F. Roters Abteilung Mikrostrukturphysik und Legierungsdesign f.roters@mpie.de damask@mpie.de 1st International Workshop on Software Solutions for Integrated Computational Materials Engineering Rolduc, June 25 th 2014
Outline Motivation The Material Point Model Homogenization Cup Drawing The Yield Surface The Virtual Laboratory Summary / Outlook
Continuum vs. Microstructure Continuum Mechanics Microstructure (here Polycrystal)
Continuum vs. Microstructure Compression Sample Continuum Mechanics (isotropic) Microstructure (here Crystal Lattice)
Motivation http://www.virtualexplorer.com.au/special/meansvolume/contribs/jessell/labs/02a.mov Crystal Plasticity is allways a multi scale problem!
The Material Point Model solver for equilibrium compatibility F P material point model deformation partitioning & homogenization F P crystallite M elasto-plasticity F e S L p constitutive law elasticity plasticity
Homogenization isostrain (Taylor FC) with relaxation (Taylor RC, Lath, Pancake) grain cluster (LAMEL, GIA, RGC) full field (FEM, FFT)
Homogenization Experimental <111> Pole Figures Texture Component sampling Direct ODF sampling 84000 samples 84000 samples 151200 samples 151200 samples
Homogenization N*/N = 1 N*/N = 1/4 P. Eisenlohr, F. Roters: Computational Materials Science 42 (2008), 670-678 STAT original hybridia STAT IA hybridia
Cup Drawing #----------------------------------- <homogenization> #----------------------------------- [RGC_2x2x2] type RGC Ngrains 8 clustersize 2 2 2 #----------------------------------- <texture> #----------------------------------- [sheet] hybridia texture_sheet.dat
Cup Drawing
Cup Drawing
The Yield Surface Active slip system: τ α = τ crit 6 4 with τ α α T e S 0 S α 0 = m α α 0 n 0 2 bcc 48 slip systems orientation {001}<100> 12 x {110}<111> 12 x {112}<111> 24 x {123}<111> σ 33 /τ krit 0-2 -4-6 -6-4 -2 0 2 4 6 σ /τ 11 krit
The Virtual Laboratory
The Virtual Laboratory Tension 0 (RD) Tension 45 RVE from annealed DP Tension 90 (Querrichtung) Tension biaxial Together with Mercedes, FhG, Volkswagen, Audi, Inpro
Comparison FEM vs. Spectral Method F 23 P. Eisenlohr, M. Diehl, R. A. Lebensohn, F. Roters: International Journal of Plasticity 46 (2013), 37-53
Comparison FEM vs. Spectral Method P. Eisenlohr, M. Diehl, R. A. Lebensohn, F. Roters: International Journal of Plasticity 46 (2013), 37-53
Comparison FEM vs. Spectral Method P. Eisenlohr, M. Diehl, R. A. Lebensohn, F. Roters: International Journal of Plasticity 46 (2013), 37-53
The Virtual Laboratory Numerisches Labor M. Kraska, M. Doig, D. Tikhomirov, D. Raabe, F. Roters: Computational Materials Science 46 (2009), 383-392
Summary / Outlook Crystal Plasticity is a flexible framework multiple constitutive laws for plasticity can be integrated into commercial FEM solvers fast and memory efficient spectral solver too slow for fully coupled component scale simulation can serve as Virtual Laboratory for Yield Surface calibration speed up Crystal Plasticity algorithms develop smart coupling strategies
DAMASK Düsseldorf Advanced MAterial Simulation Kit, DAMASK Available as freeware according to GPL 3 Integrates into MSC.Marc and Abaqus (std. and expl.) Standalone spectral solver Web: http://damask.mpie.de Email: DAMASK@mpie.de