ABRF 2004 Poster# P55-S Displacement Chromatography Effects Can Cause Highly Selective Sampling of Peptides During Solid Phase Extraction Cleanup



Similar documents
Guide to Reverse Phase SpinColumns Chromatography for Sample Prep

High-Throughput 3-D Chromatography Through Ion Exchange SPE

An In-Gel Digestion Protocol

Thermo Scientific HyperSep Solid Phase Extraction Method Development Guide

High sensitivity assays using online SPE-LC-MS/MS -How low can you go? Mohammed Abrar Unilabs York Bioanalytical solutions, York, UK

The Theory of HPLC. Gradient HPLC

Separation of Peptides from Enzymatic Digestion on Different Acclaim Columns: A Comparative Study

Purification of reaction mixtures using flash chromatography.

Aspects of industrial purification of peptides using large-scale chromatography. Lars Andersson and Jonas Persson

LUMEFANTRINE Draft proposal for The International Pharmacopoeia (October 2006)

PrepTip. Reverse Phase PrepTip User Guide

Pipette Tips PACKARD BIOSCIENCE MultiPROBE II COMPATIBLE

LC-MS/MS Method for the Determination of Docetaxel in Human Serum for Clinical Research

This handbook presents the basic principles of reversed-phase HPLC for the

Protein Separation Technology

SPE, LC-MS/MS Method for the Determination of Ethinyl Estradiol from Human Plasma

for SolEx TM HRP Cartridges SolEx TM HRP RSLC Columns

Thermo Scientific SOLAµ SPE Plates Technical Guide. Consistent excellence. for bioanalysis

Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography

Bio-Gel P Polyacrylamide Gel Instruction Manual

Gel Filtration Standard

Therapeutic Drug Monitoring of Antiretroviral Drugs with HPLC-MS

Thermo Scientific SOLA SPE cartridges and plates Technical Guide. Join the revolution. unparalleled performance

Reversed Phase Chromatography

Application Note. Authors. Abstract. Automated Peptide Sample Preparation for LC/MS

HiPer Ion Exchange Chromatography Teaching Kit

Solid Phase Extraction Products PAGE: 1. Introduction of Solid Phase Extraction (SPE) Why Choose Nano-Micro Tech SPE

Training Courses 2014 HPLC GC SPE

Application Note. Increasing the activity of monoclonal antibody isoforms by MCSGP. Summary

INSTRUCTIONS Edition AC

A Guide to the Analysis and Purification of Proteins and Peptides by Reversed-Phase HPLC

Determination of Food Dye Concentrations in an Unknown Aqueous Sample Using HPLC

CONFIRMATION OF ZOLPIDEM BY LIQUID CHROMATOGRAPHY MASS SPECTROMETRY

Reversed Phase High Presssure Liquid Chromatograhphic Technique for Determination of Sodium Alginate from Oral Suspension

Affi-Prep Protein A Matrix Instruction Manual

Extraction of Cannabinoids in Marijuana and Edibles by QuEChERS

Fast and Accurate Analysis of Vitamin D Metabolites Using Novel Chromatographic Selectivity and Sample Preparation

Monoclonal Antibody Fragment Separation and Characterization Using Size Exclusion Chromatography Coupled with Mass Spectrometry

Method Development for Size-Exclusion Chromatography of Monoclonal Antibodies and Higher Order Aggregates

Innovative vs Traditional

PhD Theses STUDY OF THE SOLVENT GRADIENT SIMULATED MOVING BED PREPARATIVE LIQUID CHROMATOGRAPHIC PROCESS. Written by Melinda Nagy

PRODUCT INFORMATION Chromalite resins for reverse-phase chromatography, adsorption and SPE

ApplicationNOTE Introduction

Materials for Pharmaceutical Manufacturing

Thermo Scientific Syncronis HPLC Columns. Technical Manual

Oasis HLB Cartridges and 96-Well Plates

SPE and HPLC. Dr Iva Chianella Lecturer in Analytical Chemistry Cranfield Health +44 (0)

Extraction of Epinephrine, Norepinephrine and Dopamine from Human Plasma Using EVOLUTE EXPRESS WCX Prior to LC-MS/MS Analysis

STANFORD UNIVERSITY MASS SPECTROMETRY 333 CAMPUS DR., MUDD 175 STANFORD, CA

# LCMS-35 esquire series. Application of LC/APCI Ion Trap Tandem Mass Spectrometry for the Multiresidue Analysis of Pesticides in Water

Application Note. Separation of three monoclonal antibody variants using MCSGP. Summary

Fast, Reproducible LC-MS/MS Analysis of Dextromethorphan and Dextrorphan

A Guide to HPLC and LC-MS Buffer Selection

Electrospray Ion Trap Mass Spectrometry. Introduction

ENrich SEC 70 ENrich SEC 650 High-Resolution Size Exclusion Columns Instruction Manual

S olid Ph ase Extraction (SP E) Method:

Application Note. Determination of Nitrite and Nitrate in Fruit Juices by UV Detection. Summary. Introduction. Experimental Sample Preparation

An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols.

Certificate of Analysis

SUCRALOSE. White to off-white, practically odourless crystalline powder

Application Note. Purifying common light-chain bispecific antibodies using MCSGP. Summary

Diffusion and Fluid Flow

DETERMINATION OF SEVEN WATER-SOLUBLE VITAMINS IN TARHANA, A TRADITIONAL TURKISH CEREAL FOOD, BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY

How To Use An Acquity Qda Detector

Simultaneous determination of aspartame, benzoic acid, caffeine, and saccharin in sugar-free beverages using HPLC

α-cyclodextrin SYNONYMS α-schardinger dextrin, α-dextrin, cyclohexaamylose, cyclomaltohexaose, α- cycloamylase

[ Care and Use Manual ]

The basic division explosives for forensic purposes is shown in Fig. 1

Rapid Separation and Detection of Amino Acids by HPLC-HPIMS TM

Experiment 5: Column Chromatography

Capillary HPLC Introduction

Retention Parameters in Column Chromatography

Thermo Scientific Mass Spectrometric Immunoassay (MSIA)

Process-scale purification of monoclonal antibodies polishing using Capto Q

Structural Analysis of Labeled N-Glycans from Proteins by LC-MS/MS Separated Using a Novel Mixed-Mode Stationary Phase

POROS CaptureSelect affinity columns for rapid, small-scale purification and sample preparation of recombinant proteins

Two-Dimensional Gel Electrophoresis (2-DGE)

MEPS - Micro Extraction by Packed Sorbent Online SPE for GC and LC sample preparation - Extraction to injection in a single process

HEXANES. Insoluble in water, soluble in ether, alcohol, and acetone. Neutral to methyl orange (ph indicator) Not more than 0.

Ion Exchange Determination of Na+ by Displacement and Zn 2+ Using Preconcentration. Reading: Harris pp , 699

LIQUID CHROMATOGRAPHY HOW MUCH ASPIRIN, ACETAMINOPHEN, AND CAFFEINE ARE IN YOUR PAIN RELIEVER? USING HPLC TO QUANTITATE SUBSTANCES (Revised: )

The Automated SPE Assay of Fipronil and Its Metabolites from Bee Pollen.

EXAMINATION IN COURSE KJ 2053 CHROMATOGRAPHY

Empore. 96-Well Solid Phase Extraction Plates. Technical Information. Instructions for Use. Product Characteristics. Product Description

How To Test For Contamination In Large Volume Water

PCBs DETERMINATION IN TRANSFORMER OIL BY SPE AND GAS CHROMATOGRAPHY ANALYSIS

Aurum Ion Exchange Mini Kits and Columns. Instruction Manual

Determination of Tricyclazole in Water Using Solid Phase Extraction and Liquid Chromatography

Chapter 28: High-Performance Liquid Chromatography (HPLC)

Sorbents. [ A] [ A] aq. Strong affinity = large K D. Digital chromatography: all-or. or-nothing LC mechanism to extremes K =

Continuous Chromatography for Monoclonal Antibody Purification from Cell Culture Supernatant

Marmara Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü / Biyokimya Anabilim Dalı PURIFICATION AND CHARACTERIZATION OF PROTEINS

Analysis of the Vitamin B Complex in Infant Formula Samples by LC-MS/MS

A Novel Approach to Low Volume Sample Preparation

The Essential CHROMacademy Guide. Mobile Phase Optimization Strategies for Reversed Phase HPLC

Peptide synthesis, radiolabelling and radiochemical analysis

Method Development of LC-MS/MS Analysis of Aminoglycoside Drugs: Challenges and Solutions

Transcription:

ABRF 2004 Poster# P55-S Displacement Chromatography Effects Can Cause Highly Selective Sampling of Peptides During Solid Phase Extraction Cleanup by Andrew J. Alpert PolyLC Inc./ 9151 Rumsey Road, ste. 180/ Columbia, MD 21045 USA/ PolyLC@aol.com and Ashok K. Shukla Glygen Corp./ Rte. 108/ Columbia, MD 21045 USA/ info@glygen.com INTRODUCTION Small solid-phase extraction cartridges are frequently used to capture and process peptide samples, especially for desalting prior to analysis by mass spectrometry. Millipore Corp. pioneered this field with the ZipTip product line. Other companies have since introduced small cartridges for similar applications. While evaluating one such alternative design, we observed an unexpectedly high degree of selectivity in peptide binding from complex mixtures. This poster explores the cause of the selectivity and how to avoid it if desired.

MATERIALS AND METHODS SPE Cartridges: NuTip and TopTip cartridges were products of Glygen Corp. (Columbia, MD). NuTip cartridges have the stationary phase embedded in the walls with an open channel in the middle, while TopTips are miniature packed beds with a fritless design; the slit at the bottom permits liquid to exit but not the packing material. The NuTips used here, for samples 10-200 µl, contained either C-18 coated silica (item# NT200C18) or graphitic carbon (item# NT200CAR) for reversed-phase chromatography (RPC). The TopTips used here (item# TT200HEA), also for samples 10-200 µl, were packed with PolyHYDROXYETHYL Aspartamide, a silica-based material used for hydrophilic interaction chromatography (HILIC) 1. Peptide Samples: Lyophilized tryptic digests of transferrin and ovalbumin were kindly provided by Ron Orlando (Complex Carbohydrate Research Center/ Univ. of Georgia/ Athens, GA). The samples had been reduced and alkylated prior to digestion, which was performed with 1 M urea in an ammonium bicarbonate buffer. Samples were received in the form of a urea-rich gel. HPLC Analysis: Peptides eluted from NuTips or TopTips were analyzed with a PolyHYDROXYETHYL Aspartamide column (PolyLC Inc., Columbia, MD) [item# 204HY0503; 200x4.6-mm; 5-µm, 300-Å]. Except as noted otherwise, the column was operated in the HILIC mode, with a gradient of 85-44% acetonitrile (ACN) in 15 mm triethylamine phosphate buffer, ph 3.0. Peptides elute in order of increasing polarity. This mode was selected because gradients start with a high level of organic solvent; samples eluted from the reversed-phase NuTip cartridges could be injected with no further processing. The HPLC system was the Essence, from Scientific Systems Inc. (State College, PA). Absorbance was monitored at 220 nm. 1 A.J. Alpert, J. Chromatogr. 499 (1990) 177-196.

Urea (1 M) 75 50 SPE OF PEPTIDES: Selective Extraction by Carbon and C18 NuTips = Transferrin tryptic digest (30 µg) = Peptides extracted/released by NT200C18 from 500 µg digest = " " NT200CAR " " = " " (second set of releasing washes) Millivolts 25 0-25 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 Minutes FIGURE 1. Column: PolyHYDROXYETHYL A (item# 204HY0503), HILIC mode. Detection: A 220 Gradient: 40 linear, 85-32% ACN in 15 mm TEAP, ph 2.7

Figure 1. Selective Extraction by Carbon and C-18 NuTips. 500 µg of lyophilized tryptic digest of transferrin was dissolved in 250 µl water, resulting in a solution containing ~ 1-2 M urea. First [top] Chromatogram: The complete digest. This profile is unremarkable. The offscale peak in the void volume is urea; the offscale peak immediately after it is DTT (left over from the reductive alkylation step). The 500-µg solution was aspirated/expelled 50x from a NuTip containing C-18-coated silica. This process was repeated with water (2x 20-µl volumes, aspirated 10x each) to wash out nonadsorbed peptides and urea. The adsorbed peptides were then eluted with 2x 10-µl washes (aspirated 10x each) of 15 mm TEAP, ph 2.7, containing 85% ACN. This process was repeated with a second NuTip and the eluates pooled for analysis. Second Chromatogram: Pooled eluates from the C-18 NuTips. The binding capacity of each tip is apparently 2 µg peptide, judging from comparison with the first chromatogram. However, only a few peptides were retained by the NuTips. Third Chromatogram: NuTips containing graphitic carbon had the same capacity as the C-18 tips and were selective in adsorbing the same few peptides from the complete digest, albeit in somewhat differing ratios. Fourth Chromatogram: The used carbon NuTips from the initial experiment were eluted with a second round of 2x 10 µl releasing washes and the eluates again pooled for analysis. These contained < 10% of the peptide that the first releases did. Everything that could be released, was released. This suggests that the selectivity effects reflect selective adsorption of a small number of peptides rather than selective release of just a few.

FIGURE 2. Selectivity in Elution vs. Displacement Chromatography COLUMN Excess capacity; everything retained. Separation through selective elution. + 3 + 2 + 1 - - - - OVERLOADED SPE CARTRIDGE Capacity limited; the most stronglyretained solutes displace those less strongly-retained. +3 Result: Separation through selective retention. This probably accounts for the observations in Fig. 1. EXAMPLE: Cation-exchange chromatography

DISPLACEMENT EFFECTS IN SPE OF PEPTIDES: [Transferrin Peptide Mix] Selectivity of Adsorption 45 = Transferrin tryptic digest (20 µg) = Peptides extracted from 4 µg digest with NT200C18 (two such extracts pooled) = Same, extracted from 20 µg digest = Same, extracted from 150 µg digest 30 Millivolts 15 0 0 5 10 15 20 25 30 35 FIGURE 3. MINUTES Column: PolyHYDROXYETHYL A (item# 204HY0503), HILIC mode. Detection: A 220 Gradient: 40 linear, 85-44% ACN in 15 mm TEAP, ph 2.7

FIGURE 3. Adsorption Becomes More Selective as Sample Size Increases First Chromatogram: Complete tryptic digest of transferrin Second Chromatogram (peptide content of sample compable to the binding capacity of the NuTip cartridge): The profile of the peptides bound/released is similar to that of the whole mixture. Fourth Chromatogram (peptide content of sample greatly in excess of cartridge capacity): The most strongly adsorbed peptides are present in sufficient quantity to saturate the cartridge and displace all other peptides. Third Chromatogram (intermediate peptide content): The most strongly-retained peptides are adsorbed in their entirety, but some capacity remains to adsorb others as well. The profile resembles that of the complete mixture with a few components bound/released to a much greater extent than the others. FIGURE 4. Displacement Effects with Ovalbumin Digest The selectivity effects observed with the tryptic digest of transferrin are also observed with a digest of ovalbumin. As the amount of peptide in the sample increases, adsorption by a NuTip cartridge becomes more selective.

DISPLACEMENT EFFECTS IN SPE OF PEPTIDES: [Ovalbumin Peptide Mix] Selectivity of Adsorption 20 = Ovalbumin tryptic digest (10 µg) = Peptides extracted from 5 µg digest with NT200C18 (two such extracts pooled) = Same, extracted from 20 µg digest = Same, extracted from 200 µg digest Millivolts 10 0 0 5 10 15 20 25 30 35 MINUTES FIGURE 4. Column: PolyHYDROXYETHYL A (item# 204HY0503), HILIC mode. Detection: A 220 Gradient: 40 linear, 85-44% ACN in 15 mm TEAP, ph 2.7

Urea (offscale) Removal of 1 M Urea from a Tryptic Digest SAMPLE: Transferrin tryptic digest (200 µg) TREATMENT: HILIC-SPE with item# TT200HEA (TopTip ) ANALYSIS: ~ 10 µg; HILIC with a decreasing ACN gradient (TEAP buffer, ph 3, with a PolyHYDROXYETHYL A column) 560 50 Expanded UNTREATED TREATED 420 25 280 Millivolts 0-25 Millivolts 140 0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 Minutes Full scale 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 FIGURE 5. Minutes

FIGURE 5. Successful Removal of Urea from a Whole Digest with a TopTip. TopTip cartridges have much higher capacity than do NuTip cartridges (~ 1 mg vs. 2 µg), and are used to capture and process a whole sample. In this case, 200 µg/100 µl of the tryptic digest of transferrin were mixed with 500 µl ACN and the resulting mixture was passed through the TopTip in several portions. The cartridge was flushed 3x 50 µl with 15 mm ammonium formate (ph 2.7) containing 85% ACN to eliminate urea and DTT. The peptides were then released with 4x 25-µl washes with 15 mm ammonium formate containing 10% ACN and the eluates were pooled. Result: The bound/released peptides have a chromatographic profile similar to that of the starting mixture except that the level of urea is < 3% that in the starting mixture. Since the capacity of the cartridge was sufficient to adsorb all of the peptide, there was no selectivity due to displacement effects. While these results were obtained with a HILIC TopTip cartridge, the same principle would apply to SPE cartridges operating in other modes such as RPC. FIGURE 6. Removal of SDS from a Synthetic Peptide with a TopTip. SDS in the sample ruined its analysis by RPC. A HILIC TopTip succcessfully removed the SDS. The starting solvent, rich in ACN, broke the interaction between SDS and the peptide. The peptide was well-retained by the TopTip but SDS was not. The peptide was then eluted as in Fig. 5. The processed peptide eluted from an RPC column in a sharp peak.

Removal of 300 mm (8.6%) SDS from 3 mm Peptide by SPE-HILIC Sample: Penetratin [RQIKIWFQNRRMKWKK] PENETRATIN PEAK after SPE before SPE SPE Cartridge: TopTip, item# TT200HEA (HILIC mode) HPLC Column: Vydac 218TP104 (C-18); ACN gradient in 0.1% TFA FIGURE 6. (Data courtesy of Britt-Marie Olsson (Stockholm Univ.)

CONCLUSION SPE cartridges such as NuTips can conveniently be used to desalt or otherwise process small amounts of a peptide sample. However, if the sample contains a number of different peptides in a quantity greatly exceeding the binding capacity of the cartridge, then the best-retained peptides can displace those less strongly adsorbed. The resulting adsorbed sample is not likely to be representative of the composition of the whole mixture. This problem can be avoided through the use of a SPE cartridge with a binding capacity exceeding that of the sample. ACKNOWLEDGEMENTS Technical assistance was provided by Jason Martineau. We are grateful to Britt-Marie Olsson (Stockholm U.) for the data in Fig. 6 and to Ron Orlando and James Atwood (CCRC) for the tryptic digests. ABSTRACT Small solid-phase extraction cartridges are used for convenient cleanup of small amounts of peptide mixtures, especially for desalting prior to MS analysis. The assumption is that the peptides adsorbed are representative of the entire mixture. Our data indicate that this assumption is valid if the binding capacity of the cartridge is close to or exceeds the total amount of sample presented to it. If the amount of sample presented is greatly in excess of the cartridge s capacity, though, then peptides that bind with low affinity will be displaced by peptides that bind with high affinity. The consequence is that only two or three peptides may be sampled from a tryptic digest that contains 40-60 peptides. Examples are presented with tryptic digests of transferrin and ovalbumin that contain 1-2 M urea and a peptide sample containing 8.6% SDS, with cleanup via reversed-phase or hydrophilic interaction chromatography.