MYRRHA Injector Design



Similar documents
Activities at the University of Frankfurt (IAP)

Introduction to Superconducting RF (srf)

The BESSY HOM Damped Cavity with Ferrite Absorbers. Review of prototype cavity test results, taperedwaveguidesvshomogenouswaveguides

The RFQ for IFMIF-EVEDA project: status and high-power tests.

Reliability and Availability Aspects of. the IPHI Project

Status of the HOM Damped Cavity for the Willy Wien Ring

HIGH CURRENT OPERATION OF THE ACSI TR30 CYCLOTRON

11th International Computational Accelerator Physics Conference (ICAP) August 19 24, 2012, Rostock-Warnemünde (Germany)

Prologue: smooth approximation

K O M A C. Beam Commissioning of 100-MeV KOMAC Linac. Korea Multi-purpose Accelerator Complex 양 성 자 가 속 기 연 구 센 터

THE ALIGNMENT STRATEGY FOR THE SPIRAL2 SUPERCONDUCTING LINAC CRYOMODULES

RF SYSTEM FOR VEPP-5 DAMPING RING

RF-thermal-structural-RF coupled analysis on the travelling wave disk-loaded accelerating structure

AMI MASCHINENBAU-KOLLOQUIUM

Status of the Diamond Storage Ring RF Systems. Morten Jensen on behalf of Diamond Storage Ring RF Group

Damping Wigglers in PETRA III

Results: Low current ( ) Worst case: 800 MHz, GeV, 4 turns Energy oscillation amplitude 154 MeV, where

Status of High Current Ion Sources. Daniela Leitner Lawrence Berkeley National Laboratory

Large Systems Commissioning

& Tunnel Cross Section

BB-18 Black Body High Vacuum System Technical Description

CAVITY DESIGN REPORT

BEPC UPGRADES AND TAU-CHARM FACTORY DESIGN

A new extraction system for the upgraded AIC-144 cyclotron

Mission: Cure, Research and Teaching. Marco Pullia Cnao design and commissioning

Linac RF Commissioning with the SNS HPRF Systems

Cleaning Methods of SRF Power Couplers. Mircea Stirbet

Principles of Ion Implant

Institute of Accelerator Technologies of Ankara University and TARLA Facility

Spherical Aberration Corrections for an Electrostatic Gridded Lens

MEMS mirror for low cost laser scanners. Ulrich Hofmann

Injection molding equipment

World-first Proton Pencil Beam Scanning System with FDA Clearance

Status of the SOLEIL project Commissioning from Linac to beamlines

Development of High Stability Supports for NSLS-II RF BPMS

Lasers Design and Laser Systems

Precision Miniature Load Cell. Models 8431, 8432 with Overload Protection

Wireless Power Transfer System Design. Julius Saitz ANSYS

ABB Robotics, June IRB 1200 Overview. ABB Group August 21, 2014 Slide 1

Technical Report FP Simple injector for high-current sheet electron beams

Power Rating Simulation of the new QNS connector generation

HDA

Running in Luminosity. Mike Lamont Verena Kain

3 Main Linac. 3.1 Introduction. 3.2 Beam Dynamics II-63

THERMAL ANEMOMETRY ELECTRONICS, SOFTWARE AND ACCESSORIES

Transmissive Optical Sensor with Phototransistor Output

EMC Test Chamber Solutions RF Cable Assemblies and Connectors

SpectraTec II. Polarized Multi-Laser Source BLUE SKY RESEARCH WAVELENGTHS. The SpectraTec II

DEMONSTRATION ACCELERATOR DRIVEN COMPLEX FOR EFFECTIVE INCINERATION OF 99 Tc AND 129 I

Towards large dynamic range beam diagnostics and beam dynamics studies. Pavel Evtushenko

ESS Proton Linac Accelerator Project Leader: Mats Lindroos Roland Garoby Technical Director Ankara - October 6, 2015

Cathode Ray Tube. Introduction. Functional principle

Minimum requirements for the 13 ka splices for 7 TeV operation

Basic Principles of Magnetic Resonance

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Advanced Photon Source. RF Beam Position Monitor Upgrade Robert M. Lill

Projects and R&D activities

BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN )

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction

EM Noise Mitigation in Circuit Boards and Cavities

Current Probes. User Manual

Systems, Inc. Energy Advanced

Current valve. for AC 24 V pulse/pause control of electrical loads up to 30 kw

Thermal Management for Low Cost Consumer Products

Plasma Source. Atom Source, Ion Source and Atom/Ion Hybrid Source

Project X: A multi-mw Proton Source at Fermilab. Steve Holmes Extreme Beam Lecture Series

Experiment 5. Lasers and laser mode structure

Influence of CO2 Bubbling (Carbonation) During Semiconductor Wafer Sawing Process. KP Yan, Reinhold Gaertner, KK Ng

Temperature Sensors. Accessories. for Injection Molding. Types 6192B, 6193B,

FCC JGU WBS_v0034.xlsm

The half cell of the storage ring SESAME looks like: Magnetic length =

COAX Cables Radio Frequency Cables

14.5GHZ 2.2KW CW GENERATOR. GKP 22KP 14.5GHz WR62 3x400V

FIVE PROJECTS OF HIGH RF POWER INPUT COUPLERS & WINDOWS FOR SRF ACCELERATORS*

3D SCANNERTM. 3D Scanning Comes Full Circle. s u n. Your Most Valuable QA and Dosimetry Tools A / B / C. The 3D SCANNER Advantage

18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a

INFRARED MONITORING OF 110 GHz GYROTRON WINDOWS AT DIII D

LABORATORY DETERMINATION OF CALIFORNIA BEARING RATIO

A Quick primer on synchrotron radiation: How would an MBA source change my x-ray beam. Jonathan Lang Advanced Photon Source

THORIUM UTILIZATION FOR SUSTAINABLE SUPPLY OF NUCLEAR ENERGY S. BANERJEE DEPARTMENT OF ATOMIC ENERGY

Application Note 58 Crystal Considerations for Dallas Real-Time Clocks

LLRF. Digital RF Stabilization System

Thermal Storage Unit Using the Triple Point of Hydrogen

Broadband Slotted Coaxial Broadcast Antenna Technology

CHAPTER 6 THERMAL DESIGN CONSIDERATIONS. page. Introduction 6-2. Thermal resistance 6-2. Junction temperature 6-2. Factors affecting R th(j-a) 6-2

10 Project Costs and Schedule

DATA SHEET. TDA1510AQ 24 W BTL or 2 x 12 W stereo car radio power amplifier INTEGRATED CIRCUITS

1. Straight Sections

COPPER BARS FOR THE HALL-HÉROULT PROCESS

Transcription:

MYRRHA Injector Design Horst Klein Dominik Mäder, Holger Podlech, Ulrich Ratzinger, Alwin Schempp, Rudolf Tiede, Markus Vossberg, Chuan Zhang Institute for Applied Physics, Goethe-University Frankfurt am Main 1

Driver Linac Layout 2

Injector Part 0.03 MeV 3 C. Zhang, H. Klein, H. Podlech et al., LINAC 2012, THPB005

ECR Ion Source Pantechnik Monogan M-1000 20 ma capable 45 kv capable emittance measurement (Allison scanner) included delivery and installation I-2013 ε rms : 0.1-0.15 π mm mrad (requested) Courtesy of D. Vandeplassche 4

LEBT Design & Space-Charge Compensation 0.12 T 0.15 T L total =2.3m Courtesy of J.-L. Biarrotte 5

LEBT Beam Dynamics Courtesy of J.-L. Biarrotte 6

Injector Part 300kW 41kW 47kW =388kW 0.03 MeV 94kW 16kW 20kW =130kW ε=0.2 0.22 0.27π mm mrad 7 C. Zhang, H. Klein, H. Podlech et al., LINAC 2012, THPB005

4-Vane Structure vs. 4-Rod Structure Mini Vanes 8

RFQ Rp Values vs. Frequency R p ~ f -1.5 Plot source: MAX_Deliverable_2.1. The value for the IFMIF-EVEDA RFQ was kindly provided by Dr. A. Pisent. 9

CH-DTL Shunt Impedance Z eff ~ β -1 10

Why change the frequency from 352MHz (EUROTRANS) to 176MHz (MAX)? For all RFQs: the value of Rp=U 2 /P is increasing by a factor of ~2.5. Nevertheless the best choice for f 300MHz is the 4-vane RFQ. The low frequencies allow the use of the simple 4-rod RFQ, which has some advantages: the chain of /4 resonators are strongly coupled, resulting in a stable longitudinal field, so for example only 2 plungers are needed for a 4m long RFQ. The outer conductor plays a small role, so it can have a lid, which allows a direct access to the electrodes for mounting and repair, increasing the reliability and availability. It has a compact size, low weight, is relatively easy to manufacture at low cost. And it can be built in a rather short time. Its application allows to reduce the injection energy into the CH-linac to 1.5MeV, which reduces the overall power consumption considerably. 11

RFQ parameters for EUROTRANS & MAX Parameter EUROTRANS MAX SARAF (H+) f [MHz] 352 176 176 I [ma] 5 5 5 Win / Wout [MeV] 0,05 / 3 0,03 / 1.5 0,02 / 1.5 U [kv] 65 40 32,5 Es, max / Ek 1,1 1 0,8 amin [mm] 2,3 2,9 2,7 mmax 1,8 2,3 2,7 gmin [mm] 2,6 3,6 3,7 ε in t., n., rms [π mm mrad] 0,2 0,2 0,175 ε out t., n., rms [π mm mrad] 0,21 / 0,20 0,22 / 0,22 0,19 / 0,19 ε out l., rms [π kev deg] 109 64,6 36 L [m] 4,3 4 3,8 T [%] ~100 ~100 95,5 T 10mA [%] ~100 ~100 92,3 67 (after Rp [kωm] 61 (MWS) SARAF) 67 (meas.) Pc [kw] 300 (MWS, +20%) 94 60 Exp.: 85% @1mA 65% @4mA See Chuan Zhang s talk for more details 12

Several improvements of the RFQ were necessary to fulfill the MYRRHA requirements (CW operation, high reliability and availability) Complete new design of the RFQ structure (e.g. outer conductor, stems inserted from bottom) by A. Schempp, Lit.: Overview of Recent RFQ Projects, Proc. LINAC08, MO302, p.41-43. Together with A. Bechtold (NTG): New methods for production of stems and electrodes, higher precision (~15 m), an improved cooling system, new techniques for production of cooling channels (milling and galvanic copper plating, new rf contacts at the tuning plates, better alignment). 13

SARAF RFQ 14

E-Field and H-Field simulation with MWS 15

RFQ Test Section Length [mm] 532 (432) Stem distance [mm] 97 Electrodelength [mm] 342 Beam axis [mm] 145 Frequency [MHz] 176 Quality factor 4900 Tuner (diameter) [mm] 40 45 mm 40 mm 30 mm 16

Surface Current Power: 25 kw/m (design) Power Test RFQ: 12 kw Thermal losses: 8 kw (simulated) 17

Stems with the new coolingsystem design (NTG) Because of the thermal losses, a very good water cooling system is required to hold the frequency steady during cw-operation.the new cooling system of the stem is split into two paths. Booth sides of the stems are well cooled. In addition the stems have a channel for the electrode cooling. 18

Electrodes with the new coolingsystem design (NTG) 19

Silverplated Tuningplates 20

Flow rate [l/sec] Institut für Angewandte Physik Flow rate measurement (stems) 0.35 Pressure[bar] Flow rate [l/sec] Water speed [m/s] 0,8 0,07 1,04 1,6 0,12 1,73 2,9 0,17 2,48 4,9 0,24 3,45 6,2 0,28 3,96 6,9 0,29 4,20 7,6 0,31 4,40 0.30 0.25 0.20 0.15 0.10 0.05 0.00 Flow rate [l/sec] Poly. (Flow rate [l/sec]) y = -0.0025x 2 + 0.055x + 0.0344 0 2 4 6 8 Pressure [bar] Reynolds Number 4700 8100 11400 16100 18800 19400 20800 21

Expansion measurement accuracy 10 m T [ C] x [mm]} y [mm] z [mm] T ΔT x1 x2 Δx Δy1 Δy2 z1 z2 Δz 20,7 0 95,54 205,52 109,98 - - 181,11 156,17 24,94 30 9,3 95,52 205,52 0,02 0,01 0,01 181,11 156,16 0,01 40 19,3 95,52 205,54 0,04 0,02 0,02 181,13 156,18 0,01 50 29,3 95,52 205,55 0,05 0,04 0,03 181,15 156,19 0,02 Expansioncoefficient [mm/ C*m] Lit: 1,6*10-5 1,7*10-5 0,5*10-5 3,0*10-5 22

Thermal measurement Pressure [bar] Coolingwater in [ C] Coolingwater out [ C] Copper Temperature [ C] Thermal bath [ C] 1,7 19 21,5 27,6 70 3 19 20,65 26 70 5,2 19 20,2 24,5 70 6,5 19 20 23,8 70 7,6 18,7 19,65 23,5 70 dm/dt [l/sec]] c [J/(kg*K]] DT [ C] P [W] 0,12 4182 2,5 1261 0,17 4182 1,65 1220 0,25 4182 1,2 1268 0,28 4182 1 1197 0,30 4182 0,95 1223 Power losses for a single Stem: 1350 W DT K = 1,05 C (for 7,6 bar) 23

Thermal measurements on a single stem Different temperatures during the measurement. The stem was cooled down to nearly water temperature after 30 seconds with a water flow rate of only 0.08 l/s at a water pressure of 1 bar. 24

Thermal simulation with cooling (25 kw/m) 25

26

27

28

29

30

31

32

Injector Part 300kW 41kW 47kW =388kW 0.03 MeV 94kW 16kW 20kW =130kW ε=0.2 0.22 0.27π mm mrad 33 C. Zhang, H. Klein, H. Podlech et al., LINAC 2012, THPB005

CH-DTL parameters for EUROTRANS & MAX EUROTRANS MAX V eff L cell ß avg E a V eff L cell ß avg E a [MV] [m] [MV/m] [MV] [m] [MV/m] RB1 0.19 0.07 0.08 2.79 0.15 0.10 0.06 1.56 RT1 1.16 0.40 0.09 2.91 1.03 0.54 0.06 1.92 RT2 1.30 0.50 0.10 2.59 1.14 0.66 0.08 1.74 RB2 0.47 0.09 0.10 5.23 0.53 0.36 0.09 1.44 SC1 2.54 0.63 0.11 4.00 3.50 0.86 0.10 4.06 SC2 3.22 0.81 0.14 3.99 3.98 0.99 0.13 4.00 SC3 3.74 0.94 0.16 3.99 4.18 1.07 0.16 3.91 SC4 3.76 1.05 0.18 3.57 4.09 1.07 0.18 3.83 See Holger Podlech s talk for more details 34

Transverse Beam Envelopes along the CH-DTL 35 C. Zhang, H. Klein, H. Podlech et al., LINAC 2012, THPB005 See Chuan Zhang s talk for more details

CH-1 Institut für Angewandte Physik Room Temperature CH-Cavities Parameter CH-1 CH-2 Unit Frequency 176 176 MHz Duty factor 100 100 % Z eff 113 100 MW/m U eff 1.03 1.14 MV P c 16.5 18.5 kw Prototype cavity presently under construction RF test up to 40 kw/m 36

Test Results SC CH-Prototype MYRRHA 37

sc CH-Cavities Parameter Unit SC-CH-1 SC-CH-2 SC-CH-3 SC-CH-4 Frequency MHz 176.1 176.1 176.1 176.1 Gap number --- 10 9 8 7 Aperture Diam. mm 30 30 40 40 Average b --- 0.102 0.131 0.157 0.178 L tot mm 916 1060 1129 1127 E a MV/m 3.88 3.71 3.59 3.47 U a MV 3.55 3.93 4.05 3.91 CH3 CH4 CH5 CH6 38

325 MHz CH-Cavity Bellow Tuner Static Tuners Helium Vessel Coupler Flanges 39

217 MHz CH-Cavity Construction has started Helium vessel Preparation flange Inclined end stem Tuner flange Coupler flange Pickup flange 3D-view of the 217 MHz cavity with helium vessel, without tuners Main parameters of the 217 MHz CH-structure Parameter Unit CH-1 Beta 0.059 Frequency MHz 216.816 Gap number 15 Total length mm 687 Cavity diameter mm 409 Cell length mm 40.82 Aperture mm 20 U a MV 3.369 Energy gain MeV 2.97 Accelerating gradient MV/ m 5.1 E p / E a 6.4 B p / E a mt/ (MV/m) 5.4 R/ Q Ω 3320 Static tuner 9 Dynamic bellow tuner 3 40