front unit 1 3 back unit



Similar documents
The Beginning Balance for Meal Plan #1 is: $ (Your daily average should be $2.96)

How to change the decimal precision of qty, price and cost in the PROMPT Inventory System

Math 115 Spring 2011 Written Homework 5 Solutions

Instruction scheduling

Domain of a Composition

Exponents, Radicals, and Scientific Notation


A Framework for A Business Intelligence-Enabled Adaptive Enterprise Architecture

Modules Available by Distance Studies and Evening Course Offerings

5. A full binary tree with n leaves contains [A] n nodes. [B] log n 2 nodes. [C] 2n 1 nodes. [D] n 2 nodes.

Binary Search Trees. Data in each node. Larger than the data in its left child Smaller than the data in its right child

Senders and Receivers

PES Institute of Technology-BSC QUESTION BANK

Unified Communications Self Care Portal

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Classification/Decision Trees (II)

Algorithms and Data Structures

Positional Numbering System

Data Structure [Question Bank]

Cours de C++ Utilisations des conteneurs

Representing feature models as class diagrams

Selected Radio Frequency Exposure Limits

OPRC Level II COMMUNICATIONS AND INFORMATION SHARING

Databasesystemer, forår 2005 IT Universitetet i København. Forelæsning 3: Business rules, constraints & triggers. 3. marts 2005

SIMSON Security Incident Management System

Chapter 8 The Enhanced Entity- Relationship (EER) Model

Copyright Bizagi. Change Management Construction Document Bizagi Process Modeler

Using Peer to Peer Dynamic Querying in Grid Information Services

Document Management. For Microsoft Dynamics CRM 2013

136 CHAPTER 4. INDUCTION, GRAPHS AND TREES

hand-e-pix Windows Mobile Client

hp calculators HP 12C Loan Amortizations Amortization The HP12C amortization approach Practice amortizing loans

5-1 NUMBER THEORY: DIVISIBILITY; PRIME & COMPOSITE NUMBERS 210 f8

Container loading by GRASP

Methods Used for Counting

2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]

Completion Time Scheduling and the WSRPT Algorithm

Design of LDPC codes

SUPPORTED ACTIVE DIRECTORY TOPOLOGIES BY LYNC 2013

Home Page. Data Structures. Title Page. Page 1 of 24. Go Back. Full Screen. Close. Quit

Nonparametric tests these test hypotheses that are not statements about population parameters (e.g.,

Workers Compensation. Initial Procedures

Section Composite and Inverse Functions

Basic Use of the TI-84 Plus

SPICE EduGuide EG0015 Security of Administrative Accounts

Rotation Operation for Binary Search Trees Idea:

Analysis of Algorithms I: Optimal Binary Search Trees

#1-12: Write the first 4 terms of the sequence. (Assume n begins with 1.)

Derivatives Math 120 Calculus I D Joyce, Fall 2013

A binary heap is a complete binary tree, where each node has a higher priority than its children. This is called heap-order property

Symantec Control Compliance Suite. Overview

Operating Systems File system mounting, sharing, and protection. File System Mounting

DATA STRUCTURES USING C

14 Databases. Source: Foundations of Computer Science Cengage Learning. Objectives After studying this chapter, the student should be able to:

Array Abstract Data Type

CHAPTER_3 SOFTWARE ENGINEERING (PROCESS MODELS)

Simplification of Radical Expressions

SFTP Server User Login Instructions. Open Internet explorer and enter the following url:

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

Audit of Employee Self-Service Payroll System Access

CumuLogic Load Balancer Overview Guide. March CumuLogic Load Balancer Overview Guide 1

Row Echelon Form and Reduced Row Echelon Form

Theory of Relational Database Design and Normalization

Application of Stacks: Postfix Expressions Calculator (cont d.)

Big Data trifft Industrie Im Internet der Bosch-Dinge und -Dienste

What is a CMS? Why Node.js? Joel Barna. Professor Mike Gildersleeve IT /28/14. Content Management Systems: Comparison of Tools

Project Management Software

Getting Started with Web Based Data Reporting. November, 2005

A permutation can also be represented by describing its cycles. What do you suppose is meant by this?

Flying NZ - Aero Club Safety Management System Checklist

Odd induced subgraphs in graphs of maximum degree three

This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

Microsoft Trusted Root Certificate: Program Requirements

Signs of Substance Abuse in Broward County, Florida

LinkProof And VPN Load Balancing

About Support Center Ciena s Service Ticketing System for Customers. March 2006 (r 1)

Customizing the SSOSessionTimeout.jsp page for Kofax Front Office Server 3.5.2

Recall the process used for adding decimal numbers. 1. Place the numbers to be added in vertical format, aligning the decimal points.

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*

Test Project IT Software Solutions for Business

A simple criterion on degree sequences of graphs

Vantage RADIUS 50. Quick Start Guide Version 1.0 3/2005

Adding Digital Signature and Encryption in Outlook

Define and Configure an Application Request Routing Server Farm

How To Find Out What A Key Is In A Database Engine

Transcription:

GreedyApproximationsofIndependentSetsinLowDegree Magn sm.halld rsson GraphsKiyohitoYoshiharay lemincubicgraphsandgraphsofmaximumdegreethree.thesealgorithmiterativelyselect verticesofminimumdegree,butdierinthesecondaryruleforchoosingamongmanycandidates.westudythreesuchalgorithms,andprovetightperformanceratios,withthebest withthealgorithmwiththebestperformanceratioknownof1:2. algorithmthatgreedilyselectsverticesofminimumhasaperformanceratioatleast1:25on degree-threegraphs,evenifgivenanoracletochooseamongcandidateverticesofminimum degree. Wealsoshowcertaininherentlimitationsinthepowerofthisfamilyofalgorithm:any Weinvestigatethepowerofafamilyofgreedyalgorithmsfortheindependentsetprob- Abstract onebeing9=71:28.allofthesealgorithmsarepracticalandruninlineartime,incontrast AnindependentsetofagraphGisasubsetofverticesinwhichnotwoareadjacent.TheMax 1IndependentSetproblemsisthatofndinganindependentsetofmaximumcardinality.Itis Introduction measuredbytheperformanceratio,orthemaximumratioofthesizeofanoptimalsolution(the alwaysoptimalbutareclosetooptimal.thequalityofanapproximationalgorithmisgenerally toexist.itisthereforeinterestingtoexplorealgorithmsthatproducesolutionsthatarenot oneofthecorenp-hardproblems[4],andthus,polynomialtimeexactalgorithmsareunlikely sizeofthemaximumindependentset)tothesizeofthesolutionfoundbythealgorithm. etal.[1]showedthatitisnp-hardtoobtainaperformanceratiooflessthannforsome >0,wherenisthenumberofvertices.Onspecialclassesofgraphs,however,theproblem doesadmitconstantfactorapproximations. Theindependentsetproblemisknowntobehardtoapproximateongeneralgraphs.Arora followingapaperofhochbaum[9],therehasbeenaurryofresultsontheapproximationof independentsetsinbounded-degreegraphs[3,6,7,2].thecurrentlybestratiosknownare (+3)=5formaximumdegree613[3,2],=6+O(1)forintermediatevaluesof,and Oneimportantsuchclassisthatofbounded-degreegraphs.Afteradecadeofnon-activity O(=loglog)[7,8]forlargevaluesof.. degreeisatmostthree.sincetheindependentsetproblemispolynomialsolvablewhenmaximum degreeistwo,thisproblemcanbethoughtofastheinitialfrontierofnp-hardnessofthe problem.also,manyoftheresultsforhigherdegreesusereductionstolowerdegreecases,in Inthispaperwefocusonacentralcaseofbounded-degreegraphs,namelywhenthemaximum atjapanadvancedinstituteofscienceandtechnologyhokuriku,ibmtokyoresearchlab,andmaxplanck InstitutfuerInformatik. Contactauthor.ScienceInstitute,UniversityofIceland,IS-107Reykjavik,Iceland.Researchpartlyperformed ydepartmentofcomputerscience,tokyoinstituteoftechnology 1

three.theproblemremainsnp-hardandmaxsnp-hard(hardtoapproximatewithinsome casetranslatetoimprovementsforallodddegrees. whichthedegree-threeplaystheroleofthebasiscase[3,7,5,2],andimprovementsforthat xedconstantgreaterthanone)evenunderthesestrongrestrictions. Weadditionallyconsidercubicgraphs,i.e.3-regulargraphs,whereallverticesareofdegree thatattainsaperformanceratioof1:25.thishasrecentlybeenbroughtdownto1:2byberman graphs.hochbaum[9]presentedanalgorithmwitha1:5ratio,thatrunsintimeproportional tobipartitematchingoro(n1:5).bermanandf rer[3]gaveapowerfullocalsearchapproach Letusreviewtheknownresultsaboutapproximatingindependentsetsindegree-three andfujito[2]usingadditionaltricks.thedisadvantageofthisapproachisaphenomenallyhigh analysis[7]thecomplexityappearstobenolessthann50.inresponsetothis,halld rssonand timecomplexity:theanalysisof[3,2]yieldsaboundofatleastn2100,whileevenwithatighter Radhakrishnan[7]gaveascaled-downversionofthelocalsearchapproachof[3]whichrunsin lineartimewithaperformanceratioof1:4.generalizations[5]leadtoa1:33+ratiointime O(exp(1=)n). andrepeatuntilthegraphisempty.thisapproachisnon-deterministicinthechoiceofa vertexofminimumdegree,addthevertextothesolution,removethevertexanditsneighbors, particularvertexofminimumdegree.thebasicalgorithm,selectinganarbitraryminimum Thealgorithmparadigmthatweconsiderinthispaperisthatofgreedyalgorithms:selecta alwayschooseminimum-degreevertices,butwithdierentrulestodecideamongcandidate performanceratioondegree-threegraphswasshowntobe5=3. degreevertex,wasanalyzedindetailbyhalld rssonandradhakrishnan[6].inparticular,the vertices.typically,thealgorithmsattempttoeliminatemorethantheminimumnumberof edgesineachreduction,orpreferreductionsthatcomparewellwiththeoptimalsolution.in Weconsiderheregreedyalgorithmswithmoregoal-directedselectionrules.Thealgorithms summary,ourresultsareasfollows: 1.Thebasicgreedyalgorithmattainsaperformanceratioof3=2oncubicgraphs.Further 2.Amodiedgreedyalgorithmispresentedthatattainsaratioof3=2on(general)degreethreegraphs.Theratioimprovestoaratiothatapproaches4=3oncubicgraphswithhigh restrictingtheinputtographsofhighoddgirthyieldsnofurtherimprovements. 3.Asecondmodiedgreedyalgorithmispresentedthatattainsaratioof9=71:28on oddgirth. 4.Anygreedyalgorithmisshowntohaveaperformanceratioatleast1:25ondegree-three degree-threegraphs. Thepaperisorganizedintosectionsfollowingtheabovelist. algorithm. graphs.thus,thewholefamilyhaslimitationswhicharenearlymatchedbyoursecond 22.1Notation Weusestandardsymbolsandnotations.TheinputgraphG=(V;E)isassumedtobeof Preliminaries thenumberofvertices,mthenumberofedges,theindependencenumber(i.e.sizeofthe maximumdegreethree,withfurtherrestrictionsexplicitlystatedwheninplace.letndenote 2

optimalindependentset).foravertexv,n(v)denotestheneighborhoodofv,orthesetof adjacentvertices. Adef performanceratioofaisdenedasthemaximumapproximationratiooverallinputgraphs,or denotedbya(g),andtheapproximationratioa(g)isdenedasa(g)def ForanalgorithmAforMaxIndependentSet,thesizeofthesolutionproducedonGis WeletIdenoteaxedbutarbitrarymaximumindependentsetinG.LetOutdenotethe =maxga(g).weareprimarilyinterestedinthelimitofthisvalueasngoestoinnity. =(G)=A(G).The numberofedgeswithbothendpointsinv?i. itisessentialtohaveatonesdisposalagoodupperboundoftheoptimalsolution.thenumber Inordertoanalyzetherelativevalueofaheuristicsolutioncomparedwithanoptimalsolution, OutofedgesoutsidesomemaximumcardinalitysolutionIplaysacrucialrole. 2.2Upperboundingtheoptimalsolution Lemma2.1Foradegree-threegraphG, (G)n?m=3?Out=3: (1) ofendpointsinv?iisatmost3(n?jij).thus, Proof.EachedgehaseitheroneendpointinIorbothendpointsinV?I.Thetotalnumber which,whenrearranged,yieldstheclaim. Inacubicgraph,m=3n=2,andtheinequalitybecomesn=2?Out=3. m3(n?jij)?out; 3Werstconsiderthewell-knownGreedyalgorithm,whichwelabelhereasGreedy.Thealgorithm proceedsalongasequenceofiterationsorreductions,eachofwhichconsistsofthefollowingtwo GreedyAlgorithmonCubicGraphs steps:somevertexofminimumdegreeisaddedtothesolution,andthevertex,itsneighbors,and havebeendeletedfromthegraph.sinceneighborsofaselectedvertexareimmediatelydeleted, allincidentedgesareremovedfromthegraph.thealgorithmterminateswhentheallvertices thesolutionconsistingoftheselectedverticesformaproperindependentset.bymaintaining trackofthedegreesofthevertices,thealgorithmcanbeimplementedino(n+m)time. ondegree-threegraphswasshowntobe5=31:66.abetterratioispossibleinthecaseof cubicgraphs. Greedywasanalyzedforbounded-degreegraphsin[6],whereitsapproximationperformance nected.observethatgreedypicksavertexofmaximumdegreeatmostonce,sincenoproper Theorem3.1TheperformanceratioofGreedyoncubicgraphsis3=2. step.thatis, inducedsubgraphcanberegular.thus,atmostthreeverticesaredeletedinallbuttherst Werstarguetheupperbound.Assumewithoutlossofgeneralitythatthegraphiscon- Min0(n?1)=3: 3

If1or2,thenGreedyn=3;if3or4,thenn=2?1=3byLemma2.1.Ineithercase,the Remark.ItcanbearguedthatGreedyndsanoptimalsolutioninregularbipartitegraphs. performanceratioisatmost3=2. Considerthelastreductionmade.Thedeletedverticesmustformacliqueon1to4vertices. 3=2?3=(2n?2). ByapplyingLemma2.1,thatimpliesaperformanceratioofatmost(n=2?1=3)=((n?1)=3)= graphisconstructedfromthreeunits:frontunit,backunit,andmultiplecopiesofrepetition achainwiththreeedgesbetweenadjacentcopies.thechainisankedontheendsbythefront units.therepetitionunitsareintheformofa12-cyclewiththreecords,andareconnectedin WenowconstructahardgraphforGreedythatshowsthattheaboveratioistight.The andrearunits,bothintheformofacompletebipartitegraphk2;3,withthethreeverticesinone bypicture,infigure1. partitionconnectedtotheendsoftherepetitionunitchain.thegraph,g0,isbestdescribed 2 4 uf vf breakingchoices.thealgorithmstartsbychoosingvfandufofthefrontunit.ontherst Figure1:AhardgraphforGreedy. front unit 1 3 repetitionunititchoosesvertices1through4inthatorder.thisleavesanidenticalgraphless Weindicatetheworst-casebehaviorofGreedybypresentingaparticularsequenceofsymmetry- back unit asinglerepetitionunit.hence,thealgorithmpicksthefourshadedverticesofeachrepetition unit,endingwiththreeverticesfromtherearunit. solutioncontains6`+4.thetotalnumberofverticesis12`+10.hence,theapproximation ratioofgreedyong0is: If`isthenumberofrepetitionunits,thealgorithmnds4`+5verticeswhiletheoptimal 3=2.Observethatthesameholdsevenifthegraphsarerequiredtobetriangle-free. WeconcludethattheperformanceratioofGreedyoncubicgraphsasymptoticallyequals 0(G0)=6`+4 4`+5=32? 2(n+5): 21 4TheworstcasebehaviorofGreedy,asseenwhenappliedtothehardgraphsG0intheprevious section,suggestsadirectionformodifyingthestrategyofthealgorithm.asituationwhere AModiedGreedyAlgorithm Greedyappearstobeweakiswhentherearemanyverticesofminimumdegree.Inthissection, weproposeamodiedversionofgreedy,namedmoreedges,whichconsidersthedegreesof verticesadjacenttoavertexasacriteriaforselectingthevertices.thecriteriais: Whenminimumdegreeistwo,selectwheneverpossibleavertexwithaneighbor ofdegreethree. 4

solution. composedofseveraldisjointcycles.onthatremainingportion,moreedgesobtainsanoptimal Ifnosuchvertexexistsandtheminimumdegreeistwo,thenwecanshowthatthegraphis degree-threegraphs. Theorem4.1TheperformanceratioofMoreEdgesondegree-threegraphsis3=2. Wendthatthismodiedalgorithmyieldsanimprovementoverthe5=3ratioofGreedyon Upperbound Theoperationofthealgorithmcanbebrokenupintoreductions,eachofwhichconsistsof theadditionofasinglevertextothecurrentsolutionandthedeletionofthisandneighboring verticesalongwiththeincidentedges.iftherecursivedescriptionofthealgorithmismade iterative,areductioncorrespondstoasingleiteration.an(i;j)-reductionreferstoonewhere i?1verticesandjedgesaredeleted. 0,0 1,2 1,1 1,3 2,3 2,4 Selected Deleted Incident 2,4 2,5 2,5 2,6 3,6 3,7 3,8 3,9 theirneighbors(whicharealsodeleted)areingrey,andotherincidentverticesareinwhite. TheformofthepossiblereductionsaregiveninFigure2.Theselectedverticesareinblack, Figure2:Theformsofthevariousreductions. nalityindependentsetiforcomparison. (2;4)and(2;5)reductionsappearintwodierentguises. n(r) Weconsiderthefollowingmeasuresofeachreductionr.Here,wexsomemaximumcardi- Out(r)NumberofdeletededgeswithbothendpointsinV?I. e(r) (r) Numberofverticesdeleted Ourprimarycostmeasureofeachreductionrisgivenby: Numberofedgesdeleted NumberofthedeletedverticesthatbelongtoI forout(r),e(r)arelowerbounds,while(r)andf(r)areupperbounds. Table1givesconservativeboundsforthesemeasuresoneachtypeofreduction.Thevalues f(r)=3n(r)?e(r)?out(r)+(r): 5

r(0;0) 1n(r)e(r)Out(r)(r)f(r) (2;4) (2;3) (1;x) 3 2 4310 1y (3;8) (3;7) (3;6) (2;5+)3 8765 1 3 2 1 5 4 Table1:BoundsonmeasuresofthereductionsperformedbyMoreEdges (3;9) 4 9 0 3 6 whichvertexitstartswith.thus,itcausesnoharmifweassumethatitchoosesavertexfor of(2;4).whena(2;4)-reductionoccurs,thegraphnecessarilyconsistsofdisjointcycles.the algorithmwilladdthesamenumberofverticestothesolutionfromagivencycle,nomatter ThevaluesinTable1areeasilyveriedfromFigure2,withtheexceptionofthevalue whichatmostoneneighborbelongstoagivenmaximumindependentset. Theclaimoftheupperboundnowfollowseasilyfromthef-valuesofTable1,andLemma2.1: Lowerbound 6t=Xr6Xrfr=3n?e?Out+4: WeconstructahardgraphforMoreEdgesasinFigure3.Itisachainofsimpleunitswith sixverticeseach.eachunitformsasix-cyclewithonecordbetweenthethirdandthefth vertex.thelastvertexineachunitisalsoadjacenttotherstvertexinthesubsequentunit. Formally,weconstructafamilyofgraphsGq,withverticesverticesvi;1;:::;vi;6andedges (vi;j;vi;j+1);(vi;3;vi;5);(vi0;6;vi0+1;1),wherei=1;:::q,j=1;:::6andi0=1;:::q?1. optimalsolutionwillcontainthesecond,fourthandsixth.onlyonthelastunitwillmoreedges MoreEdgesmaybeassumedtoselecttherstandthethirdvertexofeachunit,whilethe Figure3:InitialportionofahardgraphforMoreEdges. 3=2?(1=n). alsondthreevertices.hence,theperformanceratioofmoreedgesisnobetterthan3q=(2q+1)= Furtherresults Wehavefurtheranalyzedthealgorithmforclassesofcubicgraphs.Inparticular,thealgorithm attainsperformanceratiosof17=121:42oncubicgraphs,29=211:38oncubictriangle-free tightastherearegraphswheretheseratiosoccur.weomitthedescriptionsforreasonsofspace. graphs,andingeneral4=3+1=(9k+3)oncubicgraphsofoddgirth2k+1.thosevaluesare 6

algorithmperformsthefollowingtwotypesoftransformationswheneverpossible. Weconsiderinthissectionastillstrongermemberofthegreedyparadigm.Inparticular,the 5 ASecondImprovedAlgorithm BranchyreductionWhentwoverticesvanduofdegreetwoareadjacent,someoptimal solutionwillcontainexactlyoneofthesevertices.wecantransformthegraphintoa graphg0thatcontainsallverticesbutvanduandhastheotherneighborsofvandu adjacent.toensurethatmulti-edgesdonotappear,weinsistthatnothirdvertexbe adjacenttobothvandu.thesolutionoftheheuristicwillcontaintheheuristicsolution SimplicialreductionAsimplicialvertexisonewhoseneighborhoodformsaclique.Anoptimalsolutioncancontainatmostonevertexfromthisopenneighborhood,henceselecting eectisoptimal. ong0alongwithoneofvandu.thisisacaseofadelayed-commitmentreduction,whose Simplicialreductionsappearas(1;1?3),(2;3?5)and(3;6)-reductions.Branchyreductions onewhosetwoneighborsareadjacent,wheneverpossible. asimplicialvertexisalwaysoptimal.inparticular,whenminimumdegreeistwo,weselect appearas(1;2)-reductions.thesetrickshaveearlierbeenusedin[2]. Simplicial(G) repeat performreductionsinthefollowingorderofpreference: 1.branchy,simplicial,(2;6) end untildone 3.(3;9) 2.(3;8) algorithmcanbeimplementedinlineartime. Bykeepingtrackoftheshapeoftheneighborhoodofeachvertexinthecurrentgraph,the 4=3+1=[5].Further,byusingthisalgorithmasthesubroutinefordegreethreegraphsin previousbestratioclaimedforanalgorithmwithlow-polynomialtimecomplexity[6,7,5]was theschemaof[7](originatingin[3]),weobtainsimilarimprovementsfortheindependentset Thisalgorithmattainsaratioof9=71:28ondegree-threegraphs.Incomparison,the Theorem5.1TheperformanceratioofSimplicialongraphsofmaximumdegreethreeisexactly probleminotherclassesofbounded-degreegraphs. 9=7ẆerstgiveasimpleconstructionforthelowerboundinFigure4.Firstbuildaunitwith Wedevotetherestofthissectionforprovingourmainresult. byaddingonevertexuconnectedtothev1'softhreeunits. andfthandseventh.allverticesareofdegreethree,exceptv1.thehardgraphisobtained sevenvertices,v1;:::v7formingacyclewithchordsbetweensecondandfourth,thirdandsixth, maychooseanyvertexbutuandv1vertices.onetie-breakingchoiceistoselectv2,followedby v7,u,andtwoverticesfromeachofthetworemainingunits,foratotalofseven.ontheother hand,theoptimalsolutionconsistsoftherst,thirdandfthvertexofeachunit,foratotalof Fortheinitialchoice,thealgorithmwillprefera(3;8)-reductionovera(3;9)-reduction,and nine. 7

v 4 v 5 Figure4:AhardgraphforSimplicial. v v 4 5 v 4 v 5 v 3 v 6 v 3 v 6 v 3 v 6 v 2 v 7 v 2 v 7 v 2 v v 1 v1 v isgivenby: 5.1Upperbound UsingthesamemeasuresofthereductionsasforMoreEdges,ourcostmeasureforthisalgorithm 7 1 u problembyconsideringshortsequencesofreductions,oridiomsaswecallthem,andshowing thatthecostmeasureonthesecombinationsbehaveasdesired. Unfortunately,thismeasureistoolargeon(1;1)and(2;3)reductions.Wealleviatethis g(r)=6n(r)?2e(r)?2out(r)+(r): stringcanbelexicallypartitionedintostringsfromarestrictedclass. Claim5.2Thefollowingisanalphabetforthereductionsequenceofthealgorithm: Letusviewtheexecutionofthealgorithmasastringofreductions.Wearguethatthatthis [f(2;6);(3;8);(3;9)gf(1;2);(2;4)g(1;1)],[f(1;3);(2;5);(2;6);(3;9)gf(1;2);(2;4)g(2;3)], f(0;0),(1;2),(1;3),(2;4),(2;5),(2;6),(3;8),(3;9), ThefollowingobservationshavebearingonClaim5.2. [(3;8)f(1;2);(2;4)g(2;3);f(2;5);(2;6)g]. 2.Thepossibilityoftheidiom[(3;9);(2;3);(2;3)]iseliminatedbythethirdcaseofthe 1.A(3;7)-reductionisimpossible,sincesometwooftheverticesinthereductionwouldgive algorithm. risetoa(3;8)-reduction. 4.Followingthesequence[(3;8);(2;3)],theremaininggraphwillbecubicexceptfora 3.Theonlyreductionsthatcanprecedea(2;3)reductionare:(1;3),(2;5),(2;6),or(3;9). Thisignores(1;2)and(2;4)-reductionswhichmaybeinterspersedinvariousways. singlevertex.henceonly(2;5)or(2;6)reductionscanimmediatelyfollow.further, measureofeachreductionintheidiom.further,foranidiom,lett()denotethenumberof Wegeneralizethemeasuresofreductionstomeasuresofidioms,bytakingthesumofthe [(3;8);(2;3);(2;5);(2;3)]isnotpossible. fundamentalidiomsinthealphabet.fortheidiomsthatinclude(2;3),wehaveomittedthe interspersed(1;2)and(2;4)reductions,andcountedthemasindividualidioms.theidioms reductionswithin. involving(1;1)havealsobeencompacted. Table2giveslistslowerboundsforOut()andupperboundsfor()andg()forthe oftheindividualreductionsintheidiom. ThefollowingvaluesaredierentfromTable1oraredierentfromthesumsofthevalues 8

(0;0) (1;1) (1;2) 1n()e()Out()()g()g()=t() (1;3) 012 (2;4) 2 3 (2;5) 4 (2;6) 5 1 7 (3;8) 3 8 7 f(2;6);(2;3)g 4 0 9 f(1;3);(2;3)g f(3;9);(2;3)g 57 9612 1 3 16 17 8 8:5 f(2;5);(2;3)g f(3;8);(2;3);(2;5)g10 f(3;8);(2;3);(2;6)g10 6 16 17 8 32 452 26 27 18 8:66 9 1.andOutfor(2;4)and(2;5):Noticethatonlythelatterformofthesereductionsin Figure2cannowappearduetothepreferencetothedelayed-commitmentreduction. Table2:BoundsonmeasuresofthereductionsperformedbySimplicial 2.Outfor(1;1):Whicheveridioma(1;1)-reductionappearsin,anadditionaledgemustbe 3.TheOutvaluesof(2;5)(2;3)and(3;9)(2;3)andvaluesof(2;6)(2;3)and(3;9)(2;3): Thereasonsareclearwhenwelookatthesubgraphsinducedbythesepairsofreductions. outsideofi. theindependencenumberoroutsideedgesinthesubgraphinducedbytheidiom. vertices,thus,havinginterspersedwithinanidiomdoesnotaectanyargumentabout (1;2)and(2;4)-reductionsyieldoptimalresultsonthesubgraphinducedbythedeleted alwaysatmost9.9t=9xt()xg()6n?2e?2out+7: ThetheoremnowfollowsfromLemma2.1alongwiththefactthatg()=t()inTable2is Greedy,MoreEdgesandSimplicial.Thesetwoalgorithmshaveacommonbasicstrategyofremovingavertexwiththeminimumdegreeinacurrentgraphateachstage.Wecaneasilysee bytheirhardgraphsthattheweaknessesofthegreedyalgorithmsappearwhentheyhaveseveralwaysofchoosingaminimum-degreevertex.ifwecouldgivethesealgorithmssomeadvice suchthattheycouldproceedoptimallywhenevertheyfaceabranchroad,howmuchwouldthe algorithmsimprove?orwouldanalgorithmthatwasgivenperfectadvicenecessarilyndan optimalsolution? 6Intheprevioussections,weconsideredtheperformanceratiosofthreegreedyalgorithms: AlgorithmwithAdvice,Ultimate 9

oracleforselectingamongalternatives.theonlyrequirementisthatthealgorithmmustchoose oneoftheminimumdegreeverticesatanystep.werefertothisultimatealgorithmasultimate, indicatingthatthealgorithmhasinnitevisibility(orarbitrarydistancefromthegivennode) Inthissection,westudythepowerofalgorithmsthataregiventheadditionalbenetofan forchoosingamongminimumdegreevertices. cannotndanoptimalsolution.infact,itcannotguaranteeamuchbetterperformanceratio thanthealgorithmoftheprevioussection.thisrevealsalimitationonthepowerofthefamily ofgreedyalgorithms. WeshallshowthatevenbyemployingUltimate,thereremainsgraphsforwhichUltimate setofh4issix,whereasultimatendsonlyvevertices.oneoptimalsolutionconsistsofthe WerstformasubgraphH4asontheleftofFigure5.Thesizeofthemaximumindependent Figure5:ConstructionofH4,H6,andG1. shadedverticesinfigure5.weconstructapseudobinarytreeh6withfourh4'sasleaves.it byrepeatingthesameoperationq?2times. isillustratedinthecenteroffigure5.weformapseudobinarytreeh2qwith2q(q2)levels HEU(H2q)=1+4HEU(H2(q?1))=1+4+42++4q?2+4q?15=4q?116=3?1=3; Thesizeofthesolutionfoundbythealgorithmis: whilethesizeoftheoptimalsolutionis: Asqgrows,theratioofHEUtoOPTapproaches5=4. OPT(H2q)=2+4OPT(H2(q?1))=2(1+4+42++4q?2)+4q?16=4q?120=3?2=3: rightoffigure5inordertomaketheentiregraphcubic,andcalltheresultinggraphg1. UltimatepicksanyvertexinaH2qattherststep.ItiseasytoverifythatMin1thenproceeds Wecanalsoobtainahardnessresultforregular(i.e.cubic)graphs.JointwoH2qsasonthe optimallyonthathalfofthegraph.thatleavestheotherh2qleft,forwhichthealgorithmwill, byinduction,benon-optimal. AnoptimalsolutionofG1containsallverticesontheevenlevelsofeachH2q.Supposethat Thus, highoddgirth),byreplacingthetrianglesatthebottomofh5byave-cycle(oranappropriately Wecanobtainsimilarhardnessresultsfortriangle-freegraphs(ormoregenerallygraphsof 1(G1)= OPT(H2q)+HEU(H2q)=20+20 2OPT(H2q) 20+16=10 9=1:1: largeoddcycle)andconnectingthepairstogetherasneeded. triangle-freecubicgraphs. Theorem6.1Anygreedyalgorithmthatselectsverticesofminimumdegreemusthaveperformanceratiosatleast:1:25,fordegree-three;1:11,forcubicgraphs;and16=151:06,for 10 H 4 H6 H4 H4 H4 H4 H2q root root H2q

Acknowledgments forinformativecommentsanddiscussions. References WearemuchindebtedtoProfessorOsamuWatanabeandProfessorJaikumarRadhakrishnan [1]S.Arora,C.Lund,R.Motwani,M.Sudan,andM.Szegedy.Proofvericationandhardness [2]P.BermanandT.Fujito.Ontheapproximationpropertiesofindependentsetproblemin ofapproximationproblems.focs1992. [3]P.BermanandM.F rer.approximatingmaximumindependentsetinboundeddegree degree3graphs.wads1995. [4]M.R.GareyandD.S.Johnson.ComputersandIntractibility:AGuidetotheTheoryof graphs.soda1994. [5]M.M.Halld rsson.approximatingdiscretecollectionsvialocalimprovements.soda1995. [6]M.M.Halld rssonandj.radhakrishnan.greedisgood:approximatingindependentsets NP-completeness.Freeman,1979. [7]M.M.Halld rssonandj.radhakrishnan.improvedapproximationsofindependentsetsin bounded-degreegraphs.swat1994. insparseandbounded-degreegraphs.stoc1994.toappearinalgorithmica. [9]D.S.Hochbaum.Ecientboundsforthestableset,vertexcover,andsetpackingproblems. [8]M.M.Halld rssonandj.radhakrishnan.improvedapproximationsofindependentsetsin Disc.AppliedMath.,6:243254,1983. bounded-degreeviasubgraphremoval.nordicj.computing,1(4):475492,1994. 11