasiello ( d H e 4A Φ ) ImΨ 1 = 3e 3A Φ Im(W Ψ 2 ) + e 4A F [ d H e 3A Φ Re(W Ψ 2 ) ] = 2 W 2 e 2A Φ ReΨ 1 [ d H e 3A Φ Im(W Ψ 2 ) ] = 0 ( d H e 2A Φ ) ReΨ 1 = 0. 13 / 24

Generalizations: no-go theorems d H [ e 3A Φ Re(W Ψ 2 ) ] = 2 W 2 e 2A Φ ReΨ 1 14 / 24

Generalizations: no-go theorems d H [ e 3A Φ Re(W Ψ 2 ) ] = 2 W 2 e 2A Φ ReΨ 1 Strict SU(3)-structure in IIB: (Ψ 1, Ψ 2 ) = (Ψ +, Ψ ) 14 / 24

Generalizations: no-go theorems d H [ e 3A Φ Re(W Ψ 2 ) ] = 2 W 2 e 2A Φ ReΨ 1 Strict SU(3)-structure in IIB: (Ψ 1, Ψ 2 ) = (Ψ +, Ψ ) Type: (0,3) Ψ 2 3-form ReΨ 1 0 = ReΨ 1 2 = 0 14 / 24

Generalizations: no-go theorems d H [ e 3A Φ Re(W Ψ 2 ) ] = 2 W 2 e 2A Φ ReΨ 1 Strict SU(3)-structure in IIB: (Ψ 1, Ψ 2 ) = (Ψ +, Ψ ) Type: (0,3) Ψ 2 3-form ReΨ 1 0 = ReΨ 1 2 = 0 But we also need Ψ 1, Ψ 1 = 8ivol 0 with the Mukai pairing φ 1, φ 2 = φ 1 α(φ 2 ) top and α reverses the indices of a form 14 / 24

Generalizations: no-go theorems d H [ e 3A Φ Re(W Ψ 2 ) ] = 2 W 2 e 2A Φ ReΨ 1 Strict SU(3)-structure in IIB: (Ψ 1, Ψ 2 ) = (Ψ +, Ψ ) Type: (0,3) Ψ 2 3-form ReΨ 1 0 = ReΨ 1 2 = 0 But we also need Ψ 1, Ψ 1 = 8ivol 0 impossible 14 / 24

Generalizations: no-go theorems d H [ e 3A Φ Re(W Ψ 2 ) ] = 2 W 2 e 2A Φ ReΨ 1 Strict SU(3)-structure in IIB: (Ψ 1, Ψ 2 ) = (Ψ +, Ψ ) Type: (0,3) Ψ 2 3-form ReΨ 1 0 = ReΨ 1 2 = 0 But we also need Ψ 1, Ψ 1 = 8ivol 0 impossible Intermediate SU(2)-structure: 14 / 24

Generalizations: no-go theorems d H [ e 3A Φ Re(W Ψ 2 ) ] = 2 W 2 e 2A Φ ReΨ 1 Strict SU(3)-structure in IIB: (Ψ 1, Ψ 2 ) = (Ψ +, Ψ ) Type: (0,3) Ψ 2 3-form ReΨ 1 0 = ReΨ 1 2 = 0 But we also need Ψ 1, Ψ 1 = 8ivol 0 impossible Intermediate SU(2)-structure: Type: (0,1) general form e 2A Φ Ψ 1 = ce iω+b 14 / 24

Generalizations: no-go theorems d H [ e 3A Φ Re(W Ψ 2 ) ] = 2 W 2 e 2A Φ ReΨ 1 Strict SU(3)-structure in IIB: (Ψ 1, Ψ 2 ) = (Ψ +, Ψ ) Type: (0,3) Ψ 2 3-form ReΨ 1 0 = ReΨ 1 2 = 0 But we also need Ψ 1, Ψ 1 = 8ivol 0 impossible Intermediate SU(2)-structure: Type: (0,1) general form e 2A Φ Ψ 1 = ce iω+b Rec = 0, cω exact 14 / 24

Generalizations: no-go theorems d H [ e 3A Φ Re(W Ψ 2 ) ] = 2 W 2 e 2A Φ ReΨ 1 Strict SU(3)-structure in IIB: (Ψ 1, Ψ 2 ) = (Ψ +, Ψ ) Type: (0,3) Ψ 2 3-form ReΨ 1 0 = ReΨ 1 2 = 0 But we also need Ψ 1, Ψ 1 = 8ivol 0 impossible Intermediate SU(2)-structure: Type: (0,1) general form e 2A Φ Ψ 1 = ce iω+b Rec = 0, cω exact Imc e 2A Φ Ψ 1, e 2A Φ, Ψ 1 = 8 3! (cω)3 14 / 24

Generalizations: no-go theorems d H [ e 3A Φ Re(W Ψ 2 ) ] = 2 W 2 e 2A Φ ReΨ 1 Strict SU(3)-structure in IIB: (Ψ 1, Ψ 2 ) = (Ψ +, Ψ ) Type: (0,3) Ψ 2 3-form ReΨ 1 0 = ReΨ 1 2 = 0 But we also need Ψ 1, Ψ 1 = 8ivol 0 impossible Intermediate SU(2)-structure: Type: (0,1) general form e 2A Φ Ψ 1 = ce iω+b Rec = 0, cω exact Imc e 2A Φ Ψ 1, e 2A Φ, Ψ 1 = 8 3! (cω)3 c not everywhere non-vanishing 14 / 24

Generalizations: conclusion of no-go theorems Type IIB: only static SU(2) or dynamic SU(3) SU(3) that changes type to static SU(2) at least somewhere is possible 15 / 24

Generalizations: conclusion of no-go theorems Type IIB: only static SU(2) or dynamic SU(3) SU(3) that changes type to static SU(2) at least somewhere is possible Example: type IIB static SU(2) on nilmanifold 5.1 (table of Graña, Minasian, Petrini, Tomasiello) 15 / 24

Generalizations: conclusion of no-go theorems Type IIB: only static SU(2) or dynamic SU(3) SU(3) that changes type to static SU(2) at least somewhere is possible Example: type IIB static SU(2) on nilmanifold 5.1 (table of Graña, Minasian, Petrini, Tomasiello) Type IIA: only strict SU(3) or dynamic SU(3) SU(3) for which d ( e 2A Φ η (2) η (1)) 0 15 / 24

Low energy effective theory: nilmanifolds Torus (IIA), nilmanifold 5.1 (IIB), Iwasawa (IIA): T-dual to each other Calculation mass spectrum Using effective 4D sugra techniques For Iwasawa & torus: direct KK reduction of equations of motion Perfect agreement 16 / 24

Low energy effective theory: nilmanifolds Torus (IIA), nilmanifold 5.1 (IIB), Iwasawa (IIA): T-dual to each other Calculation mass spectrum Using effective 4D sugra techniques For Iwasawa & torus: direct KK reduction of equations of motion Perfect agreement Result for M 2 / W 2 Complex structure 2, 2, 2 Kähler & dilaton 70, 18, 18, 18 Three axions of δc 3 0, 0, 0 δb & one more axion 88, 10, 10, 10 16 / 24

Issue: decoupling KK tower Consistency approximation: g s 1, l s /L int 1 17 / 24

Issue: decoupling KK tower Consistency approximation: g s 1, l s /L int 1 17 / 24

Issue: decoupling KK tower Consistency approximation: g s 1, l s /L int 1 Decoupling KK modes: W 2 L 2 int = e2φ m 2 L 2 int 25 + e2φ f 2 L 2 int 9 1 17 / 24

Issue: decoupling KK tower Consistency approximation: g s 1, l s /L int 1 Decoupling KK modes: W 2 L 2 int = e2φ m 2 L 2 int 25 + e2φ f 2 L 2 int 9 1 Can be tuned with orientifold charge µ: e 2Φ m 2 = µ + 5 ( 3 W1 2 W 2 2) 0 16 17 / 24

Issue: decoupling KK tower Consistency approximation: g s 1, l s /L int 1 Decoupling KK modes: e Φ fl int W 1L int 1: W 2 L 2 int = e2φ m 2 L 2 int 25 + e2φ f 2 L 2 int 9 1 17 / 24

Issue: decoupling KK tower Consistency approximation: g s 1, l s /L int 1 Decoupling KK modes: e Φ fl int W 1L int 1: nearly Calabi-Yau W 2 L 2 int = e2φ m 2 L 2 int 25 + e2φ f 2 L 2 int 9 1 17 / 24

Issue: decoupling KK tower Consistency approximation: g s 1, l s /L int 1 Decoupling KK modes: W 2 L 2 int = e2φ m 2 L 2 int 25 + e2φ f 2 L 2 int 9 1 e Φ fl int W 1L int 1: nearly Calabi-Yau Can be arranged for torus, Iwasawa, nilmanifold 5.1 17 / 24

Issue: decoupling KK tower Consistency approximation: g s 1, l s /L int 1 Decoupling KK modes: W 2 L 2 int = e2φ m 2 L 2 int 25 + e2φ f 2 L 2 int 9 1 e Φ fl int W 1L int 1: nearly Calabi-Yau Can be arranged for torus, Iwasawa, nilmanifold 5.1 Harder for coset examples 17 / 24

Low energy theory: superpotential and Kähler potential We use the superpotential of Graña, Louis, Waldram; Benmachiche, Grimm; PK, Martucci Generalizes Gukov, Vafa, Witten 18 / 24

Low energy theory: superpotential and Kähler potential We use the superpotential of Graña, Louis, Waldram; Benmachiche, Grimm; PK, Martucci Generalizes Gukov, Vafa, Witten W E = i 4κ 2 10 M Z, T holomorphic coordinates, Ψ 2 e } {{ δb, } ˆF + idĥ(e δb e Φ ImΨ 1 iδc) } {{ } Z T 18 / 24

Low energy theory: superpotential and Kähler potential We use the superpotential of Graña, Louis, Waldram; Benmachiche, Grimm; PK, Martucci Generalizes Gukov, Vafa, Witten W E = i 4κ 2 10 M Ψ 2 e } {{ δb, } ˆF + idĥ(e δb e Φ ImΨ 1 iδc) } {{ } Z T Z, T holomorphic coordinates, and the Kähler potential K = lni Z, Z 2ln i e Φ Ψ 1,e Φ Ψ1 + 3ln(8κ 2 10MP) 2 M where e Φ e δb Ψ 1 : function of ReT = e Φ e δb ImΨ 1 Hitchin. M 18 / 24

Superpotential and Kähler potential: SU(3) Specialized to SU(3): Ψ 1 = Ω, Ψ 2 = e iθ e ij 19 / 24

Superpotential and Kähler potential: SU(3) Specialized to SU(3): Ψ 1 = Ω, Superpotential: W E = ie iθ 4κ 2 10 M Ψ 2 = e iθ e ij e i(j iδb), ˆF ( idĥ e Φ ) ImΩ + iδc 3 19 / 24

Superpotential and Kähler potential: SU(3) Specialized to SU(3): Ψ 1 = Ω, Superpotential: W E = ie iθ 4κ 2 10 M Ψ 2 = e iθ e ij e i(j iδb), ˆF ( idĥ e Φ ) ImΩ + iδc 3 Kähler potential: 4 K = ln 3 J3 2ln M M 2e Φ ImΩ e Φ ReΩ+3ln(8κ 2 10M 2 P), 19 / 24

Superpotential and Kähler potential: SU(3) Specialized to SU(3): Ψ 1 = Ω, Superpotential: W E = ie iθ 4κ 2 10 M Ψ 2 = e iθ e ij e i(j iδb), ˆF ( idĥ e Φ ) ImΩ + iδc 3 Kähler potential: 4 K = ln 3 J3 2ln Expansion: M M 2e Φ ImΩ e Φ ReΩ+3ln(8κ 2 10M 2 P), J c = J iδb = (k i ib i )Y (2 ) i e Φ ImΩ + iδc 3 = (u i + ic i )e = t i Y (2 ) i ˆΦY (3+) i = z i e ˆΦY (3+) i 19 / 24

Comments We used the same superpotential and Kähler potential for static SU(2) 20 / 24

Comments We used the same superpotential and Kähler potential for static SU(2) F-flatness conditions: D i W E = i W E + i K W E = 0 20 / 24

Comments We used the same superpotential and Kähler potential for static SU(2) F-flatness conditions: PK, Martucci: D i W E = i W E + i K W E = 0 If W = M 1 P W E 0 i.e. AdS 4 compactification F-flatness conditions 10D susy conditions vacuum 20 / 24

Comments We used the same superpotential and Kähler potential for static SU(2) F-flatness conditions: PK, Martucci: D i W E = i W E + i K W E = 0 If W = M 1 P W E 0 i.e. AdS 4 compactification F-flatness conditions 10D susy conditions vacuum If W = 0 i.e. Minkowski compactification F-flatness & D-flatness conditions 10D susy conditions vacuum 20 / 24

Comments We used the same superpotential and Kähler potential for static SU(2) F-flatness conditions: PK, Martucci: D i W E = i W E + i K W E = 0 If W = M 1 P W E 0 i.e. AdS 4 compactification F-flatness conditions 10D susy conditions vacuum If W = 0 i.e. Minkowski compactification F-flatness & D-flatness conditions 10D susy conditions vacuum The scalar potential is V = M 2 P ek ( K i j D i W E D j W E 3 W E 2) 20 / 24

Comments We used the same superpotential and Kähler potential for static SU(2) F-flatness conditions: PK, Martucci: D i W E = i W E + i K W E = 0 If W = M 1 P W E 0 i.e. AdS 4 compactification F-flatness conditions 10D susy conditions vacuum If W = 0 i.e. Minkowski compactification F-flatness & D-flatness conditions 10D susy conditions vacuum The scalar potential is V = M 2 P ek ( K i j D i W E D j W E 3 W E 2) Mass spectrum from quadratic terms 20 / 24

Low energy theory: cosets For all cosets (but not for SU(2) SU(2)): all moduli stabilized at tree level 21 / 24

Low energy theory: cosets For all cosets (but not for SU(2) SU(2)): all moduli stabilized at tree level Example Sp(2) S(U(2) U(1)) M 2 / W 2 25 M 2 / W 2 25 20 20 15 15 10 10 5 2 4 6 8 10 µ 5 2 4 6 8 10 12 µ (a) σ = 1 (b) σ = 2 5 Movie 21 / 24

Low energy theory: cosets For all cosets (but not for SU(2) SU(2)): all moduli stabilized at tree level Example Sp(2) S(U(2) U(1)) M 2 / W 2 25 M 2 / W 2 25 20 20 15 15 10 10 5 2 4 6 8 10 µ 5 2 4 6 8 10 12 µ (a) σ = 1 (b) σ = 2 5 Movie µ big enough: all mass-squared positive 21 / 24

Nearly-Calabi Yau limit Important decoupling KK-modes 22 / 24

Nearly-Calabi Yau limit Important decoupling KK-modes Sp(2) Example S(U(2) U(1)) analytic continuation to negative σ = 2 Twistor bundle description more appropriate Xu 22 / 24

Nearly-Calabi Yau limit Important decoupling KK-modes Sp(2) Example S(U(2) U(1)) analytic continuation to negative σ = 2 Twistor bundle description more appropriate Xu 120 M 2 / W 2 100 80 60 40 20 10 20 30 40 50 µ 22 / 24

Nearly-Calabi Yau limit Important decoupling KK-modes Sp(2) Example S(U(2) U(1)) analytic continuation to negative σ = 2 Twistor bundle description more appropriate Xu 120 M 2 / W 2 100 80 60 40 20 10 20 30 40 50 µ Light modes: M2 / W 2 = ( 38/49, 130/49) 22 / 24

Inflation No-go theorem modular inflation IIA Hertzberg, Kachru, Taylor, Tegmark Dependence on volume-modulus ρ and dilaton-modulus τ Ingredients: form-fluxes, D6-branes & O6-planes ǫ > 27/13 23 / 24

Inflation No-go theorem modular inflation IIA Hertzberg, Kachru, Taylor, Tegmark Dependence on volume-modulus ρ and dilaton-modulus τ Ingredients: form-fluxes, D6-branes & O6-planes ǫ > 27/13 Way out: geometric flux, NS5-branes, other branes, non-geometric flux 23 / 24

Inflation No-go theorem modular inflation IIA Hertzberg, Kachru, Taylor, Tegmark Dependence on volume-modulus ρ and dilaton-modulus τ Ingredients: form-fluxes, D6-branes & O6-planes ǫ > 27/13 Way out: geometric flux, NS5-branes, other branes, non-geometric flux potential geometric flux V f > 0 R < 0 23 / 24

Inflation No-go theorem modular inflation IIA Hertzberg, Kachru, Taylor, Tegmark Dependence on volume-modulus ρ and dilaton-modulus τ Ingredients: form-fluxes, D6-branes & O6-planes ǫ > 27/13 Way out: geometric flux, NS5-branes, other branes, non-geometric flux potential geometric flux V f > 0 R < 0 not possible for, possible for all other cosets and SU(2) SU(2) G 2 SU(3) 23 / 24

Conclusions Tractable models with geometric flux: nilmanifold & coset models Other models: e.g. twistor bundles with negative σ Uplift: uplifting term or look for ds minimum e.g. Silverstein Study inflation 24 / 24

Conclusions Tractable models with geometric flux: nilmanifold & coset models Other models: e.g. twistor bundles with negative σ Uplift: uplifting term or look for ds minimum e.g. Silverstein Study inflation The end...the end...the end... 24 / 24