Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem as possible. Put your answers for each question in a separate blue book, and be sure to put your name and the question number on the cover of the book.
1 Suppose Y 1, Y 2,..., Y n are independent with Y i drawn from a Normal βx i, 1 distribution. Here, β is an unknown parameter and x 1,..., x n are known scalars. Scalar Regression (a) Use the factorization theorem to obtain a sufficient statistic for β. (b) Compute the maximum likelihood estimate of β, call it β. (c) Show that β is unbiased for β and find Var( β). (d) Another unbiased estimator of β is β = ni=1 Y i ni=1 x i. Compute Var( β). (e) Which estimator β or β is preferred. Explain. 2 Let X 1,..., X n be a random sample from the continuous probability distribution with density A Family Affair where 0 < θ <. f(x θ) = { 1 θ e x θ for 0 < x <, 0 otherwise, (a) Find the form of a complete minimal sufficient statistic for θ. (b) Let c > 0 be an arbitrary positive constant and set τ c (θ) = P θ {X 1 c}. Derive the UMVUE for τ c (θ). (c) Consider the estimator τ c = 1 e nc/t for τ c (θ), where T = ni=1 X i. Argue (without actually finding the expected value of τ c ) that τ c is not unbiases for τ c (θ). 2
3 Let X = UΛV T be the singular value decomposition of X, a full rank matrix (rank= k). Assume the standard linear model Y = Xβ + ɛ. Let θ = V T β and θ = V T β, where β is the least squares estimator for β. Fun with Rotations (a) Show that θ θ 2 = β β 2. (b) Find the covariance matrix Σ = Cov( θ). (Hint: it simplifies to a simple quantity.) (c) Assume that ɛ i, for i = 1,..., n, are iid Normal 0, σ 2. Construct a (1 α) confidence band for the vector θ. 4 Let X be a Bernoulli p random variable. (This is a single Bernoulli observation, n = 1.) Assume that we have a Uniform 0, 1 prior for p; that is f(p) = 1 [0,1] (p). A Query from the Good Reverend (a) Suppose we observe X = 1. Find the posterior density and the posterior mean of p. (b) Find a set A = (0, a(x)) such that P{p A(X) X } = 1 α. (Hint: do this separately for the two cases: X = 0 and X = 1.) (c) Find the frequentist coverage probability of the set A in part(b), and comment on how the coverage varies as a function of p. 3
5 Let X i, i = 1, 2,... be a sequence of IID random variables, equal to +1 with probability p, or 1 with probability 1 p q. Let R 0 = 0 and R n = n i=1 X i for n 1. Then R n represents the position at time n of a particle following a random walk. (a) Prove that R n is a Markov chain. (b) Prove that P{R n = r} = pp{r n 1 = r 1} + qp{r n 1 = r + 1}. (c) Prove that P{R n = r} = if r n, and = 0 otherwise. Hint: Consider Y i = 1 2 (1 + X i). ( ) n n+r p n+r n r 2 q 2 2 (d) Use your results from (2) and (3) to prove that ( n r Hint: Consider p = q = 0.5. 6 ) ( = n 1 r 1 ) + ( n 1 r The cumulant generating function of a random variable, X, is defined for u R by Λ X (u) = log Ee ux, ). Random Walks and Pascal s Triangle Large Deviations or the logarithm of the moment generating function. It may take infinite values for some u. (a) Prove the exponential Markov inequality: For any u, P{X a} e ua e Λ X(u) (b) Let X i, i = 1, 2,... be IID copies of X, and S n = n i=1 X i. Show that Λ Sn (u) = nλ X (u). (c) Let X n = n 1 S n. Prove that, for all u 1 n log P{ X n a } ua + Λ X (u) (d) Show that Λ X (0) = 0, always. Suppose that Λ X (u) is finite for all u between d and +d. Show that the distribution of X has exponential tails, meaning there are positive real numbers x 0, c 1, c 2 such that P{ X x} c 1 e c 2x if x > x 0. 4
7 Consider the following discrete-time model of the waiting room at your local hospital Emergency Room. At each time n 1, a number U n of new patients enter the waiting room. Each patient remains in the waiting room for a time that has a Geometric p distributed, at which point they leave to be treated. Let X n denote the total number of patients in the waiting room at time n, including both the new patients U n and the patients still waiting from previous times. You may assume he following: 1. The patient s waiting times are independent of each other and of the U n s. 2. The U n s are independent Poisson λ random variables, with λ > 0. 3. X 0 = 0. 4. If the sum of a patient s arrival time and waiting time equal n + 1, then that patient is not included in the count X n+1. For example, if a patient arrives at time 4 and has waiting time 3, then that patient is included in X 4, X 5, and X 6 but not included in X 7. Note also that for this problem, we are using the version of the Geometric distribution with pmf Stuck in the Waiting Room p(k) = { (1 p) k 1 p for k = 1, 2,... 0 otherwise. (a) Show that the Geometric p distribution above has the memoryless property P{W > j + k W > k} = P{W > j }, for non-negative integers j, k. (b) Define indicators W n,i for i = 1,..., X n that patient i (out of X n in the waiting room at time n) is still waiting at time n + 1 (i.e., counted in X n+1 ). Note that, by the assumptions above, the W n,i are independent and identically distributed random variables. Show that W n,i has a Bernoulli 1 p distribution. 5
(c) Express X n+1 in terms of X n, the W i,n s, and U n+1 and thus show that X = (X n ) n 0 is a Markov chain. (Hint: Your expression will be of the form X n+1 = V n + U n+1, where V n is the number of patients who entered the room before time n + 1 and are still waiting.) (d) What is the state-space of this chain? Give a good argument that this chain is irreducible. (e) Suppose that X n has a Poisson α distribution for some α > 0. Find the distribution of X n+1. (Hint: Start by finding the distribution of V n from the hint in part (c).) (f) Using your answer to part (e), find the stationary distribution of this chain. 6