The Accelerator Multiplier Model

Similar documents
2) Based on the information in the table which choice BEST shows the answer to 1 906?

HFCC Math Lab Beginning Algebra 13 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES

Annex I Common Requirements for All Types of Documents

Section Composite and Inverse Functions

Economic Impacts of Marcellus Shale in Pennsylvania:

Set operations and Venn Diagrams. COPYRIGHT 2006 by LAVON B. PAGE

MATHEMATICS. Y5 Multiplication and Division 5330 Square numbers, prime numbers, factors and multiples. Equipment. MathSphere

Metric Rules. Activity 7. In this activity you will: Introduction. The Problem. Math Concepts Measurement. Science Concepts Data collection

UNIT 1 MASS AND LENGTH

Improving Performance and Reliability Using New Load Balancing Strategy with Large Public Cloud

Greatest Common Factor (GCF) Factoring

Chapter 27 Pricing Math. Section 27.1 Calculating Prices Section 27.2 Calculating Discounts

Factoring Trinomials of the Form

Convert between units of area and determine the scale factor of two similar figures.

_ HOW TO FIGURE PERCENT _

Training Manual. Pre-Employment Math. Version 1.1

UTQG BOOKLET 2008 CONTENT: PAGE: General Information. 1 UTQG Information. 2 UTQG Codes (sorted in alphabetical order). 3-60

! 2!!$ ,)!$- %$0. Baskı-2 ! "! #$ % #$#!&'! '! (&&)!! &!! #.! &)!$#$! /&)!!! 0! &)!$!.!! 0$! #! &)!$ &.!!#$!! 3!&!#!!3! #&!'! &! 4!!

Advanced Placement Exams (AP) and International Baccalaureate Higher Level Exams (IBH) (General Education Requirements)

Square Roots and Other Radicals

! " # "$ %" &! '!(!! +!'!! !"! "!!!!!'!!" "!" '!!!!!!'#! ##! ' " '. - !!"#.!!"# )'!!!!" # !!"! '!!! %" . -!!"!. -!!"!'! !!#! !!#!! '!#!!

PERCENT COMPETENCY PACKET

Solution Guide Chapter 14 Mixing Fractions, Decimals, and Percents Together

Dallas Workshops for the PSAT/NMSQT, SAT and ACT Tests

SHORTCUT IN SOLVING LINEAR EQUATIONS (Basic Step to Improve math skills of high school students)

Direct Enterprise Support Frequently Asked Questions

HFCC Math Lab Arithmetic - 4. Addition, Subtraction, Multiplication and Division of Mixed Numbers

Math Released Set Algebra 1 PBA Item #13 Two Real Numbers Defined M44105

Instructions for Sick Time / Vacation Timesheets

SOCIAL SECURITY. Tax Rate Employee 7.65% 7.65% Self-Employed 15.30% 15.30%

SPANISH Player blackjack always beats a dealer blackjack and is paid 3 to 2.

Title: Factoring Trinomials Using the Trial-and-Error Method Class: Math 100 Author: Sharareh Masooman Instructions to tutor: Read instructions under

consider the number of math classes taken by math 150 students. how can we represent the results in one number?

TOSVERT VF-MB1. Functions for lift application

MS Access: Advanced Tables and Queries. Lesson Notes Author: Pamela Schmidt

CS170 Lab 11 Abstract Data Types & Objects

Sorting. Lists have a sort method Strings are sorted alphabetically, except... Uppercase is sorted before lowercase (yes, strange)

SIGNAL FLOW GRAPHS. Prof. S. C.Pilli, Principal, Session: XI, 19/09/06 K.L.E.S. College of Engineering and Technology, Belgaum

Remote Access TBRA manual

Here are some examples of combining elements and the operations used:

Sizing Circuit Breakers for Self-Regulating Heat Tracers

Scanner sc = new Scanner(System.in); // scanner for the keyboard. Scanner sc = new Scanner(System.in); // scanner for the keyboard

Microsoft Access 3: Understanding and Creating Queries

FACTORING QUADRATICS and 8.1.2

8ETH06 8ETH06S 8ETH06-1 8ETH06FP

Using Multiplication and Division Facts

Parameterizing options Parameterization options based on the communication protocols used

JavaScript 4. User Input Validation

Tuition Reimbursement Program. Handbook

CAD to X3D Conversion with CAD Assembly Structure Hyokwang Lee PartDB Co., Ltd. and Web3D Korea Chapter

Numerical and Algebraic Fractions

Scenario analysis of Carbon Trade for Energy Efficient Renovations of. Operation Manual (take Beijing as an example)

3.1 LICENSED PERSONNEL SALARY SCHEDULE

Preserving Line Breaks When Exporting to Excel Nelson Lee, Genentech, South San Francisco, CA

CHAPTER 14 ANNUITIES

THE TRANSPOSING METHOD IN SOLVING LINEAR EQUATIONS (Basic Step to improve math skills of high school students) (by Nghi H. Nguyen Jan 06, 2015)

San Diego University for Integrative Studies

FACTORING QUADRATICS through 8.1.4

Beginning to Program Python

Most unit conversions are very easy in Mathcad because the units are direct multiplications into the other unit system. 1 kg

Multiplying Fractions

A PRACTICAL GUIDE TO db CALCULATIONS

Math-in-CTE Lesson Plan

EDEXCEL INTERNATIONAL GCSE CHEMISTRY EDEXCEL CERTIFICATE IN CHEMISTRY ANSWERS SECTION E

UNCLASSIFIED AD 404 5'18 DEFENSE DOCUMENIATION CENTER FO3 SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATIONH, ALEXANDRIA, V!RGINIA UNCLASSIF]HED

MSI Accounts Receivable Version 4.0

Example: Find the expected value of the random variable X. X P(X)


Solving Systems of Linear Equations by Substitution

Underlier Filters Category Data Field Description

Methods of Allocating Costs - Overview

The Puzzle That Makes You Smarter

Noise Free 90+ for LCD TV AC Adapter Desk Top. 96% x 96% = 92.16% Champion Microelectronic. 96+ Interleaved CRM PFC CM6565 PFC & PFC PWM PWM

Introduction. Mathematics 41P Precalculus: First Semester

1. Metric system- developed in Europe (France) in 1700's, offered as an alternative to the British or English system of measurement.

Sharing and Delegating Access to Calendars in Outlook 2010

EE 261 Introduction to Logic Circuits. Module #2 Number Systems

Educational Requirements for CPA Licensure Self-Assessment Worksheet (effective January 1, 2014)

EXPONENTIAL FUNCTIONS

Adafruit's Raspberry Pi Lesson 9. Controlling a DC Motor

GE Medical Systems The Basic Structure of DICOM Charles Parisot, GE Medical Systems SSRPM Course Neuchâtel June 2003

Telecom Engineering Centre (Department of Telecommunications) Khurshid Lal Bhawan, Janpath, New Delhi-01

Work and Energy. W =!KE = KE f

For additional information, see the Math Notes boxes in Lesson B.1.3 and B.2.3.

PREDICTION OF STOCK TRADING SYSTEM USING NEWS AND USER FEEDBACK

GCF/ Factor by Grouping (Student notes)

Math 25 Activity 6: Factoring Advanced

Transcription:

TheAccelerator MultiplierModel AnnickAshley StephanieChapman MirInaamullah Math4700 Fall2009 Abstract: WeexaminetheAccelerator Multipliermodelintwodimensionstodeterminehowwellit conformstotrueempiricaldata.wethendevelopathirdequationtodescribethesavingsrateasa functionofbothincomeandtherateofchangeofincome.wefindthatthethree dimensionalmodel betterdescribestheperiodicmotionofthesavingsrate,whilemaintainingthecyclicnatureofincome. Themodelhassomeweakpoints,however,especiallytheregulartendencyofthesavingsratetobe negative,whichisonlyinfrequentlysointherealworld.thus,whileourmodeldescribesthevariation inthesavingsratesomewhatmoreaccuratelythanthetwo dimensionalaccelerator multipliermodel,it failstoaccuratelydepictthetruevaluestakenbyempiricaldata.

I.Background Wehaveresearchedthecombinationoftwoeconomictheories:theacceleratoreffectandthe multipliermodel.theacceleratoreffectmeasureshowmuchthegrowthofthemarketeconomyalters theamountofprivatefixedinvestment,(i.e.investmentintangiblecapitalgoodsorthereplacementof depreciatedones).itdoesthisthroughanalyzingthegrossdomesticproduct,(gdp),notingthatasit increasesbusinesseswill,intheory,seerisingprofits,highersalesandmorecashflow.allofthese trendswillallowbusinesstohavemoreconfidenceintheirabilitytoboostprofit;thustheywillmore likelyexpendmoremoneyonprivatefixedinvestment. Thereareafewimplicationsoftheacceleratoreffect,becauseeconomicgrowthmustbetakeninto consideration.oneisthateconomicgrowthislessprecariousthaninvestment.moreover,duringtimes ofstableeconomicgrowth,investmentwilllikewiseremainconstant.however,thismeansthatevenif GDPisrising,investmentrateswillactuallydropifeconomicgrowthdecreases. Wewillnowdiscussthemoreimportanttheorytoourmodelisthemultiplier.Amultiplier,in economics,isusedmoregenerallytomeasurehowanexogenousvariableaffectsanendogenousone. Westudiedthemultiplierprocessasisspecificallyinvolveshowone sspendingessentiallybecomes another sincome.ultimately,thereisamuchgreaterimpactontheequilibriumofnationalincome. Wecanseetheextenttowhichthemultiplieraffectsinvestmentthroughthegraphofaggregatesupply versusaggregatedemand: Theverticalarrowsrepresentaconstantriseindemand,whereasthehorizontalarrowsrepresentthe resultingshiftinsupplyfromthetwoequilibriumpoints.ascanbeseen,asmallchangeintheformer createsamuchgreaterdifferenceinthelatter.thisiswherethemultipliercomesintoplay.once aggregatedemandrises,expectedsalesandoutputincrease,which,inturn,causehigheremployment ratesandincome.then,theincreaseinincomewillproducemoreconsumption,raisingaggregate demandyetagain.thus,thecycleofthemultipliereffectwillcontinueinthisway. 2

Anexampleofthegreatimpactabusiness sspendingcanhavewouldbeifacompanyinvested200 milliondollarsintoanewmanufacturingplant.thiswillresultinawholechainofexpenditures.first, thebusinessessupplyingcapitalgoodstocreatethenewplantandthegooditproduceswillreap benefitsasfarastheirincomeisconcerned.thenthey,intheory,willspendaround3/5oftheirnew profits,whichmeansotherbusinesseswillgain120milliondollarscollectively. Thus,thetotaleconomyhasgained(200+(3/5)*200))dollarsinincomealready.Moreover,the producersofthenextgoodsandservicesonwhichthe120milliondollarswerespendwilllikewiseuse 60percentoftheirprofitsonexpenditures.Therefore,wenowhaveatotalamountof(200+((3/5)* 200)+((3/5)+120))dollarsworthofnewincomeintheeconomy. Thecyclewillcontinuethusly,butitisimportanttonotethattheriseinspendingdecreasesbya fractioneachstepoftheway.thecyclebecomesmostnotablewhenprofessionalsareattractedtoan industryinaparticularcityorregion.whenbusinessthrives,theflowofspendingwillhaveasignificant impactonthelocaleconomy. Themultipliermodelisespeciallyrelevantinregardstoemployment.Inthe1930sJohnMaynardKeyes recommendedtheadministrationuseittomeasurehowmuchgovernmentspendingwasnecessaryto ensurethepreciselevelofnationalincomethatwouldworkinavoidingunemployment.onewayforthe governmenttoencourageextraspendingistodecreaseincometax.indoingso,however,itmustalso stresstheimportanceofconsumingdomesticallymanufacturedgoods.thisisbecausewhenmoneyis spentonimportedgoods,incomeisnotcirculatingbackintothelocaleconomytobespentagain throughthemultipliercycles. Themultipliereffectalsomodelshowinvestmentintosavingsaccountscanincreasemonetary circulation.whenthefederalreservesetsthereserverequirementtoacertainamount,themoney supplyisaltered.forexample,ifthereserverequirementissettotwentypercent,abankcanloanupto 80dollarsofa100 dollarcustomerdeposit.the80dollarswillbe,then,depositedintoanotherbank thatcanthenloanoutanother64dollars.thecyclewillcontinuethiswaythroughthemultipliereffect. Itonlytrulyaffectscirculationwhenmoneyisdepositeddomestically,butitessentiallygivestheFed greatpowertoaffectmoneysupply.thus,ifthefednotesarecessionintheeconomyandraisesthe reserverequirementtosomewherearoundfortypercent,muchlessmoneywouldbecirculatinginthis samemultipliereffect. 3

II.BuildingtheModel Aswehaveexplained,thesetheMultiplierandAcceleratormodelsaccountforobservedphenomenain markets.however,inordertoexplainother,morecomplexpropertiesofbusinessdataitisnotenough examinethesetwomodelsindependently.inparticular,weseektoatleastpartiallyexplainthe existenceofbusinesscyclesbycreatingadynamicalsystemfromthebasisofthemultiplierand Acceleratormodels. Letuslookatanexampleofhowthesetwomodelstheoreticallyreinforceeachother,causingcyclical behaviorinthemarket.withanysortofincreaseinspending(oftendoneexogenouslybythe government),thereisanexactriseinconsumerincome.thisraisestheamountofmoneyspentby consumers,whichraisesaggregateoutputbythemultipliereffect.then,dependingonthehowquickly orslowlynetinvestmentincreases,theacceleratormodelwillkickin.thisinturnwilldictatean increaseordecreaseintotalspending,whichbeginsthecycleanew.thisverbalmodel,however,does notallowustoquantifytherelativeeffectsandstrengthsofthecompetingeffectsofthemultiplierand Acceleratormodels.Thus,wemustconstructadynamicalsystem,which,ifweuseaccurateparameters andconditions,shouldmodeltheeconomyofourchoice(whichinthiscase,meanstheuseconomy). OurmodelisafunctionofIncome,which,wemustrecall,issynonymouswithGDP.Ifthemodelis properlysetupandtheparametersareaccuratelychosen,weshouldseecyclicalfluctuationsinincome (I).Wewillexaminethereal worldimplicationsofourresultsbelowinthediscussion. Focusingonthemathematicsfornow,wealsoknowthatwemustincludeinourmodelparameters fromeachofthetwoparentmodels.fromthemultipliermodel,weporttheparameter s, the personalsavingsrate,andfromtheacceleratormodeltheparameter v, theratioofcapitolstock. WhatwehaveconstructedisasystemintheformofavanderPolequation. (*) ForeaseofanalysisanduseofXPPwerewritethefunctiona2 dimensionaldynamicalsystem: ( ) Whilewebelievethemodeltobeaccurate,wehavenowayofcheckinguntilwepluginestimatesof theparametersandexaminethebehaviorofthefunction,whichwewillachievethroughxpp.thefirst orderofbusinessisfindingaccuratevaluesfortheparameters s and v.since v isgenerally thoughttobeheldconstantfromtheacceleratormodel,wesimplyuseacommonlyagreeduponvalue ofv=1.1forourpurposes. Finding s however,isataskthatrequiresabitmorecaresincethesavingsrateisavolatileparameter. UsingdatafromtheU.S.BureauofEconomicAnalysis,weanalyzethebehaviorofthesavingsrateover thepast4years.inthisperiod,asevidencebythechart,thesavingsrateitselfhasseensome fluctuationsrangingfromroughly1% 5%.Itisinterestingtonotethatthedataindicateanaturallevel ofthesavingsrateatroughly2%(or0.02)overthepast4years,andthatonlyinthelastfewquarters havepersonalsavingsshotuptothehighof5%.this,too,shallbeaddressinthesimulationand Discussionportionsofthereport,butsufficeittosaythatwewillusethepresumednaturallevelof savingss=0.02astheinitialvalueoftheparameterforthepurposesofphaseplaneanalysis. 4

Usingtheseparameterestimateswearriveatthefinalformofourdynamicalsystem: ( ) Fromhere,weproceedtoouranalysisofthesystem. 5

III.AnalyzingtheModel Ouranalysisofthesystemmustproceedalongbothquantitativeandqualitativefronts.First,we analyzethesystemusingthecurrentparametersfrom( ),andanalyzeitsbehaviorusingxpptoseeif ourmodelsatisfactorilyfitsthecyclicalbusinessmodelasweexpected. Figure4.1 S=0.02 QualitativelyassessingthebehaviorinFigure1,itappearsthat,thesystemdoesindeedfollowcyclical behavior.itisworthnotingthatforthisparticularsystem,thexvalues(calledrinfigure1)represent therateofchangeofi(e.g.thehowquicklyincomechanges)andtheyvalues(callediinfigure1) representactualvaluesofincome.becauseofwhattheseaxesrepresent,itisimportanttonotethatin ordertoexhibitcyclicalbehaviorweareactuallylessinterestedinseeingastablelimitcycleinthe diagramasopposedtocyclicalmotioninonlythevaluesofi.inshort,toremovethepotentially confusingeffectorr,weexaminethechangeiniovertime. WeisolatedthegraphofIvs.TinXPP(asshowninFigure2)andfoundthatIncomelevelsveryquickly approachasteadyperiodicityandamplitude,whichleadsustobelievegivenreal worldsituations,the modeldoesexemplifycyclicalbehaviorofusaggregateincome.however,asitisunwisetotrustonly graphicalevidence,wealsoshowtheexistenceofalimitcycleinfigure1byanalyticalmeans.the equationin( )fitsthemoldofalienardequation.asproveninourtextbook,ithasbeenproventhat Lienardsystemshaveunique,stablelimitcycles.Thusweposittheexistenceofastablelimitcyclein ourmultiplier Acceleratormodel. 6

Figure4.2 S= 0.02 Oncewehavesolvedtheactualcase,however,wemustseehowtheMultiplier Acceleratormodelwill dealwithendogenousshocks.wehavealreadyestablishedthatbythenatureoftheparameters,the capitolstockrationwillbeheldlargelyconstant.evenifnotperfectlyso,theshockstovwillbeminor. Thesameisnot,however,trueforthesavingsrate.Asshownearlier,itisafactthatsvariesovertime. Letusthenexaminehowchangesinthesavingsrateaffectthelongtermbehaviorofthesystem. Toaidusinfindingcriticalpointswherethesystem sbehaviorwillchange,wecanreturntotheoriginal systemin(*).clearly,weseethatthefactorof changesthesignofthelinearterm,which dominatesforsmallvaluesof.noticethatthecoefficientofthecubicfactor,whichdominatesfor largevaluesof,isafunctionofv,andthuswillnotvarymuchduetoexogenousshocks.returningto thefactorof,wesuspectthatdifferentqualitativebehaviorwilloccurwhenthesignofthe termchanges.plugginginv=1.1,wegetthatthethreecriticalvaluesofsares<0.10,s=0.10,ands> 0.10.Letusexaminethesethreecases. First,examinethecasewheres<0.10.Fromtheoriginalmodel,weupdatestobeclosertothecritical value,increasingitto8%.thexppoutputfromrunningthissystemisdisplayedinfigure3. Qualitatively,itisinterestingtonoticethatthatlimitcycleismorecompressedinthedirectionof impliesthatwhenthesavingsrateisincreased,the speed atwhichtheinvestmentcyclesoccur increases.allinall,thegraphlookssimilartothereal worldsituationmodeledinitiallyinfigure1, whichistobeexpectedsincetheparameters=0.02fallsunderthedomainofs<0.10. This 7

Figure4.3 Figure4.4 S=0.08 S=0.10 Atthecriticalvalueofs=0.10,the systemseemstoapproachnearly standingcycles,asseeninfigure4. Thereasonstandingcirclesdonot formisthepresenceoftheextra factorof.contraryto expectation,thesecyclesarenot veryinterestingfortworeasons. Firstly,eveniftheinitialcondition andparametersledtothe economygetting caught inone ofthesestandingcircles,itwould instantaneouslyexhibitthe characteristiccyclicalmotionof Incomethatwedesiredinthefirst place.secondly,duetothe variationinsovertimecompared tothestaticnatureofv,weexpect thebalanceof =0tobe lostratherquickly. InFigure5,weseethelimitcycle thathadbeenshrinkingass increasedtowards0.10.oncethe thresholdwaspassed,theorigin becomesastablespiral.thisholds trueforallvaluesofsallthewayto 1,whichistheupperlimitonthe parameter(sinceitisapercentage). Figure4.5 S=0.30 Nowtakingastepback,wenotice wehavewitnessedthattheorigin,a fixedpoint,haschangedstabilities astheparametersofthesystem werealtered.moresignificantly,the originchangesfromastablenodeto anunstablenodesurroundedbya stablecycle.ifweweretoplotthe bifurcationdiagram,itisclearthat thesefeaturesarecharacteristicofa super criticalhopfbifurcation. 8

IV.ExpandingUpontheModel Inordertoextendthismodel,weconsiderhowthissystemmightbehaveifthesavingsratewerea variableaswell.thisadditiontothemodelmakessense,becauseasincomeandtherateofchangeof incomechangeovertime,onecanreasonablyexpectthesavingsratetochangeaswell.whilethe modeldescribesmacroeconomicconcepts,foreaseofcomposition,wewilldiscusstheincomeand savingsrateasiftheywereofanindividual. Thinkingaboutthepropertieswewouldwantthesavingsratetohavegivesusastartingpointfor thinkingaboutwhatsortoffunctionmaydescribetherateofchangeofsavings.consideringthecycles wehaveobservedalready,onemightexpectthatthesavingsratewillincreaseordecreasein accordancewithwhetheronesincomeisincreasingordecreasingatthetime,aswellaswhetherones incomeispositiveornegative(indebt).thus,wewouldlikethesignofthederivativeofstochangeas thecyclemovesfromquadranttoquadrant. Wemovefromthistothenconsiderwhatsignwewouldlikethederivativeofstohave.Inthefirst quadrant,incomeisincreasing,soonemightexpectthatthesavingsratewasincreasing,then decreasinginthesecondquadrant,increasinginthethirdquadrant,thendecreasinginthefourth quadrant.wealsowouldliketheabsolutevalueoftherateofchangeofthesavingsratetobelessthan one,becausethatwillinhibitthesavingsratefromgrowingtooquicklyaslongastheinitialconditionis between1and 1.Alloftheserequirementsleadustotheadoptionofthesinefunctionfors.Sincewe wants todependonbothincomeandtherateofchangeofincome,thenwewilltaketheargumentof sinetoberi.finally,sincewewouldliketobeabletocontroltheextentofvariationinthenewterm, wewilldividebyaconstantk,whichwewillseecanbeinterpretedastheresistanceofindividualsto changetheirsavingsrate,asitrestrictsthepossiblevariationofthesavingsrate.thus,wehaveanew system r = (v "1" s)r " vr 3 I = r s = sin(ri) k 3 " si (5.1) Asanalternativeoption,wewillalsoconsiderthesystemproducedbyusinganegativesineargument:! r = (v "1" s)r " vr 3 I = r s = sin("ri) k 3 " si (5.2) Bothsystemshavethepropertythataskapproachesinfinity,thatis,astheresistancetochangingthe savingsrateincreasestoinfinity,s goestozero,whichindicatesthatsbecomesaconstant.thus,ask! approachesinfinity,ourmodelreducedtotheoriginalsystemanalyzedinsectioniv. 9

SinceXPPhaslimitedcapabilitiesinthreedimensions,muchofoursubsequentanalysisisdoneinthe AppleapplicationGrapher.Byinputtingtheequationsandaninitialcondition(wewilluser=1,I=1and s=0.2,withparametervaluesk=2andv=1.1asinsectioniv),wecanobservethegeneralbehaviorof system5.1infigure5.1below: Wecanseethatthismodelfalls Fig5.1 intocyclicmotion(thoughnota limitcycle),whichisconsistentwith ourpreviousanalysis.also,the savingsratemovesinapredictable fashion,risingandfallingasit movesfromonequadrantoverthe xyplanetoanother.wecanseein Figure5.2thatthesavingsrate exhibitsperiodicbehavior,whichis consistentwithourpredictions aboutthisnewmodel.thismodel alsoallowsforthesavingsrateto becomenegativeinaregular, periodicfashionwithoutdisrupting thecyclicalnatureofthesystemasawhole.thisresultisencouragingforasocietysuchasoursthat frequentlyhasanegativesavingsrate,especiallysincenegativesavingsratesledtosignificantproblems inthetwodimensionalmodel. Notealsothatthesavingsrateapproacheszero,althoughitdoessoveryslowly. Fig5.2 10

Lookingatthesecondmodel,picturedinFigure5.3,wesee thatthesavingsratebehavessomewhatdifferently, oscillatingmuchmoretightlyaroundthes=0plane.aswe canseefromfigure5.4,theslightchangethatdifferentiates thismodelfromthepreviousleadstothesavingsrate approachingzeromuchmorequicklythantheother(note thatbothchartsarerepresentedonthesametimescale.) Thequestionremains:whichofthesemodelsisamore appropriatedescriptorofreality?thefirstmodelproduces muchsmootherbehavior,howeverthesavingsratesit predicts(withtheparametersused)areverylarge comparedtothetypicalsavingsratesinthiscountry. Fig5.3 However,thedampeningfactorkcaneasilybeincreasedto mitigatethisresult.bothmodelstheoreticallyallowfor savingsratesgreaterthanone,asituationthatmakesno practicalsense,andhasnotruephysicalmeaning.bothmodelspredictthatthesavingsratewillgo belowzeromuchmorefrequentlythanistrueintherealworld,whichindicatesthatadjustmentsmay needtobemadeinordertoadequatelyrepresentthetruecircumstancesofreality. Fig5.4 Themodelsarebeneficial,however,inthattheyaccountforsucheventsasnegativesavingsrates, unlikethetwodimensionalmodel.infact,givenanegativesavingsrate,thesemodelswill,aftera periodofeitherexplosivegrowthordebt,bringthesolutionsbacktothecyclicalmotioncharacteristic ofthesemodels. 11

V.Discussion Nowthatwehaveexaminedthebehaviorsofthegraphsatisfactorily,theultimatetestistoseehow wellourmultiplier Acceleratormodelcomparestoactualdata.Intheprocessofdeterminingthe savingsrateearlyonincomputingthemodel,weusedpubliclyreleasedgovernmentdatafromthelast fouryears.intheinterestofconsistency,wewillcheckoutmodelagainsteconomicdatafromthelast4 years.sincethedataispublishedquarterly,thismeanswemayusedatafromthelast16fiscalquarters tocheckourresults. HerewehaveachartshowingpercentagechangeinGDPoverthelast16quarters.Bearinginmindthat GDPisaggregateoutput,andfromandeconomicstandpointthetotaloutputatmarketequilibrium mustequaltotalincome,gdpmustbedirectlycorrelatedtoincome.thus,themovementof percentagechangeingdpiscorrelatedto.thus,bothourmodelandprevailingeconomictheory predictsinusoidalmotionofthecurve. AswecanseefromFigure6,theredoesappeartobeacyclicaltrend.Theglaringproblemwith correlatingourmodeltorealityistheunusuallylargedipinthecurve,whichlastedforthelast2 5 quarters(i.e.thelast15months).thisis,ofcourse,exactlythetimespan,whichcoveredtherecent globalrecession. Whywouldthisrecessionadverselyaffectourmodel?OurMultiplier Acceleratormodel,althoughmore powerfulthaneithermodelindependently,isstilllimitedinscopebytheparametersusedtocalculate it.whatthismeansisthatwhilethemodelshouldaccountforanypossibleendogenous,anyexogenous shockswillchangethemodebeyondtheexplanatorypowerofthemodel.inthiscasetherecession seemstohaveexacerbatedtheeffectsofthenaturaldropingdppredictedbythemodel. 12

Turningourattentiontothethreedimensionalextensionofthemodel,wecomparethepatternsof savingsratespredictedbythemodeltothetruepatternsofsavingsratesoverthepastseveralyears(fig 6.2)andfindthatwhilebothmodelsdomirrorthecyclicnatureofthesavingsrateoverthepast40 years,neithermodelcanaccountfortheexogenouseffectsofchangingsocieties,whichispresumably thecauseoftheconsistentdownwardtrendofthesavingsrate. Fig6.2 13

VI.Conclusion Theacceleratorandmultipliereffectsarewidelyacceptedasdescriptivemodelsofeconomics,asisthe interactionbetweenthetwo,themultiplier acceleratormodeldevelopedbypaulsamuelsonin1939 (Puu1997).Theyeffectivelypredictanddescribebusinesscyclesthatdeveloponamacroeconomic level.throughouranalysis,wehaveshownthatifwetaketheratioofcapitalstocktoincome(v)as constant(asiswidelyacceptedineconomics),asupercriticalhopfbifurcationoccursasthesavingsrate increases.thus,businesscyclesonlyexistforcertainrangesofs,afterwhichpointtheorigin(no income)becomesastablenode. Whenweextendouranalysisbeyondtwodimensionstotakesasvariable,wefindthatourmodels accuratelydescribetheperiodicityofthesavingsrateinreallife,thoughthevaluesourmodelpredicts forthesavingsratediffersomewhatfromtheobservedvalues.however,matchingthemovementof thesavingsrateismoresignificantthanmatchingtheobservedvalues,becauseitisarelativelysimple mattertoarrangeconstantsadjustingtheequationstothecorrectamplitudeandvalues.thus,our developedmodelhasachieveditsgoalofapproximatingthesavingsrateasafunctionoftimeanda variableinmotionwiththerestofthesystem,ratherthansimplyaconstant. VII.References FactsonPolicy:USSavingsRate. http://www.hoover.org/research/factsonpolicy/facts/4250756.html GrossDomesticProduct:ThirdQuarter2009(SecondEstimate). http://www.bea.gov/newsreleases/national/gdp/2009/pdf/gdp3q09_2nd.pdf Multiplier AcceleratorModel. http://www.economyprofessor.com/economictheories/multiplieraccelerator.php PersonalSavingsRate. http://www.bea.gov/briefrm/saving.htm JunhaiMaandQinGao.(2009) StabilityandHopfbifurcationsinabusinesscyclemodelwithdelay. AppliedMathematicsandComputation,Vol215(2):829 834. (http://www.sciencedirect.com/science/article/b6ty8 4WGF0X4 3/2/e12302954a764d01c69ac11511dd1aaa) Puu,Tönu.1997.NonlinearEconomicDynamics.NewYork:Springer. 14