Renewable Energy Laboratory for Engineering Students



Similar documents
Lab 8: DC generators: shunt, series, and compounded.

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

Lab 14: 3-phase alternator.

8 Speed control of Induction Machines

Equipment: Power Supply, DAI, Wound rotor induction motor (8231), Electrodynamometer (8960), timing belt.

Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore.

Motor Fundamentals. DC Motor

Physical Address: City: State: Zip Code:

Equipment: Power Supply, DAI, Synchronous motor (8241), Electrodynamometer (8960), Tachometer, Timing belt.

Principles of Adjustable Frequency Drives

Welcome to Linear Controls Quarterly Training

FREQUENCY CONTROLLED AC MOTOR DRIVE

SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS

UNIVERSITY OF WATERLOO ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT ME269 ELECTROMECHANICAL DEVICES AND POWER PROCESSING.

NATIONAL CERTIFICATE (VOCATIONAL)

Inductance. Motors. Generators

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

Electron S.R.L. A29 ELECTRICAL POWER SYSTEM TRAINERS. Production Transmission Distribution

*ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS

ATTACHMENT F. Electric Utility Contact Information Utility Name. For Office Use Only

NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR

Application for Small Generator Facility Interconnection Tier 2, Tier 3 or Tier 4 Interconnection

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Advance Electronic Load Controller for Micro Hydro Power Plant

SYNCHRONOUS MACHINES

WIND POWER GENERATION TECHNOLOGY Mrs. N.V. Vader Mrs. V.A. Joshi

Coordination Control of a Hybrid AC/DC Microgrid With Various Renewable Energy Sources

INDUCTION REGULATOR. Objective:

Motors and Generators

Synchronous motor. Type. Non-excited motors

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007

Analysis, Calculation and Reduction of Shaft Voltage in Induction Generators

Simulation of VSI-Fed Variable Speed Drive Using PI-Fuzzy based SVM-DTC Technique

A MULTILEVEL INVERTER FOR SYNCHRONIZING THE GRID WITH RENEWABLE ENERGY SOURCES BY IMPLEMENTING BATTERY CUM DC-DC CONERTER

The full wave rectifier consists of two diodes and a resister as shown in Figure

WIND TURBINE TECHNOLOGY

DC Voltage Regulation by Buck Converter Applicable for Stand Alone Micro Hydro Power Generation

Solar Energy Conversion using MIAC. by Tharowat Mohamed Ali, May 2011

Unit 33 Three-Phase Motors

Renewable Energy Applications: Photovoltaic and Wind Energy Conversion Systems (WECS)

Effective: September 10, 2006 Vermont Attachment 1 to Rule Public Service Board Page 1 of 6

Principles and Working of DC and AC machines

ELECTRODYNAMICS 05 AUGUST 2014

MICRO HYDRO POWER PLANT WITH INDUCTION GENERATOR SUPPLYING SINGLE PHASE LOADS

Genetic Algorithm approach to find excitation capacitances for 3- phase smseig operating single phase loads

REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO)

Verification of Short Circuit Test Results of Salient Poles Synchronous Generator

EE0314- POWER ELECTRONICS LAB REFERENCE MANUAL

Chen. Vibration Motor. Application note

Properties of electrical signals

Dually Fed Permanent Magnet Synchronous Generator Condition Monitoring Using Stator Current

Keywords: synchronous generator, synchronous motor, automatic voltage regulator, V- curves, synchronizing power, hunting, excitation system

Direct Current Motors

PacifiCorp Original Sheet No. 476 FERC Electric Tariff, Substitute 6 th Rev Volume No. 11 APPENDIX 2 TO SGIP

Innovative Practices in Optimal Utilization of Solar Energy (Solar Tracking System)

DEIGN OF SIMPLE RECYCLING AC ELECTRICAL ENERGY GENERATION SYSTEM WITH SMALL DC INPUT & HIGH EFFICIENCY WITH GOOD LOAD HANDLING CAPABILITY

A Stable DC Power Supply for Photovoltaic Systems

Transient analysis of integrated solar/diesel hybrid power system using MATLAB Simulink

Equipment: Power Supply, DAI, Transformer (8341), Variable resistance (8311), Variable inductance (8321), Variable capacitance (8331)

Chapter 3 AUTOMATIC VOLTAGE CONTROL

Alternative and Renewable Energy Systems

ELECTRICAL ENGINEERING

Diode Applications. by Kenneth A. Kuhn Sept. 1, This note illustrates some common applications of diodes.

Modeling and Simulation of a Novel Switched Reluctance Motor Drive System with Power Factor Improvement

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

Understanding the Alternator

SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM

Control Strategies of the Doubly Fed Induction Machine for Wind Energy Generation Applications

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Lab 1: DC Circuits. Student 1, Partner : Student 2, student2@ufl.edu

Simulation and Analysis of Parameter Identification Techniques for Induction Motor Drive

AND8008/D. Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE

Technical Guide No High Performance Drives -- speed and torque regulation

The Charging System. Section 5. Charging System. Charging System. The charging system has two essential functions:

DIRECT CURRENT GENERATORS

AN ULTRA-CHEAP GRID CONNECTED INVERTER FOR SMALL SCALE GRID CONNECTION

Relationship between large subject matter areas

Performance Enhancement of Wound Rotor Induction Motor by VSI with Dynamic Capacitor Controlled Rotor Circuit

Power Quality Paper #3

TROUBLESHOOTING PRELIMINARY

People s Physics Book

THIS paper reports some results of a research, which aims to investigate the

Design a Phase Interleaving PFC Buck Boost Converter to Improve the Power Factor

Control Development and Modeling for Flexible DC Grids in Modelica

Hybrid Wind-Fuel Cell Renewable Energy Utilization Scheme for Village Electricity

Request for Payment Instructions Wholesale Distribution Access Tariff (WDAT) Attachment I - GIP

Outline. Turbine Generators. Generator History 3/25/2014

Lecture - 4 Diode Rectifier Circuits

Induction Motor Theory

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier

MULTI-LEVEL INVERTER WITH DC LINK SWITCHES FOR RENEWABLE ENERGY SOURCES

Application Information

Training Systems for Renewable Energies. Acquiring Practical Skills and Project-oriented Expertise

Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor

Solar Energy Discovery Lab

SYNCHRONOUS MACHINE TESTING WITH MOTOR CIRCUIT ANALYSIS INSTRUMENTATION

Smart Grid and Renewable Energy Grid Integration. Jian Sun, Professor and Director Department of ECSE & Center for Future Energy Systems

Online Tuning of Artificial Neural Networks for Induction Motor Control

Transcription:

dspace User Conference 2010 India Sept 24 th 10 Renewable Energy Laboratory for Engineering Students H.T Jadhav, S. D. Joshi Rajarambapu Institute Of Technology ABSTRACT Renewal Energy is now included in the curricula of Engineering Education. There is a need to develop a laboratory for the subject. This paper presents experiments on Renewable Energy based on Wind turbine, Induction Generator and PV solar cell characteristics. The experiments developed are based on readily available equipment in engineering colleges. For further quick development more sophisticated equipment is required. It concludes that dspace can come to the rescue with its potential of rapid prototyping. This will result in reduced time to market 1. INTRODUCTION Energy is a critical input required for development. Fossil fuel reserves in the country are limited and there is a need to develop viable cost effective alternatives. Renewable energy is a possible long term solution for the energy problems. The development of new energy technologies provides a technological challenge. There is a requirement for high quality trained manpower in the energy sector. This also provides scope for engineering innovators/entrepreneurs. Renewal Energy is now included in the curricula of Engineering Education to make the required manpower available. There is a need to develop a laboratory for the subject. This paper presents experiments on Renewable Energy based on Wind turbine, Induction Generator and Photo Voltaic solar cell characteristics. 2. LABORATORY EXPERIMENTS The experiments are designed to use the equipment which is normally available in the Electrical Engineering Department of an Engineering College. There are mainly two types of experiments, Wind Energy based and Solar Energy based. 2.1 WIND TURBINE GENERATOR 2.1.1 Resources -To conduct the experiment single phase ac supply, single phase fan, anemometer, DC turbine generator, load resistance and ac and dc ammeters and voltmeters are required. 2.1.2 Procedure - Referring to Figure1, the single phase fan is the source of wind for the wind generator. The speed of the fan is varied by variable ac supply to change the wind speed. The wind generated drives the wind turbine dc generator. The dc generator is loaded by resistive load. The single phase supply is turned on. Following experiments are conducted. 1. With fixed load resistance and variable wind speed. 2. The speed of the wind generated by the fan is measured by the anemometer. DC output voltage and current of the generator are also measured. Graph is plotted for dc generator voltage Vs wind speed. 3. With fan speed at maximum and variation of load resistance. With fan speed reduced and variation of load resistance 4. Graph is plotted for dc generator voltage Vs current for fixed wind speed in case 2. and 3 above on the same graph. 2.1.3 Learning Outcome- Students learn how the generated power changes with wind speed when the load resistance is constant and how the generated power changes with load when the load is varied by varying load resistance keeping the wind speed constant.

Single Phase AC Supply FAN Wind Turbine dc Generator Ammeter Load Resistance Figure1 2.2 WIND ENERGY GENERATOR EMULATION USING SQUIRREL CAGE INDUCTION GENERATOR FEEDING POWER TO THE MAINS 3 phase ac supply Mechanical Coupling Squirrel Cage Induction Machine Figure 2 2.2.1 Resources- To conduct the experiment separately excited dc machine, squirrel cage induction machine, power analyzer, resistive load on dc machine side, 3 phase autotransformer, three phase diode, dc voltmeter, dc ammeter and tachometer are required. 2.2.2 Procedure-Initially the circuit is connected as shown in Figure2, with connection between dc machine and diode removed. The autotransformer on dc machine side is set to minimum output voltage. The induction motor is started and taken to full speed using the autotransformer on ac machine side. The no load speed is measured with

tachometer. The field winding of the dc machine is energized to check the voltage at the output of the dc machine operating as a generator. The dc machine voltage polarity is noted and the motor voltage is set to a predetermined value. The dc machine is loaded by lamp load to a predetermined load. The power flows from 3 phase ac supply to the lamp load. Both real power and reactive power are noted down from the power analyzer. The lamp load is disconnected. The diode output is now connected to the dc machine terminals so that the cathode of is connected to the positive voltage of the dc generator and anode to the negative. The autotransformer on the dc machine side is adjusted to increase the voltage. Initially the diode remains reverse biased till the voltage exceeds that of the dc generator back emf. The diode voltage is increased so that current flows in the armature on the dc machine in the reverse direction. The armature voltage is increased to set the current to a predetermined value. The readings on the power analyzer are noted down. The tacho- generator indicates that the induction machine rotates at super-synchronous speed. It is noted that the sign of real power is reversed. The power now flows into the 3 phase ac supply on ac side. However the reactive power sign does not change. The mains still supplies the reactive power. Readings are noted down at different speeds and hence loads within the rated values. 2.2.3 Learning Outcome-Students observe and learn that induction machine generates power at super-synchronous speed and how this can be used in wind energy generation. Students learn that although real power is absorbed by the mains, reactive power has to be supplied by the mains. 2.3 STAND-ALONE WIND ENERGY GENERATOR EMULATION USING SQUIRREL CAGE INDUCTION GENERATOR FEEDING POWER TO THE MAINS 3 phase ac supply Lamp Load Mechanical Coupling Squirrel Cage Induction Machine Capacitor Bank Figure 3 2.3.1 Resources-In addition to the resources required in 2.2 above, this experiment requires three phase power factor correction capacitor, and lamp load on induction machine side. 2.3.2 Procedure-From the experiment in 2.2 above, the reactive power measured by the power analyzer is noted. A capacitor bank is now connected between the induction machine and the power analyzer to compensate for the reactive power requirement. The procedure of 2.2.2 above is now repeated. It is observed from the power analyzer that now the reactive power required to be supplied by the mains is reduced and the capacitor bank now supplies it. A lamp load is now connected between the power analyzer and autotransformer as shown in Figure3 and the connection of auto-transformer is removed. The lamps continue to glow as the induction machine continues to work as a generator even after it is disconnected from the ac supply.

2.3.3 Learning Outcome-Students learn that the reactive power required for the induction generator can be supplied from capacitor bank and that with proper supply of reactive power from capacitor bank, the induction generator can work as Standalone Generator in self excited mode. 2.4 WIND ENERGY GENERATOR EMULATION USING SLIP RING INDUCTION GENERATOR WITH ROTOR RESISTANCE CONTROL. Induction Generator using squirrel cage machine has a limitation that it can operate only in a small band above synchronous speed. Energy in a small band of speed range only can be tapped. It is possible to increase the slip by using rotor resistance control and operating the machine at super-synchronous speed. 3 phase ac supply Slip ring Induction Machine 3 phase diode Variable Resistance Figure 4 2.4.1Resourses-To conduct the experiment, separately excited dc machine, slip ring induction machine, power analyzer, resistive load on dc machine side, 3 phase autotransformer, three phase diode, dc voltmeter, dc ammeter, tachometer and rheostat are required. 2.4.2 Procedure-The circuit diagram is shown in Figure4. The procedure is the same as in 2.2.2 Advantage with this system is that the speed range can be increased by increasing the rotor resistance. The speed range over which wind energy can be generated is much wider than that with squirrel cage induction generator. 2.4.3 Learning Outcome-Students learn that the speed range over which wind energy can be recovered is much wider with slip ring motor using rotor resistance compared to squirrel cage induction motor. 2.5 WIND ENERGY GENERATOR EMULATION USING SLIP RING INDUCTION GENERATOR WITH SLIP POWER RECOVERY SCHEME. 2.5.1 Resources-To conduct the experiment, separately excited dc machine, slip ring induction machine, power analyzer, resistive load on dc machine side, 3 phase autotransformer, three phase diode, dc voltmeter, dc ammeter, tachometer and rheostat are required. 2.5.2 Procedure-The circuit diagram is shown in Figure5. The procedure is the same as in 2.4.2 except that the rotor resistance in Figure4 is replaced by line commutated inverter which feeds the rotor power back to the mains.

3 phase ac supply Slip ring Induction Machine 3 phase diode Converter in inverter mode Figure 5 2.5.3 Learning Outcome- Students learn how the doubly fed induction generator works and how wind energy can be converted to electrical energy and fed to the mains both from the stator and the rotor. They learn that the doubly fed induction generator allows larger speed range than squirrel cage induction generator and gives higher yield as power is fed back to the mains both from the stator and the rotor side of the induction machine. 2.6 NONLINEAR CURRENT-VOLTAGE CHARACTERISTICS FOR PV SOLAR CELLS. 2.6.1 Resources-To conduct this experiment, variable single phase ac supply, light bulb, luxmeter, PV solar cell, ac and dc ammeters and voltmeters and load resistance are required. Variable ac source Light Bulb PV solar cell Ammeter Resistive Load Luxmeter Figure6

2.6.2 Procedure-When single phase ac supply to the light bulb is varied light intensity varies. When the light is incident on the PV cell, it converts it to electrical energy. The light intensity is measured using a luxmeter. The experiment is conducted in two parts. 1. The light intensity is fixed at maximum and the load resistance is increased incrementally from zero to one mega ohm and associated dc voltage and current are measured. Two separate graphs are plotted for current Vs voltage and power Vs voltage with voltage on X axis. Maximum power points are identified. 2. The light intensity is reduced to half and the load resistance is increased incrementally from zero to one mega ohm and associated dc voltage and current are measured. Two separate graphs are plotted for current Vs voltage and power Vs voltage with voltage on X axis. Maximum power points are identified. The results of 1 & 2 are superimposed on the same graph with same axis. 2.6.3 Learning Outcome-Students learn the current- voltage and power- voltage characteristics and that there is a maximum power point for the solar cell. They learn the effect of change of light intensity on the characteristics. 3 CONCLUSION Experiments on wind turbine, induction generator and solar cell are presented. There is a scope of further development in the standalone induction generator to use dspace software and control the voltage using variable capacitor and in the doubly fed induction generator where dspace can be used for extending wind power recovery range by replacing diode bridge by a thyristor bridge. Fast development is possible using dspace. ACKNOWLEDGMENTS The authors would like to thank Rajarambapu Institute of Technology, Islampur, Dist: Sangli, Maharashtra for support by providing the laboratory facilities. REFERENCES 1. D J Burmham, J.C.Campbell, S.Santoso, A. Compien,J. Ramos, Developing Wind Power Simulations and Laboratory Experiments for Renewable Energy Courses University of Texas at Austin. 2. WS. Santoso, W. Mack Grady, Developing an upper level undergraduate course on Renewable Energy and Power Systems Power Engieering Society, General Meeting, 2005, IEEE issue date 12 to 16 June, pages 145-149, Vol 1. 3. J.L.Mahtani, P. Sydor, T. Larkowski, Development of dspace control laboratory with experiments on dc motor Control theory and applications centre, Coventry University, U.K. CONTACT http://www.ritindia.edu