Channels & Challenges New Physics at LHC



Similar documents
Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15

How To Find The Higgs Boson

FINDING SUPERSYMMETRY AT THE LHC

Measurement of Neutralino Mass Differences with CMS in Dilepton Final States at the Benchmark Point LM9

Bounding the Higgs width at the LHC

How To Teach Physics At The Lhc

A SUSY SO(10) GUT with 2 Intermediate Scales

Middle East Technical University. Studying Selected Tools for HEP: CalcHEP

Standard Model of Particle Physics

Status Report on WHIZARD

arxiv:hep-ph/ v2 4 Oct 2003

Highlights of Recent CMS Results. Dmytro Kovalskyi (UCSB)

SUSY Breaking and Axino Cosmology

Measurement of the Mass of the Top Quark in the l+ Jets Channel Using the Matrix Element Method

Higgs and Electroweak Physics

Axion/Saxion Cosmology Revisited

Selected Topics in Elementary Particle Physics ( Haupt-Seminar )

Physik des Higgs Bosons. Higgs decays V( ) Re( ) Im( ) Figures and calculations from A. Djouadi, Phys.Rept. 457 (2008) 1-216

Search for Dark Matter at the LHC

Vector-like quarks t and partners

Real Time Tracking with ATLAS Silicon Detectors and its Applications to Beauty Hadron Physics

Extensions of the Standard Model (part 2)

STRING THEORY: Past, Present, and Future

From Jet Scaling to Jet Vetos

Validation of the MadAnalysis 5 implementation of ATLAS-SUSY-13-05

The Compact Muon Solenoid Experiment. CMS Note. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. D. J. Mangeol, U.

Spontaneous symmetry breaking in particle physics: a case of cross fertilization

Quark Model. Quark Model

Particle Physics. Bryan Webber University of Cambridge. IMPRS, Munich November 2007

0.33 d down c charm s strange t top b bottom 1 3

Weak Interactions: towards the Standard Model of Physics

arxiv: v1 [hep-ph] 28 Jun 2010

Concepts in Theoretical Physics

Top rediscovery at ATLAS and CMS

Mass spectrum prediction in non-minimal supersymmetric models

A Study of the Top Quark Production Threshold at a Future Electron-Positron Linear Collider

t th signal: theory status

Risultati recenti dell'esperimento CMS ad LHC e prospettive per il run a 14 TeV

Lepton Flavour LHC?

Physics Department, Southampton University Highfield, Southampton, S09 5NH, U.K.

Introduction to Elementary Particle Physics. Note 01 Page 1 of 8. Natural Units

1 Introduction. 1 There may, of course, in principle, exist other universes, but they are not accessible to our

Kinematic Tau Reconstruction and Search For The Higgs Boson in Hadronic Tau Pair Decays with the CMS Experiment

Perfect Fluidity in Cold Atomic Gases?

PHYSICS WITH LHC EARLY DATA

ffmssmsc a C++ library for spectrum calculation and renormalization group analysis of the MSSM

Gauge theories and the standard model of elementary particle physics

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

Monodromies, Fluxes, and Compact Three-Generation F-theory GUTs

Masses in Atomic Units

Implications of CMS searches for the Constrained MSSM A Bayesian approach

Basic Concepts in Nuclear Physics

Mini-Split. Stanford University, Stanford, CA USA. and Institute for Advanced Study, Princeton, NJ USA

Search for supersymmetric Dark Matter with GLAST!!

Looking for Magnetic Monopoles AT The Large Hadron Collider. Vicente Vento Universidad de Valencia-IFIC

Study of the B D* ℓ ν with the Partial Reconstruction Technique

Search for solar axions with the CCD detector at CAST (CERN Axion Solar Telescope)


Jürgen R. Reuter, DESY. J.R.Reuter Status Report on WHIZARD ALCW 2015, KEK,

Calorimetry in particle physics experiments

The Higgs Boson. Linac08 Victoria BC, Canada CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS

Perfect Fluids: From Nano to Tera

Measurement of low p T D 0 meson production cross section at CDF II

FCC JGU WBS_v0034.xlsm

Periodic Table of Particles/Forces in the Standard Model. Three Generations of Fermions: Pattern of Masses

Cross section, Flux, Luminosity, Scattering Rates

REALIZING EINSTEIN S DREAM Exploring Our Mysterious Universe

Gamma-rays from Dark Matter Mini-Spikes in Andromeda Galaxy M31. Mattia Fornasa Dipartimento di Fisica G. Galilei I.N.F.N. Padova

Theory versus Experiment. Prof. Jorgen D Hondt Vrije Universiteit Brussel jodhondt@vub.ac.be

JET ENERGY CALIBRATION IN ATLAS

Progress in understanding quarkonium polarization measurements

Directed by: Prof. Yuanning Gao, IHEP, Tsinghua University Prof. Aurelio Bay, LPHE, EPFL

Particle Physics. The Standard Model. A New Periodic Table

Transcription:

Channels & Challenges New Physics at LHC Jürgen Reuter Carleton University, Ottawa Southampton, 15. January 2007

The success of the Standard Model Standard Model describes microcosm gauge interactions: strong electroweak broken to electromagnetic Higgs mechanism Measurement Fit O meas O fit /σ meas 0 1 2 3 α had (m Z ) (5) 0.02758 ± 0.00035 0.02766 m Z [GeV] 91.1875 ± 0.0021 91.1874 Γ Z [GeV] 2.4952 ± 0.0023 2.4957 σ 0 had [nb] 41.540 ± 0.037 41.477 R l 20.767 ± 0.025 20.744 A fb 0,l 0.01714 ± 0.00095 0.01640 A l (P τ ) 0.1465 ± 0.0032 0.1479 R b 0.21629 ± 0.00066 0.21585 R c 0.1721 ± 0.0030 0.1722 A 0,b fb 0.0992 ± 0.0016 0.1037 A 0,c fb 0.0707 ± 0.0035 0.0741 A b 0.923 ± 0.020 0.935 A c 0.670 ± 0.027 0.668 A l (SLD) 0.1513 ± 0.0021 0.1479 sin 2 θ lept eff (Q fb ) 0.2324 ± 0.0012 0.2314 m W [GeV] 80.392 ± 0.029 80.371 Γ W [GeV] 2.147 ± 0.060 2.091 m t [GeV] 171.4 ± 2.1 171.7 Standard Model tested better than 1 % No significant deviations found since 1970s Theory and Experiment agree 0 1 2 3

Why New Physics?? Electroweak Symmetry Breaking, Higgs? Dark Matter: m DM 100 GeV? 28 free parameters? 3 families? unification, gravity M H [GeV] 750 500 250 Λ[GeV] 10 3 10 6 10 9 10 12 10 15 10 18 Hierarchy/Fine-Tuning Problem Quantum corrections to Higgs mass are sensitive for cut-off Λ δm 2 H Λ2 10000 GeV 2 = ( 1000000000000000000000000010000 1000000000000000000000000000000 ) GeV 2 Protective Symmetry?

Why New Physics?? Electroweak Symmetry Breaking, Higgs? Dark Matter: m DM 100 GeV? 28 free parameters? 3 families? unification, gravity α i -1 60 50 U(1) 40 30 SU(2) 20 10 SU(3) Standard Model 0 10 2 10 4 10 6 10 8 10 10 10 12 10 14 10 16 10 18 µ (GeV) M H [GeV] 750 500 250 Λ[GeV] 10 3 10 6 10 9 10 12 10 15 10 18 Hierarchy/Fine-Tuning Problem Quantum corrections to Higgs mass are sensitive for cut-off Λ δm 2 H Λ2 10000 GeV 2 = ( 1000000000000000000000000010000 1000000000000000000000000000000 ) GeV 2 Protective Symmetry?

Supersymmetry Little Higgs Spin-statistics: Corrections from bosons and fermions cancel connects gauge and space-time symmetries Global symmetries: Corrections from like-statistics particles cancel Higgs: Goldstone-Boson of spontan. broken global symmetry Q J 1 H H 0 Q 1 2 0 G 1 G 1 [H G 2 G 1, H 2] 0 1 /H 1 H /H 2 H Ó ÓÒ ÖÑ ÓÒ multiplets of equal-mass fermions & bosons SUSY broken M H protected to all orders embedded in grand unified theory R-parity: dark matter collective breaking of global symmetries protects Higgs mass M H protected at first order strongly interacting @10 TeV T -parity: dark matter

Characteristics of Standard Model Extensions O( 10 TeV) O(1 TeV) O(250 GeV) F v Λ Scale Λ: hidden sector, symmetry breaking Scale F : new particles Scale v: Higgs, W/Z, l ±,... Rich spectrum of new particles @ Terascale, complicated decay structures SUSY H, A H ± q L t b2 2 q R b1 t 1 χ 0 4, χ± 2 M[TeV] 1.25 g 1.00 0.75 χ 0 3 0.50 Φ Φ ±± Φ ± Φ P Z γ Little Higgs W ± T U, C h τ 2 ν l τ 1 ll lr χ 0 2, χ± 1 t χ 0 1 0.25 h η W ± Z t

Constraints on new models? Flavour structure: Meson mixing & rare decay modes, CP violation Astrophysical constraints: relic abundance Gauge structure: electroweak precision observables

η J. Reuter Channels & Challenges New Physics @ LHC Southampton, 15.01.2007 Constraints on new models? Flavour structure: Meson mixing & rare decay modes, CP violation Astrophysical constraints: relic abundance Gauge structure: electroweak precision observables m 2 [ev 2 ] 10 0 10 3 10 6 10 9 KARMEN2 LSND NOMAD Cl Ga Bugey K2K CHOOZ SNO ν e ν X ν µ ν τ ν e ν τ ν e ν µ NOMAD Super-K+SNO +KamLAND CDHSW CHORUS NOMAD BNL E776 SuperK CHORUS 1.5 1 PaloVerde KamLAND 0.5 Super-K 0-0.5-1 excluded area has CL > 0.95 ε K sin 2β V ub /V cb sol. w/ cos 2β < 0 (excl. at CL > 0.95) i 4 C K M γ f t t e r 10 12 10 10 2 10 0 EPS 2005 10 2-1.5 tan 2 θ -1-0.5 0 0.5 1 1.5 2 ρ http://hitoshi.berkeley.edu/neutrino α γ γ α excluded at CL > 0.95 β T α 0.4 0.2 m d m s & m d 0-0.2 ε K U 0 m t = 172.7 ± 2.9 GeV m H = 114...1000 GeV sin 2 θ lept eff 68 % CL -0.4-0.4-0.2 0 0.2 0.2 0.4 S m H m t m W prel. T 0.6 0.4 0.2 0 Γ ll mh= 700GeV LHM F = 3.5 TeV 400GeV 250GeV 120GeV SM 0.4 0.2 0 0.2 Kilian/JR, 2003 LHM F = 4.5 TeV S New particle scale F 1 3 TeV

Direct Searches: Large Hadron Collider LHC @ CERN: from 2007/08 pp collider s = 14 TeV

É J. Reuter Channels & Challenges New Physics @ LHC Southampton, 15.01.2007 The Challenge of LHC É Partonic subprocesses: qq, qg, gg No fixed partonic energy proton - (anti)proton cross sections 10 9 10 9 σ (nb) 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 10 0 10-1 10-2 10-3 10-4 σ tot Tevatron σ b σ jet (E jet T > s/20) σ W σ Z σ jet (E jet T > 100 GeV) σ t σ jet (E jet T > s/4) LHC 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 10 0 10-1 10-2 10-3 10-4 events/sec for L = 10 33 cm -2 s -1 Â Ø High event rates for t, W/Z, H, huge backgrounds Cuts for background ÓÐк reduction p T p p η 10-5 σ Higgs (M H = 150 GeV) 10-5 10-6 10-7 σ Higgs (M H = 500 GeV) 0.1 1 10 s (TeV) 10-6 10-7 e

The Challenge of LHC Partonic subprocesses: qq, qg, gg No fixed partonic energy proton - (anti)proton cross sections 10 9 10 9 σ (nb) 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 10 0 10-1 10-2 σ tot Tevatron σ b σ jet (E jet T > s/20) σ W σ Z σ jet (E jet T > 100 GeV) LHC 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 10 0 10-1 10-2 events/sec for L = 10 33 cm -2 s -1 High event rates for t, W/Z, H, huge backgrounds ÓÖÛ Ö Cuts for background ÓÐк ÒØÖ Ð reduction 10-3 10-4 σ t σ jet (E jet T > s/4) 10-3 10-4 η = 5 η = +5 10-5 10-6 10-7 σ Higgs (M H = 150 GeV) σ Higgs (M H = 500 GeV) 0.1 1 10 s (TeV) 10-5 10-6 10-7 η = 0

New Physics: Observables/Precision Measurements Signals for New Physics: /E T, high-p T jets, many hard leptons, but: Which model? q L χ 0 2 q 1 2 R 1 χ 0 1 Cascade decays: mass differences from endpoints of decay spectra Spin of new particles: Angular distribution,... Determining the model: Measurement of coupling constants Precise prediction for signal and background Consideration of cuts Distributions: dσ/dx, X = cos θ, η, p T,... Multi-particle final states: 2 4 bis 2 10 Quantum corrections: real and virtual Events/1 GeV/100 fb -1 1500 1000 500 0 0 20 40 60 80 100 m(ll) (GeV)

Simulations: O Mega / Whizard Matrix Element Generator O Mega: Ohl, 2000/01; M.Moretti/Ohl/JR, 2001 Multi-purpose Event Generator Whizard: Ohl, 1996; Kilian, 2000; Kilian/Ohl/JR, 2007 Multi-Channel adaptive Monte-Carlo integration very well tested JR et al., 2006; Hagiwara/... /Krauss/Plehn/JR/..., 2006 Virtual Corrections: NLO Monte Carlo NLO MC for e + e χ + 1 χ 1 LO 200 NLO Kilian/JR/Robens, 2006 e e + χ 1 χ + 1 σtot [fb] Arbitrary distributions @ NLO 100 0 500 1000 1500 s [GeV]

Sbottom production at LHC Hagiwara/... /JR/..., 2006 b 1 production with subsequent decay b 1 χ 0 1 b Process A 1 A 2 P ( ) F 1 F 2, 3 different levels: Narrow Width σ(a 1 A 2 P ) BR(P F 1 F 2 ) Breit-Wigner σ(a 1 A 2 P ) Full matrix element σ(a 1 A 2 F 1 F 2 ) M 2 P Γ2 P (s M 2 P )2 +Γ 2 P M 2 P BR(P F 1 F 2 ) 10 5 evt/10 GeV L = 100 fb 1 10 5 evt/10 GeV L = 100 fb 1 10 4 1000 100 0 100 200 300 400 500 pt(b/ b) [GeV] 10 4 1000 100 0 100 200 300 400 missing pt [GeV] pp b b χ 0 1 χ0 1 Main background: gg b bν ν Signal jets harder

Off-Shell effects at LHC: 6000 evt/5 GeV L = 100 fb 1 1 10 4 evt/5 GeV L = 100 fb 1 PS: Harder jet more central Off-Shell effects (b bz ): only for low p T,b is cut out Not generally guaranteed 4000 2000 5000 0 0 100 200 300 pt(b/ b) [GeV] 0 4 2 0 2 4 η(b/ b) Prozeß σ BR [fb] σ BW [fb] σbw cut Zh 1.342 1.335 0.009 HA 0.320 0.314 0.003 χ 0 1 χ0 2 13.078 13.954 0.458 χ 0 1 χ0 3 3.675 4.828 0.454 χ 0 1 χ0 4 0.061 0.938 0.937 b 1 b 1 0.759 0.757 0.451 Sum 19.238 22.129 2.314 Exact 19.624 0.487 ILC: e + e b b χ 0 1 χ0 1 [800 GeV] Cuts for M b b eliminate other resonances

Real corrections: bottom-jet radiation K. Hagiwara/... /JR/..., 2006 g b b-splitting, b-isr als combinatorial background pp χ 0 1 χ0 1 b bb b: 32112 diagrams, 22 color flows, 4000 PS channels σ(pp b b χ 0 1 χ0 1 ) = 1177 fb σ(pp b bb b χ 0 1 χ0 1 ) = 130.7 fb Forward discrimination between ISR and decay-b jets difficult: 2000 evt/5 GeV L = 100 fb 1 evt/5 GeV L = 100 fb 1 500 1000 0 0 100 200 300 pt(b/ b) [GeV] Only the most forward b jet considerably softer 0 0 100 200 300 pt(b/ b) [GeV]

Real corrections: bottom-jet radiation K. Hagiwara/... /JR/..., 2006 g b b-splitting, b-isr als combinatorial background pp χ 0 1 χ0 1 b bb b: 32112 diagrams, 22 color flows, 4000 PS channels σ(pp b b χ 0 1 χ0 1 ) = 1177 fb σ(pp b bb b χ 0 1 χ0 1 ) = 130.7 fb Only minor differences in p T,b, PDF: maximum for smaller value [arbitrary units] [arbitrary units] 100 100 10 10 1 0 100 200 300 400 500 pt(b/ b) [GeV] 1 0 100 200 300 400 missing pt [GeV] shifted to smaller /p T : light particles balance out the event

What if not SUSY?

Pseudo-Axions in Little Higgs Kilian/Rainwater/JR, 2004, 2006; JR, 2007 gauged U(1) group: Z ungauged: η couples to fermions like a pseudoscalar m η 400 GeV SM singlet, couplings to SM particles v/f suppressed η axion-like particle: 1 0.1 0.01 0.001 10 4 BR [η] b b τ + τ c c gg γγ µ + µ Zh 50 100 150 200 250 300 mη [GeV] Anomalous U(1): 1 F α s 8π 2 ηf µν F ρσ ɛ µνρσ U(1) explicitly broken Axion limits from astroparticle physics not applicable

The Glimpse of a Discovery Kilian/Rainwater/JR, 2004, 2006 LHC: Gluon fusion, diphoton signal für m η 200 GeV, 7σ possible LHC: T tη ILC: e + e t tη Godfrey/Rainwater/JR

The Glimpse of a Discovery Kilian/Rainwater/JR, 2004, 2006 LHC: Gluon fusion, diphoton signal für m η 200 GeV, 7σ possible LHC: T tη ILC: e + e t tη Godfrey/Rainwater/JR 10 4 1000 100 10 e e + t tb b #evt/2 GeV m η = 50 GeV 100 s = 800 GeV L = 1 ab 1 g ttη = 0.2 150 0 50 100 150 M inv (b b) [GeV]

The Glimpse of a Discovery Kilian/Rainwater/JR, 2004, 2006 LHC: Gluon fusion, diphoton signal für m η 200 GeV, 7σ possible LHC: T tη ILC: e + e t tη Godfrey/Rainwater/JR ZHη coupling forbidden in Product Group Models Discrimator of diff. model classes { } H Zη llbb gg η ZH llbb, llljj

The Glimpse of a Discovery Kilian/Rainwater/JR, 2004, 2006 LHC: Gluon fusion, diphoton signal für m η 200 GeV, 7σ possible LHC: T tη ILC: e + e t tη Godfrey/Rainwater/JR ZHη coupling forbidden in Product Group Models Discrimator of diff. model classes { } H Zη llbb gg η ZH llbb, llljj

The Glimpse of a Discovery Kilian/Rainwater/JR, 2004, 2006 LHC: Gluon fusion, diphoton signal für m η 200 GeV, 7σ possible LHC: T tη ILC: e + e t tη Godfrey/Rainwater/JR ZHη coupling forbidden in Product Group Models Discrimator of diff. model classes { } H Zη llbb gg η ZH llbb, llljj

The Glimpse of a Discovery Kilian/Rainwater/JR, 2004, 2006 LHC: Gluon fusion, diphoton signal für m η 200 GeV, 7σ possible LHC: T tη ILC: e + e t tη Godfrey/Rainwater/JR ZHη coupling forbidden in Product Group Models Discrimator of diff. model classes { } H Zη llbb gg η ZH llbb, llljj

Outlook LHC: new era of physics Higgs mechanism New particles, symmetries: SUSY, Little Higgs Pheno: precision calculations/simulations of multi-particle final states Exciting times ahead!

Outlook LHC: new era of physics Higgs mechanism New particles, symmetries: SUSY, Little Higgs Pheno: precision calculations/simulations of multi-particle final states Exciting times ahead! There is light at the end of the tunnel!

Ideas for New Physics since 1970 (1) New Ingredients Technicolour: Higgs a bound state of strongly-interacting particles (2) Symmetries for cancellation of quantum corrections Supersymmetry: Spin-statistics corrections from bosons and fermions cancel each other Little Higgs models: Global symmetries corrections from like-statistics particles cancel each other (3) Nontrivial Space-time structure eliminates hierarchy Additional space dimensions: gravity appears only week Noncommutative space-time: coarse-grained space-time (4) Ignoring the Hierarchy Anthropic Principle: parameters have their values, because we (can) measure them

Constraints on new models? Flavour structure: K, D, B mixing, rare K, D, B decay modes CP violation: CP asymmetries, electric dipole moments Astrophysical constraints: relic abundance Gauge structure: electroweak precision observables

Constraints on new models? Z L Z L Z L Z L T ρ Z T Z T Z T Z T S T 0.6 0.4 0.2 0 mh= 700 GeV 400 GeV 250 GeV 120 GeV 0.2 LHM F = 3.5 TeV SM 0.4 0.2 0 0.2 LHM F = 4.5 TeV S Tree-Level mixing Z, Z induces big corrections Scale F 1 3 TeV Higgs compensates for Z Naturally heavy Higgs in Little Higgs Models Kilian/JR, 2003 Kilian/JR, 2003

Tests and Checks: Example MSSM JR et al., 2005; K. Hagiwara/W. Kilian/F. Krauss/T. Ohl/T. Plehn/D. Rainwater/JR/S. Schumann, 2006 MSSM: spectrum doubled, 100 parameters, 5000 vertices Implementation enforces tests and consistency checks Unitarity check: σ(2 2, s), σ(2 3, s) const or 1/s Gauge invariance: Ward- and Slavnov-Taylor identities Supersymmetry: Ward-/Slavnov-Taylor identities JR, 2002; Ohl/JR, 2002 Comparison of independent codes (O(600) processes): JR et al., 2005; K. Hagiwara/... /JR/..., 2006 Reference: http://www-ttp.physik.uni-karlsruhe.de/~reuter/susy_comparison.html ff X Process stat. Madgraph/Helas Whizard/O Mega Sherpa/A Megic 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV uu ũ L ũ L 716.9(1) 716.973(4) 716.99(4) uu ũ R ũ R 679.6(1) 679.627(4) 679.54(4) uu ũ L ũ R 1212.52(6) 1212.52(5) 1212.60(6) dd d L d L 712.6(1) 712.668(4) 712.68(4) dd d R dr 667.4(1) 667.448(4) 667.38(3) dd d L dr 1206.22(6) 1206.22(5) 1206.30(7)

SUSY Exotics at LHC Gauge couplings run: dg a d log µ = g3 a 16π B 2 a, B a depends on field content Sparticles make couplings unify e.g.: SU(5) SU(3) c SU(2) w U(1) Y Doublet-triplet splitting problem: Proton decay by Higgs partner D 60 40 20 1/α1 1/α2 1/α3 Running of 1/α, SM Extended MSSM Higgs sector relaxed Higgs bounds (light pseudoscalars) possibly large invisible decay ratio lightest unhiggs: H parity protected dark matter dark matter mix: interesting relic abundance (relaxes all neutralino bounds!) Pair production of unhiggses/unhiggsinos, cascade decays 0 5 10 15 20 log (µ [GeV])

SUSY Exotics at LHC Gauge couplings run: dg a d log µ = g3 a 16π B 2 a, B a depends on field content Sparticles make couplings unify e.g.: SU(5) SU(3) c SU(2) w U(1) Y Doublet-triplet splitting problem: Proton decay by Higgs partner D Dqq, Dlq 60 40 20 1/α1 1/α2 1/α3 Running of 1/α, MSSM Extended MSSM Higgs sector relaxed Higgs bounds (light pseudoscalars) possibly large invisible decay ratio lightest unhiggs: H parity protected dark matter dark matter mix: interesting relic abundance (relaxes all neutralino bounds!) Pair production of unhiggses/unhiggsinos, cascade decays 0 5 10 15 20 log (µ [GeV])

SUSY Exotics at LHC Gauge couplings run: dg a d log µ = g3 a 16π B 2 a, B a depends on field content Sparticles make couplings unify e.g.: SU(5) SU(3) c SU(2) w U(1) Y Doublet-triplet splitting problem: Proton decay by Higgs partner D Dqq, Dlq Kilian/JR, 2006 60 40 20 Running of 1/α, MSSM with 1 [(Hu, D) (Hd, D c )] SU(3)c SU(2)L SU(2)R 1/α1 1/α2 1/α3 1/α1 Extended MSSM Higgs sector relaxed Higgs bounds (light pseudoscalars) possibly large invisible decay ratio lightest unhiggs: H parity protected dark matter dark matter mix: interesting relic abundance (relaxes all neutralino bounds!) Pair production of unhiggses/unhiggsinos, cascade decays 0 5 10 15 20 log (µ [GeV])

SUSY Exotics at LHC Gauge couplings run: dg a d log µ = g3 a 16π B 2 a, B a depends on field content Sparticles make couplings unify e.g.: SU(5) SU(3) c SU(2) w U(1) Y Doublet-triplet splitting problem: Proton decay by Higgs partner D Dqq, Dlq Kilian/JR, 2006 60 40 20 Running of 1/α, MSSM with 1 [(Hu, D) (Hd, D c )] SU(4)c SU(2)L SU(2)R 1/α1 1/α2 1/α3 1/α1 0 5 10 15 20 log (µ [GeV]) Extended MSSM Higgs sector relaxed Higgs bounds (light pseudoscalars) possibly large invisible decay ratio lightest unhiggs: H parity protected dark matter dark matter mix: interesting relic abundance (relaxes all neutralino bounds!) Pair production of unhiggses/unhiggsinos, cascade decays

SUSY Exotics at LHC Gauge couplings run: dg a d log µ = g3 a 16π B 2 a, B a depends on field content Sparticles make couplings unify e.g.: SU(5) SU(3) c SU(2) w U(1) Y Doublet-triplet splitting problem: Proton decay by Higgs partner D Dqq, Dlq Kilian/JR, 2006 60 40 20 Running of 1/α, MSSM with 3 [(Hu, D) (Hd, D c )] SU(4)c SU(2)L SU(2)R 1/α1 1/α2 1/α3 0 5 10 15 20 log (µ [GeV]) (Down-type) Leptoquarks, Leptoquarkinos 3 generations at TeV scale produced in gluon fusion, single production final states: tτ, bντ, tτ,... if flavor symmetry leaves traces: gq Dl enhanced, decays tµ, te Extended neutralino sector like in NMSSM