CONTINUOUS REINHARDT DOMAINS PROBLEMS ON PARTIAL JB*-TRIPLES



Similar documents
FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

Let H and J be as in the above lemma. The result of the lemma shows that the integral

Geometrical Characterization of RN-operators between Locally Convex Vector Spaces

Finitely Additive Dynamic Programming and Stochastic Games. Bill Sudderth University of Minnesota

1. Let X and Y be normed spaces and let T B(X, Y ).

INTEGRAL OPERATORS ON THE PRODUCT OF C(K) SPACES

and s n (x) f(x) for all x and s.t. s n is measurable if f is. REAL ANALYSIS Measures. A (positive) measure on a measurable space

MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL

BANACH AND HILBERT SPACE REVIEW

Analytic cohomology groups in top degrees of Zariski open sets in P n

The Positive Supercyclicity Theorem

FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 2. OPERATORS ON HILBERT SPACES

Lecture Notes on Measure Theory and Functional Analysis

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

16.3 Fredholm Operators

Introduction to Topology

Metric Spaces. Chapter Metrics

Notes on metric spaces

MEASURE AND INTEGRATION. Dietmar A. Salamon ETH Zürich

Some representability and duality results for convex mixed-integer programs.

1. Let P be the space of all polynomials (of one real variable and with real coefficients) with the norm

9 More on differentiation

KATO S INEQUALITY UP TO THE BOUNDARY. Contents 1. Introduction 1 2. Properties of functions in X 4 3. Proof of Theorem

1 Norms and Vector Spaces

How To Prove The Dirichlet Unit Theorem

No: Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis

Killer Te categors of Subspace in CpNN

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

Asymptotic Behaviour and Cyclic Properties of Tree-shift Operators

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction

ALMOST COMMON PRIORS 1. INTRODUCTION

Shape Optimization Problems over Classes of Convex Domains

Separation Properties for Locally Convex Cones

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

Lecture 1: Schur s Unitary Triangularization Theorem

Row Ideals and Fibers of Morphisms

arxiv:math/ v1 [math.fa] 28 Nov 2003 Niels Grønbæk

Regression With Gaussian Measures

Finite dimensional C -algebras

Hedging bounded claims with bounded outcomes

NOTES ON LINEAR TRANSFORMATIONS

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product

FINITE DIMENSIONAL ORDERED VECTOR SPACES WITH RIESZ INTERPOLATION AND EFFROS-SHEN S UNIMODULARITY CONJECTURE AARON TIKUISIS

JORDAN WEAK AMENABILITY AND ORTHOGONAL FORMS ON JB -ALGEBRAS

Finite dimensional topological vector spaces

Duality of linear conic problems

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Chapter 5. Banach Spaces

Two-Stage Stochastic Linear Programs

Non-Arbitrage and the Fundamental Theorem of Asset Pricing: Summary of Main Results

Some other convex-valued selection theorems 147 (2) Every lower semicontinuous mapping F : X! IR such that for every x 2 X, F (x) is either convex and

1 = (a 0 + b 0 α) (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

SINTESI DELLA TESI. Enriques-Kodaira classification of Complex Algebraic Surfaces

Complex geodesics in convex tube domains

Inner Product Spaces

17. Inner product spaces Definition Let V be a real vector space. An inner product on V is a function

How To Prove The Cellosauric Cardinal Compactness (For A Cardinal Cardinal Compact)

Matrix Representations of Linear Transformations and Changes of Coordinates

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

A CHARACTERIZATION OF C k (X) FOR X NORMAL AND REALCOMPACT

Metric Spaces. Chapter 1

Chapter 2. Parameterized Curves in R 3

Orthogonal Diagonalization of Symmetric Matrices

arxiv: v1 [math.fa] 10 Apr 2008

Erdős on polynomials

MATH1231 Algebra, 2015 Chapter 7: Linear maps

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)

Associativity condition for some alternative algebras of degree three

An elementary proof of Wigner's theorem on quantum mechanical symmetry transformations

Determining a Semisimple Group from its Representation Degrees

POLYTOPES WITH MASS LINEAR FUNCTIONS, PART I

Section Inner Products and Norms

CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC. 1. Introduction

L q -solutions to the Cosserat spectrum in bounded and exterior domains

On the representability of the bi-uniform matroid

Math 241, Exam 1 Information.

DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

Degrees of freedom in (forced) symmetric frameworks. Louis Theran (Aalto University / AScI, CS)

Finite Dimensional Hilbert Spaces and Linear Inverse Problems

NORMAL FORMS, STABILITY AND SPLITTING OF INVARIANT MANIFOLDS II. FINITELY DIFFERENTIABLE HAMILTONIANS ABED BOUNEMOURA

Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization

The analysis of Toeplitz operators, commutative Toeplitz algebras and applications to heat kernel constructions

8.1 Examples, definitions, and basic properties

Mathematical Physics, Lecture 9

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product

Some stability results of parameter identification in a jump diffusion model

Factoring Cubic Polynomials

Orthogonal Projections and Orthonormal Bases

A survey on multivalued integration 1

1 Variational calculation of a 1D bound state

ISU Department of Mathematics. Graduate Examination Policies and Procedures

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

Functional Analysis II Final Test, Funktionalanalysis II Endklausur,

THE DIMENSION OF A CLOSED SUBSET OF R n AND RELATED FUNCTION SPACES

Transcription:

CONTINUOUS REINHARDT DOMAINS PROBLEMS ON PARTIAL JB*-TRIPLES László STACHÓ Bolyai Institute Szeged, Hungary stacho@math.u-szeged.hu www.math.u-szeged.hu/ Stacho 13/11/2008, Granada László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 1 / 19

PARTIAL JB*-TRIPLES (PJT) (E, E 0, {...}) E Banach with. E 0 closed subspace, {...} : E E 0 E E cont. D (a, b) : x {abx}, a, b E 0 {xay} symmetric bilinear in x, y, conjugate-linear in a id (a, a) Der(E, E 0, {...}), a E 0 Jordan identity {xa{xbx}} = {{aax}bx} D ( (a, a) Her(E, ). ) with Sp(D (a, a)) 0 E0, E 0, {...} E 3 JB*-triple 0 László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 2 / 19

PARTIAL JB*-TRIPLES (PJT) (E, E 0, {...}) E Banach with. E 0 closed subspace, {...} : E E 0 E E cont. D (a, b) : x {abx}, a, b E 0 {xay} symmetric bilinear in x, y, conjugate-linear in a id (a, a) Der(E, E 0, {...}), a E 0 Jordan identity {xa{xbx}} = {{aax}bx} D ( (a, a) Her(E, ). ) with Sp(D (a, a)) 0 E0, E 0, {...} E 3 JB*-triple 0 László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 2 / 19

PARTIAL JB*-TRIPLES (PJT) (E, E 0, {...}) E Banach with. E 0 closed subspace, {...} : E E 0 E E cont. D (a, b) : x {abx}, a, b E 0 {xay} symmetric bilinear in x, y, conjugate-linear in a id (a, a) Der(E, E 0, {...}), a E 0 Jordan identity {xa{xbx}} = {{aax}bx} D ( (a, a) Her(E, ). ) with Sp(D (a, a)) 0 E0, E 0, {...} E 3 JB*-triple 0 László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 2 / 19

PARTIAL JB*-TRIPLES (PJT) (E, E 0, {...}) E Banach with. E 0 closed subspace, {...} : E E 0 E E cont. D (a, b) : x {abx}, a, b E 0 {xay} symmetric bilinear in x, y, conjugate-linear in a id (a, a) Der(E, E 0, {...}), a E 0 Jordan identity {xa{xbx}} = {{aax}bx} D ( (a, a) Her(E, ). ) with Sp(D (a, a)) 0 E0, E 0, {...} E 3 JB*-triple 0 László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 2 / 19

CANONICAL PJT OF A CIRCULAR DOMAIN D = e it D, t R circular domain in E = [ inf.carathéodory norm of D at 0 ], E D := aut(d) 0 { } {{ } } compl. hol. vect. fields in D (without loss of gen.) Braun-Kaup-Upmeier 1976:! (E, E D, {...} D ) (Sp ( ) {aa. } D E { D 0 is proved only in 1983!) (a ) } {xax}d x : a E D = aut(d) { } Kaup-Vigué 1990: D E D = symm. points of D Stachó 1990-91: Sp ( {aa. } D ) 0, Any PJT (E, E 0, {...}) is subtriple of some (E, E D, {...} D ) László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 3 / 19

CANONICAL PJT OF A CIRCULAR DOMAIN D = e it D, t R circular domain in E = [ inf.carathéodory norm of D at 0 ], E D := aut(d) 0 { } {{ } } compl. hol. vect. fields in D (without loss of gen.) Braun-Kaup-Upmeier 1976:! (E, E D, {...} D ) (Sp ( ) {aa. } D E { D 0 is proved only in 1983!) (a ) } {xax}d x : a E D = aut(d) { } Kaup-Vigué 1990: D E D = symm. points of D Stachó 1990-91: Sp ( {aa. } D ) 0, Any PJT (E, E 0, {...}) is subtriple of some (E, E D, {...} D ) László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 3 / 19

CANONICAL PJT OF A CIRCULAR DOMAIN D = e it D, t R circular domain in E = [ inf.carathéodory norm of D at 0 ], E D := aut(d) 0 { } {{ } } compl. hol. vect. fields in D (without loss of gen.) Braun-Kaup-Upmeier 1976:! (E, E D, {...} D ) (Sp ( ) {aa. } D E { D 0 is proved only in 1983!) (a ) } {xax}d x : a E D = aut(d) { } Kaup-Vigué 1990: D E D = symm. points of D Stachó 1990-91: Sp ( {aa. } D ) 0, Any PJT (E, E 0, {...}) is subtriple of some (E, E D, {...} D ) László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 3 / 19

CANONICAL PJT OF A CIRCULAR DOMAIN D = e it D, t R circular domain in E = [ inf.carathéodory norm of D at 0 ], E D := aut(d) 0 { } {{ } } compl. hol. vect. fields in D (without loss of gen.) Braun-Kaup-Upmeier 1976:! (E, E D, {...} D ) (Sp ( ) {aa. } D E { D 0 is proved only in 1983!) (a ) } {xax}d x : a E D = aut(d) { } Kaup-Vigué 1990: D E D = symm. points of D Stachó 1990-91: Sp ( {aa. } D ) 0, Any PJT (E, E 0, {...}) is subtriple of some (E, E D, {...} D ) László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 3 / 19

CONSTRUCTION (E, E 0, {...}) PJT, B := Ball 1 (E), B E 0 = D E 0 D ε := a E 0 [ (a ) ] (εb ) {xax} x For ε sufficiently small: D ε bounded circular domain (E, E 0, {...}) subtriple of ( E, E Dε, {...} Dε ) Ψ bounded subgroup in Aut(E, E 0, {...}) = D Ψ-invariant bounded circular domain: (E, E 0, {...}) subtriple of ( E, E D, {...}) László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 4 / 19

CONSTRUCTION (E, E 0, {...}) PJT, B := Ball 1 (E), B E 0 = D E 0 D ε := a E 0 [ (a ) ] (εb ) {xax} x For ε sufficiently small: D ε bounded circular domain (E, E 0, {...}) subtriple of ( E, E Dε, {...} Dε ) Ψ bounded subgroup in Aut(E, E 0, {...}) = D Ψ-invariant bounded circular domain: (E, E 0, {...}) subtriple of ( E, E D, {...}) László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 4 / 19

CONSTRUCTION (E, E 0, {...}) PJT, B := Ball 1 (E), B E 0 = D E 0 D ε := a E 0 [ (a ) ] (εb ) {xax} x For ε sufficiently small: D ε bounded circular domain (E, E 0, {...}) subtriple of ( E, E Dε, {...} Dε ) Ψ bounded subgroup in Aut(E, E 0, {...}) = D Ψ-invariant bounded circular domain: (E, E 0, {...}) subtriple of ( E, E D, {...}) László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 4 / 19

PROBLEM OF BIDUAL FOR A PJT Dineen 1985: D = Ball 1 (E) = (E, ED w, {...} ) with contractive projection P : E U E Barton-Timoney 1985: D symmetric = {...} is separately weakly continuous Genaral D: the proof works for the middle variable only? (E, E w D {...} ) for (E, E D, {...} D ) in general? Continuity properties of {...}? László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 5 / 19

PROBLEM OF BIDUAL FOR A PJT Dineen 1985: D = Ball 1 (E) = (E, ED w, {...} ) with contractive projection P : E U E Barton-Timoney 1985: D symmetric = {...} is separately weakly continuous Genaral D: the proof works for the middle variable only? (E, E w D {...} ) for (E, E D, {...} D ) in general? Continuity properties of {...}? László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 5 / 19

PROBLEM OF BIDUAL FOR A PJT Dineen 1985: D = Ball 1 (E) = (E, ED w, {...} ) with contractive projection P : E U E Barton-Timoney 1985: D symmetric = {...} is separately weakly continuous Genaral D: the proof works for the middle variable only? (E, E w D {...} ) for (E, E D, {...} D ) in general? Continuity properties of {...}? László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 5 / 19

EXTENSION PROBLEM OF INNER DERIVATIONS 0 := Span R { D(a, b) D(b, a) : a, b ED } inner derivations Panou 1990: dim(e) < δ 0 vanishes on E D = δ = 0 Tool: Aut(E, E D, {...} D ) is a compact group (dim(e) < ) Stachó 1996: norm dense grid in E D = similar conclusion Same with quasi-grids (finite subsets of G generate finite dim. closed subtriples) Does every δ 0 0 ED admit a unique extension δ 0 0? In which cases is δ 0 δ 0 continuous? László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 6 / 19

EXTENSION PROBLEM OF INNER DERIVATIONS 0 := Span R { D(a, b) D(b, a) : a, b ED } inner derivations Panou 1990: dim(e) < δ 0 vanishes on E D = δ = 0 Tool: Aut(E, E D, {...} D ) is a compact group (dim(e) < ) Stachó 1996: norm dense grid in E D = similar conclusion Same with quasi-grids (finite subsets of G generate finite dim. closed subtriples) Does every δ 0 0 ED admit a unique extension δ 0 0? In which cases is δ 0 δ 0 continuous? László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 6 / 19

EXTENSION PROBLEM OF INNER DERIVATIONS 0 := Span R { D(a, b) D(b, a) : a, b ED } inner derivations Panou 1990: dim(e) < δ 0 vanishes on E D = δ = 0 Tool: Aut(E, E D, {...} D ) is a compact group (dim(e) < ) Stachó 1996: norm dense grid in E D = similar conclusion Same with quasi-grids (finite subsets of G generate finite dim. closed subtriples) Does every δ 0 0 ED admit a unique extension δ 0 0? In which cases is δ 0 δ 0 continuous? László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 6 / 19

EXTENSION PROBLEM OF INNER DERIVATIONS 0 := Span R { D(a, b) D(b, a) : a, b ED } inner derivations Panou 1990: dim(e) < δ 0 vanishes on E D = δ = 0 Tool: Aut(E, E D, {...} D ) is a compact group (dim(e) < ) Stachó 1996: norm dense grid in E D = similar conclusion Same with quasi-grids (finite subsets of G generate finite dim. closed subtriples) Does every δ 0 0 ED admit a unique extension δ 0 0? In which cases is δ 0 δ 0 continuous? László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 6 / 19

TEST OBJECTS: REINHARDT DOMAINS D C n classical Reinhardt domain: D bounded open connected ( ) and (z 1,..., z n ) D { (u1,..., u n ) : u k z k, 1 k n } D Sunada 1974: Description of Aud(D), E D = [ Hilbert balls ] D, D holomorphically equiv. classical Reinhardt domains = L L(C n ) LD + = D + László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 7 / 19

TEST OBJECTS: REINHARDT DOMAINS D C n classical Reinhardt domain: D bounded open connected ( ) and (z 1,..., z n ) D { (u1,..., u n ) : u k z k, 1 k n } D Sunada 1974: Description of Aud(D), E D = [ Hilbert balls ] D, D holomorphically equiv. classical Reinhardt domains = L L(C n ) LD + = D + László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 7 / 19

GENERALIZED R-DOMAMAINS ( E, Re, ) complex vector lattice, x = max { Re(e it x) : t R } well-defined Complete R-domain: x D {f E : f x } D Barton-Dineen-Timoney 1983: Sunada type theorems in E =[separable Banach space with basis] László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 8 / 19

GENERALIZED R-DOMAMAINS ( E, Re, ) complex vector lattice, x = max { Re(e it x) : t R } well-defined Complete R-domain: x D {f E : f x } D Barton-Dineen-Timoney 1983: Sunada type theorems in E =[separable Banach space with basis] László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 8 / 19

GENERALIZED R-DOMAMAINS ( E, Re, ) complex vector lattice, x = max { Re(e it x) : t R } well-defined Complete R-domain: x D {f E : f x } D Barton-Dineen-Timoney 1983: Sunada type theorems in E =[separable Banach space with basis] László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 8 / 19

CONTINUOUS REINHARDT DOMAINS (CRD) Vigué 1998: E = C(Ω), Ω compact, r : Ω [1, M] lower semicontinuous D = { f E : f (ω) < r(ω), ω Ω } D is symmetric r is continuous, Aut(D)0 = {f E : f (S) = 0} where S := {ω Ω : r(ω) lim η ω r(η)} Definition (Stachó-Zalar, 2003). CRD bounded complete R-domains in commutative C -algebras Recall: talk in Taiwan Kaohsiang 2006. Now: later developments (but no counterexamples) László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 9 / 19

CONTINUOUS REINHARDT DOMAINS (CRD) Vigué 1998: E = C(Ω), Ω compact, r : Ω [1, M] lower semicontinuous D = { f E : f (ω) < r(ω), ω Ω } D is symmetric r is continuous, Aut(D)0 = {f E : f (S) = 0} where S := {ω Ω : r(ω) lim η ω r(η)} Definition (Stachó-Zalar, 2003). CRD bounded complete R-domains in commutative C -algebras Recall: talk in Taiwan Kaohsiang 2006. Now: later developments (but no counterexamples) László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 9 / 19

CONTINUOUS REINHARDT DOMAINS (CRD) Vigué 1998: E = C(Ω), Ω compact, r : Ω [1, M] lower semicontinuous D = { f E : f (ω) < r(ω), ω Ω } D is symmetric r is continuous, Aut(D)0 = {f E : f (S) = 0} where S := {ω Ω : r(ω) lim η ω r(η)} Definition (Stachó-Zalar, 2003). CRD bounded complete R-domains in commutative C -algebras Recall: talk in Taiwan Kaohsiang 2006. Now: later developments (but no counterexamples) László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 9 / 19

CONTINUOUS REINHARDT DOMAINS (CRD) Vigué 1998: E = C(Ω), Ω compact, r : Ω [1, M] lower semicontinuous D = { f E : f (ω) < r(ω), ω Ω } D is symmetric r is continuous, Aut(D)0 = {f E : f (S) = 0} where S := {ω Ω : r(ω) lim η ω r(η)} Definition (Stachó-Zalar, 2003). CRD bounded complete R-domains in commutative C -algebras Recall: talk in Taiwan Kaohsiang 2006. Now: later developments (but no counterexamples) László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 9 / 19

CRD in C 0 (Ω) Henceforth Ω locally compact space E := C 0 (Ω), f = f := max f D CRD in E, (E, E D, {...} D ) PJT Remark: Sunada Ω = {1,..., n}; non-convex Thullen domains D = ( f (1) 2 + f (2) p < 1 ) (0 < p < 1)! Ω 0 open Ω : E D = {f E : f (Ω \ Ω 0 ) = 0}. Remark: Ω 0 = E D = {0} trivial Ω 0 = Ω E D = E symmetric László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 10 / 19

CRD in C 0 (Ω) Henceforth Ω locally compact space E := C 0 (Ω), f = f := max f D CRD in E, (E, E D, {...} D ) PJT Remark: Sunada Ω = {1,..., n}; non-convex Thullen domains D = ( f (1) 2 + f (2) p < 1 ) (0 < p < 1)! Ω 0 open Ω : E D = {f E : f (Ω \ Ω 0 ) = 0}. Remark: Ω 0 = E D = {0} trivial Ω 0 = Ω E D = E symmetric László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 10 / 19

CRD in C 0 (Ω) Henceforth Ω locally compact space E := C 0 (Ω), f = f := max f D CRD in E, (E, E D, {...} D ) PJT Remark: Sunada Ω = {1,..., n}; non-convex Thullen domains D = ( f (1) 2 + f (2) p < 1 ) (0 < p < 1)! Ω 0 open Ω : E D = {f E : f (Ω \ Ω 0 ) = 0}. Remark: Ω 0 = E D = {0} trivial Ω 0 = Ω E D = E symmetric László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 10 / 19

CRD in C 0 (Ω) Henceforth Ω locally compact space E := C 0 (Ω), f = f := max f D CRD in E, (E, E D, {...} D ) PJT Remark: Sunada Ω = {1,..., n}; non-convex Thullen domains D = ( f (1) 2 + f (2) p < 1 ) (0 < p < 1)! Ω 0 open Ω : E D = {f E : f (Ω \ Ω 0 ) = 0}. Remark: Ω 0 = E D = {0} trivial Ω 0 = Ω E D = E symmetric László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 10 / 19

FORMULA FOR {...} D THEOREM.! [ Ω ω µ ω ] : µ ω 0 Radon measure on Ω 0 total mass of µ ω M := sup 0 x,a,y 1 max{xay} {xay}(ω) = 1 2 x(ω) for x, y E, a E D. ay dµ ω + 1 2 y(ω) ax dµ ω Remark: bidual-free. Nevertheless for fine structure: Stachó-Zalar 2003 (symmetric case with bidualization) László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 11 / 19

FORMULA FOR {...} D THEOREM.! [ Ω ω µ ω ] : µ ω 0 Radon measure on Ω 0 total mass of µ ω M := sup 0 x,a,y 1 max{xay} {xay}(ω) = 1 2 x(ω) for x, y E, a E D. ay dµ ω + 1 2 y(ω) ax dµ ω Remark: bidual-free. Nevertheless for fine structure: Stachó-Zalar 2003 (symmetric case with bidualization) László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 11 / 19

FORMULA FOR {...} D THEOREM.! [ Ω ω µ ω ] : µ ω 0 Radon measure on Ω 0 total mass of µ ω M := sup 0 x,a,y 1 max{xay} {xay}(ω) = 1 2 x(ω) for x, y E, a E D. ay dµ ω + 1 2 y(ω) ax dµ ω Remark: bidual-free. Nevertheless for fine structure: Stachó-Zalar 2003 (symmetric case with bidualization) László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 11 / 19

INGREDIENTS OF PROOF ( C0 (Ω), E } {{ } 0, {...} ) with Reinhardt property: E Ψ Aut(E, E 0, {...}) Ψ := { ψ : ψ = 1 } [ f e iφ f ] : D D, φ bounded C(Ω, R) E D C 0 (Ω 0 ) for some Ω 0 open Ω ψ{xax} D = 2{(ψx)ax} D + {x(ψ)a)x} D {xay} D (ω) = 0 if x(ω) = y(ω) = 0. {xay} 0 if x, a, y 0 Villanueva 2002, Riesz type representation for 3-linear φ : E E 0 E E φ = φ 1 φ 2 φ 1, φ 2 0 László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 12 / 19

INGREDIENTS OF PROOF ( C0 (Ω), E } {{ } 0, {...} ) with Reinhardt property: E Ψ Aut(E, E 0, {...}) Ψ := { ψ : ψ = 1 } [ f e iφ f ] : D D, φ bounded C(Ω, R) E D C 0 (Ω 0 ) for some Ω 0 open Ω ψ{xax} D = 2{(ψx)ax} D + {x(ψ)a)x} D {xay} D (ω) = 0 if x(ω) = y(ω) = 0. {xay} 0 if x, a, y 0 Villanueva 2002, Riesz type representation for 3-linear φ : E E 0 E E φ = φ 1 φ 2 φ 1, φ 2 0 László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 12 / 19

INGREDIENTS OF PROOF ( C0 (Ω), E } {{ } 0, {...} ) with Reinhardt property: E Ψ Aut(E, E 0, {...}) Ψ := { ψ : ψ = 1 } [ f e iφ f ] : D D, φ bounded C(Ω, R) E D C 0 (Ω 0 ) for some Ω 0 open Ω ψ{xax} D = 2{(ψx)ax} D + {x(ψ)a)x} D {xay} D (ω) = 0 if x(ω) = y(ω) = 0. {xay} 0 if x, a, y 0 Villanueva 2002, Riesz type representation for 3-linear φ : E E 0 E E φ = φ 1 φ 2 φ 1, φ 2 0 László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 12 / 19

SYMMETRIC PART Stachó-Zalar 2003: D E D = { f C 0 (Ω 0 ) : } ω Ω i m(ω) f (ω) 2 < 1, i I Π D := { Ω i : i I } partition of Ω, m : Ω R + sup #Ω i <, 0 < inf m sup m(η) < i I i I η Ω i µ ω = η Ω i(η) m(η)δ η for ω Ω 0 Remark: Sunada for Ω 0 finite, D E D = [Hilbert balls] László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 13 / 19

SYMMETRIC PART Stachó-Zalar 2003: D E D = { f C 0 (Ω 0 ) : } ω Ω i m(ω) f (ω) 2 < 1, i I Π D := { Ω i : i I } partition of Ω, m : Ω R + sup #Ω i <, 0 < inf m sup m(η) < i I i I η Ω i µ ω = η Ω i(η) m(η)δ η for ω Ω 0 Remark: Sunada for Ω 0 finite, D E D = [Hilbert balls] László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 13 / 19

SYMMETRIC PART Stachó-Zalar 2003: D E D = { f C 0 (Ω 0 ) : } ω Ω i m(ω) f (ω) 2 < 1, i I Π D := { Ω i : i I } partition of Ω, m : Ω R + sup #Ω i <, 0 < inf m sup m(η) < i I i I η Ω i µ ω = η Ω i(η) m(η)δ η for ω Ω 0 Remark: Sunada for Ω 0 finite, D E D = [Hilbert balls] László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 13 / 19

EXTENSION OF INNER DERIVATIONS THEOREM. (E, E 0, {...}) PJT with Reinhardt property = Proof: M δ M δ E0 (δ 0 ) δx := N {a k b k x} k=1 [ N ] N [ ] 2δx Ωi = m(η) a k (η)b k (η) x Ωi + m(η)x(η)b k (η) a k Ωi η Ω i k=1 k=1η Ω i N δx(ω) = a k (ζ)b k (ζ) dµ ω (ζ) x(ω) for ω Ω \ Ω 0 ζ Ω 0 k=1 Continuity of {...} = sup ω Ω µ ω (Ω 0 ) < N δ E0 It suffices: sup a k (ζ)b k (ζ) Const. inf m ζ Ω 0 k=1 László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 14 / 19

EXTENSION OF INNER DERIVATIONS THEOREM. (E, E 0, {...}) PJT with Reinhardt property = Proof: M δ M δ E0 (δ 0 ) δx := N {a k b k x} k=1 [ N ] N [ ] 2δx Ωi = m(η) a k (η)b k (η) x Ωi + m(η)x(η)b k (η) a k Ωi η Ω i k=1 k=1η Ω i N δx(ω) = a k (ζ)b k (ζ) dµ ω (ζ) x(ω) for ω Ω \ Ω 0 ζ Ω 0 k=1 Continuity of {...} = sup ω Ω µ ω (Ω 0 ) < N δ E0 It suffices: sup a k (ζ)b k (ζ) Const. inf m ζ Ω 0 k=1 László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 14 / 19

EXTENSION OF INNER DERIVATIONS THEOREM. (E, E 0, {...}) PJT with Reinhardt property = Proof: M δ M δ E0 (δ 0 ) δx := N {a k b k x} k=1 [ N ] N [ ] 2δx Ωi = m(η) a k (η)b k (η) x Ωi + m(η)x(η)b k (η) a k Ωi η Ω i k=1 k=1η Ω i N δx(ω) = a k (ζ)b k (ζ) dµ ω (ζ) x(ω) for ω Ω \ Ω 0 ζ Ω 0 k=1 Continuity of {...} = sup ω Ω µ ω (Ω 0 ) < N δ E0 It suffices: sup a k (ζ)b k (ζ) Const. inf m ζ Ω 0 k=1 László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 14 / 19

EXTENSION OF INNER DERIVATIONS THEOREM. (E, E 0, {...}) PJT with Reinhardt property = Proof: M δ M δ E0 (δ 0 ) δx := N {a k b k x} k=1 [ N ] N [ ] 2δx Ωi = m(η) a k (η)b k (η) x Ωi + m(η)x(η)b k (η) a k Ωi η Ω i k=1 k=1η Ω i N δx(ω) = a k (ζ)b k (ζ) dµ ω (ζ) x(ω) for ω Ω \ Ω 0 ζ Ω 0 k=1 Continuity of {...} = sup ω Ω µ ω (Ω 0 ) < N δ E0 It suffices: sup a k (ζ)b k (ζ) Const. inf m ζ Ω 0 k=1 László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 14 / 19

PROOF For ω Ω i (i fixed) choose 0 e ω E 0 = C 0 (Ω 0 ): ( 1 = e ω (ω) = max e ω, e ω Ωi \ {ω} ) = 0 2 N δe ω (ω) = [#Ω } {{ } i + 1] m(ω) a ω Ω i } {{ } k (ω)b k (ω) δ E0 ω Ω i k=1 inf m N m(ζ) b k (ζ)a k (ζ) = 2[ e ζ ](ζ) N m(ω) a k (ω)b k (ω) ω Ω i k=1 k=1 k=1 N 2 m(ω) a k (ω)b k (ω) 2 E 0 + E 0 #Ω i + 1 ω Ω i László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 15 / 19

PROOF For ω Ω i (i fixed) choose 0 e ω E 0 = C 0 (Ω 0 ): ( 1 = e ω (ω) = max e ω, e ω Ωi \ {ω} ) = 0 2 N δe ω (ω) = [#Ω } {{ } i + 1] m(ω) a ω Ω i } {{ } k (ω)b k (ω) δ E0 ω Ω i k=1 inf m N m(ζ) b k (ζ)a k (ζ) = 2[ e ζ ](ζ) N m(ω) a k (ω)b k (ω) ω Ω i k=1 k=1 k=1 N 2 m(ω) a k (ω)b k (ω) 2 E 0 + E 0 #Ω i + 1 ω Ω i László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 15 / 19

PROOF For ω Ω i (i fixed) choose 0 e ω E 0 = C 0 (Ω 0 ): ( 1 = e ω (ω) = max e ω, e ω Ωi \ {ω} ) = 0 2 N δe ω (ω) = [#Ω } {{ } i + 1] m(ω) a ω Ω i } {{ } k (ω)b k (ω) δ E0 ω Ω i k=1 inf m N m(ζ) b k (ζ)a k (ζ) = 2[ e ζ ](ζ) N m(ω) a k (ω)b k (ω) ω Ω i k=1 k=1 k=1 N 2 m(ω) a k (ω)b k (ω) 2 E 0 + E 0 #Ω i + 1 ω Ω i László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 15 / 19

PROOF For ω Ω i (i fixed) choose 0 e ω E 0 = C 0 (Ω 0 ): ( 1 = e ω (ω) = max e ω, e ω Ωi \ {ω} ) = 0 2 N δe ω (ω) = [#Ω } {{ } i + 1] m(ω) a ω Ω i } {{ } k (ω)b k (ω) δ E0 ω Ω i k=1 inf m N m(ζ) b k (ζ)a k (ζ) = 2[ e ζ ](ζ) N m(ω) a k (ω)b k (ω) ω Ω i k=1 k=1 k=1 N 2 m(ω) a k (ω)b k (ω) 2 E 0 + E 0 #Ω i + 1 ω Ω i László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 15 / 19

FINE STRUCTURE E = C 0 (Ω), E 0 = C 0 (Ω 0 ), m : Ω 0 R +, 0 < inf m sup m < Π = {Ω i : i I } partition of Ω 0, κ ω sup i I #Ω i < ( 0 Radon measure on I K I open: i K Ω ) i open Ω 0 {xax}(ω) := x(ω) m(ζ)a(ζ)x(ζ) dκ ω (i) i I ζ Ω i { }} { E(Ω, Ω 0, m, Π, κ) := (E, E 0, {...}) with κ ω = δ i(ω) for ω Ω 0 THEOREM. E(Ω, Ω 0, m, Π, κ) subtriple of E, E D, {...} D ) for some CRD D iff 1) Ω 0 ω η Ω i(ω) m(η)f (η) continuous f E 0, 2) ω κ ω weakly continuous László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 16 / 19

FINE STRUCTURE E = C 0 (Ω), E 0 = C 0 (Ω 0 ), m : Ω 0 R +, 0 < inf m sup m < Π = {Ω i : i I } partition of Ω 0, κ ω sup i I #Ω i < ( 0 Radon measure on I K I open: i K Ω ) i open Ω 0 {xax}(ω) := x(ω) m(ζ)a(ζ)x(ζ) dκ ω (i) i I ζ Ω i { }} { E(Ω, Ω 0, m, Π, κ) := (E, E 0, {...}) with κ ω = δ i(ω) for ω Ω 0 THEOREM. E(Ω, Ω 0, m, Π, κ) subtriple of E, E D, {...} D ) for some CRD D iff 1) Ω 0 ω η Ω i(ω) m(η)f (η) continuous f E 0, 2) ω κ ω weakly continuous László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 16 / 19

FINE STRUCTURE E = C 0 (Ω), E 0 = C 0 (Ω 0 ), m : Ω 0 R +, 0 < inf m sup m < Π = {Ω i : i I } partition of Ω 0, κ ω sup i I #Ω i < ( 0 Radon measure on I K I open: i K Ω ) i open Ω 0 {xax}(ω) := x(ω) m(ζ)a(ζ)x(ζ) dκ ω (i) i I ζ Ω i { }} { E(Ω, Ω 0, m, Π, κ) := (E, E 0, {...}) with κ ω = δ i(ω) for ω Ω 0 THEOREM. E(Ω, Ω 0, m, Π, κ) subtriple of E, E D, {...} D ) for some CRD D iff 1) Ω 0 ω η Ω i(ω) m(η)f (η) continuous f E 0, 2) ω κ ω weakly continuous László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 16 / 19

FINE STRUCTURE E = C 0 (Ω), E 0 = C 0 (Ω 0 ), m : Ω 0 R +, 0 < inf m sup m < Π = {Ω i : i I } partition of Ω 0, κ ω sup i I #Ω i < ( 0 Radon measure on I K I open: i K Ω ) i open Ω 0 {xax}(ω) := x(ω) m(ζ)a(ζ)x(ζ) dκ ω (i) i I ζ Ω i { }} { E(Ω, Ω 0, m, Π, κ) := (E, E 0, {...}) with κ ω = δ i(ω) for ω Ω 0 THEOREM. E(Ω, Ω 0, m, Π, κ) subtriple of E, E D, {...} D ) for some CRD D iff 1) Ω 0 ω η Ω i(ω) m(η)f (η) continuous f E 0, 2) ω κ ω weakly continuous László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 16 / 19

FINE STRUCTURE E = C 0 (Ω), E 0 = C 0 (Ω 0 ), m : Ω 0 R +, 0 < inf m sup m < Π = {Ω i : i I } partition of Ω 0, κ ω sup i I #Ω i < ( 0 Radon measure on I K I open: i K Ω ) i open Ω 0 {xax}(ω) := x(ω) m(ζ)a(ζ)x(ζ) dκ ω (i) i I ζ Ω i { }} { E(Ω, Ω 0, m, Π, κ) := (E, E 0, {...}) with κ ω = δ i(ω) for ω Ω 0 THEOREM. E(Ω, Ω 0, m, Π, κ) subtriple of E, E D, {...} D ) for some CRD D iff 1) Ω 0 ω η Ω i(ω) m(η)f (η) continuous f E 0, 2) ω κ ω weakly continuous László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 16 / 19

FINE STRUCTURE E = C 0 (Ω), E 0 = C 0 (Ω 0 ), m : Ω 0 R +, 0 < inf m sup m < Π = {Ω i : i I } partition of Ω 0, κ ω sup i I #Ω i < ( 0 Radon measure on I K I open: i K Ω ) i open Ω 0 {xax}(ω) := x(ω) m(ζ)a(ζ)x(ζ) dκ ω (i) i I ζ Ω i { }} { E(Ω, Ω 0, m, Π, κ) := (E, E 0, {...}) with κ ω = δ i(ω) for ω Ω 0 THEOREM. E(Ω, Ω 0, m, Π, κ) subtriple of E, E D, {...} D ) for some CRD D iff 1) Ω 0 ω η Ω i(ω) m(η)f (η) continuous f E 0, 2) ω κ ω weakly continuous László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 16 / 19

FINE STRUCTURE E = C 0 (Ω), E 0 = C 0 (Ω 0 ), m : Ω 0 R +, 0 < inf m sup m < Π = {Ω i : i I } partition of Ω 0, κ ω sup i I #Ω i < ( 0 Radon measure on I K I open: i K Ω ) i open Ω 0 {xax}(ω) := x(ω) m(ζ)a(ζ)x(ζ) dκ ω (i) i I ζ Ω i { }} { E(Ω, Ω 0, m, Π, κ) := (E, E 0, {...}) with κ ω = δ i(ω) for ω Ω 0 THEOREM. E(Ω, Ω 0, m, Π, κ) subtriple of E, E D, {...} D ) for some CRD D iff 1) Ω 0 ω η Ω i(ω) m(η)f (η) continuous f E 0, 2) ω κ ω weakly continuous László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 16 / 19

BIDUAL EMBEDDING Recall: E = C 0 (Ω) C( Ω), Ω Ω compact hyperstonian THEOREM. Let D be a CRD in E = C 0 (Ω). Then there exists a CRD D in E := E C( Ω) such that ( ) 1) (E, E D, {...} D ) is a subtriple of E, ED, {...} D 2) E D is the weak*-closure of E in E 3) {...} D is the separately weak*-continuous extension of {...} D. László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 17 / 19

BIDUAL EMBEDDING Recall: E = C 0 (Ω) C( Ω), Ω Ω compact hyperstonian THEOREM. Let D be a CRD in E = C 0 (Ω). Then there exists a CRD D in E := E C( Ω) such that ( ) 1) (E, E D, {...} D ) is a subtriple of E, ED, {...} D 2) E D is the weak*-closure of E in E 3) {...} D is the separately weak*-continuous extension of {...} D. László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 17 / 19

BIDUAL EMBEDDING Recall: E = C 0 (Ω) C( Ω), Ω Ω compact hyperstonian THEOREM. Let D be a CRD in E = C 0 (Ω). Then there exists a CRD D in E := E C( Ω) such that ( ) 1) (E, E D, {...} D ) is a subtriple of E, ED, {...} D 2) E D is the weak*-closure of E in E 3) {...} D is the separately weak*-continuous extension of {...} D. László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 17 / 19

BIDUAL EMBEDDING Recall: E = C 0 (Ω) C( Ω), Ω Ω compact hyperstonian THEOREM. Let D be a CRD in E = C 0 (Ω). Then there exists a CRD D in E := E C( Ω) such that ( ) 1) (E, E D, {...} D ) is a subtriple of E, ED, {...} D 2) E D is the weak*-closure of E in E 3) {...} D is the separately weak*-continuous extension of {...} D. László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 17 / 19

BIDUAL EMBEDDING Recall: E = C 0 (Ω) C( Ω), Ω Ω compact hyperstonian THEOREM. Let D be a CRD in E = C 0 (Ω). Then there exists a CRD D in E := E C( Ω) such that ( ) 1) (E, E D, {...} D ) is a subtriple of E, ED, {...} D 2) E D is the weak*-closure of E in E 3) {...} D is the separately weak*-continuous extension of {...} D. László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 17 / 19

OWN REFERENCES (CRD) L.L. Stachó, Continuous Reinhardt-domains from a Jordan view point, Studia Math. 185(2), 177-199 (2008). L.L. Stachó, Banach Stone type theorem for lattice norms in C 0 -spaces, Acta Sci. Math. (Szeged) 73, 193-208 (2007). J.M. Isidro - L.L. Stachó, Holomorphic invariants of continuous bounded symmetric Reinhardt domains, Acta Sci. Math. (Szeged) 71, 105-119 (2004). L.L. Stachó and B. Zalar, Symmetric continuous Reinhardt domains, Archiv der Math.(Basel) 81, 50-61 (2003). László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 18 / 19

OWN REFERENCES (PJT) L.L. Stachó, On the classification of bounded circular domains, Proc. R. Ir. Acad. 91A(2), 219-238 (1991). L.L. Stachó, On the spectrum of inner derivations in partial Jordan triples, Math. Scandinavica 66, 242-248 (1990). L.L. Stachó, On the structure of inner derivations in partial Jordan-triple algebras, Acta Sci. Math.(60), 619-636 (1995). László STACHÓ () CONTINUOUS REINHARDT DOMAINS 13/11/2008, Granada 19 / 19