QUANTIZATION. Outlines. Joseph RONSIN. Definition Scalar quantization. Vector quantization. Definition Distortion Non uniform quantization



Similar documents
Adaptive Fractal Image Coding in the Frequency Domain

Vision Mouse. Saurabh Sarkar a* University of Cincinnati, Cincinnati, USA ABSTRACT 1. INTRODUCTION

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification

Conversion between the vector and raster data structures using Fuzzy Geographical Entities

Effective wavelet-based compression method with adaptive quantization threshold and zerotree coding

Quantization Effects in Digital Filters

Face Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching)

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Imperial College London

An Enhanced Super-Resolution System with Improved Image Registration, Automatic Image Selection, and Image Enhancement

Image Compression of MRI Image using Planar Coding

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

Single and multiple stage classifiers implementing logistic discrimination

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College

Loop Parallelization

An interactive system for structure-based ASCII art creation

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance

Foreground-Object-Protected Depth Map Smoothing for DIBR

NON-CONSTANT SUM RED-AND-BLACK GAMES WITH BET-DEPENDENT WIN PROBABILITY FUNCTION LAURA PONTIGGIA, University of the Sciences in Philadelphia

STATISTICAL DATA ANALYSIS IN EXCEL

Fragility Based Rehabilitation Decision Analysis

Bag-of-Words models. Lecture 9. Slides from: S. Lazebnik, A. Torralba, L. Fei-Fei, D. Lowe, C. Szurka

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

On-Line Fault Detection in Wind Turbine Transmission System using Adaptive Filter and Robust Statistical Features

Nonlinear Time Series Analysis in a Nutshell

Politecnico di Torino. Porto Institutional Repository

L10: Linear discriminants analysis

Rotation Kinematics, Moment of Inertia, and Torque

Production. 2. Y is closed A set is closed if it contains its boundary. We need this for the solution existence in the profit maximization problem.

MACHINE VISION SYSTEM FOR SPECULAR SURFACE INSPECTION: USE OF SIMULATION PROCESS AS A TOOL FOR DESIGN AND OPTIMIZATION

An Integrated Semantically Correct 2.5D Object Oriented TIN. Andreas Koch

A Single-Image Super-Resolution Method for Texture Interpolation

v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

CALL ADMISSION CONTROL IN WIRELESS MULTIMEDIA NETWORKS

CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements

Automated information technology for ionosphere monitoring of low-orbit navigation satellite signals

Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering

Forecasting the Direction and Strength of Stock Market Movement

POLYSA: A Polynomial Algorithm for Non-binary Constraint Satisfaction Problems with and

A Multi-Camera System on PC-Cluster for Real-time 3-D Tracking

Power law distribution of dividends in horse races

Audio Compression Codec Using a Dynamic Gammachirp Psychoacoustic Model And a D.W.T Multiresolution Analysis

Statistical Approach for Offline Handwritten Signature Verification

8 Algorithm for Binary Searching in Trees

Robust Design of Public Storage Warehouses. Yeming (Yale) Gong EMLYON Business School

INSTITUT FÜR INFORMATIK

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek

Binomial Link Functions. Lori Murray, Phil Munz

Characterization of Assembly. Variation Analysis Methods. A Thesis. Presented to the. Department of Mechanical Engineering. Brigham Young University

Ring structure of splines on triangulations

Parallel Numerical Simulation of Visual Neurons for Analysis of Optical Illusion

A Binary Particle Swarm Optimization Algorithm for Lot Sizing Problem

Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006

Set. algorithms based. 1. Introduction. System Diagram. based. Exploration. 2. Index

Preventive Maintenance and Replacement Scheduling: Models and Algorithms

How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence

2008/8. An integrated model for warehouse and inventory planning. Géraldine Strack and Yves Pochet

the Manual on the global data processing and forecasting system (GDPFS) (WMO-No.485; available at

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

The Greedy Method. Introduction. 0/1 Knapsack Problem

ECE544NA Final Project: Robust Machine Learning Hardware via Classifier Ensemble

Project Networks With Mixed-Time Constraints

MONITORING METHODOLOGY TO ASSESS THE PERFORMANCE OF GSM NETWORKS

Cloud simulation. Course SS 06 Simulation and Animation Prof. Dr. R. Westermann Computer Graphics and Visualization Group

where the coordinates are related to those in the old frame as follows.

Implementation of Deutsch's Algorithm Using Mathcad

One-Shot Games for Spectrum Sharing among Co-Located Radio Access Networks

An Interest-Oriented Network Evolution Mechanism for Online Communities

Inter-Ing INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, November 2007.

Calculation of Sampling Weights

Active Learning for Interactive Visualization

A DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATION-BASED OPTIMIZATION. Michael E. Kuhl Radhamés A. Tolentino-Peña

Research Article Enhanced Two-Step Method via Relaxed Order of α-satisfactory Degrees for Fuzzy Multiobjective Optimization

BRNO UNIVERSITY OF TECHNOLOGY

Scale Dependence of Overconfidence in Stock Market Volatility Forecasts

Frequency Selective IQ Phase and IQ Amplitude Imbalance Adjustments for OFDM Direct Conversion Transmitters

Returns to Experience in Mozambique: A Nonparametric Regression Approach

Can Auto Liability Insurance Purchases Signal Risk Attitude?

Projection-based Registration Using a Multi-view Camera for Indoor Scene Reconstruction

Gender Classification for Real-Time Audience Analysis System

Solving Factored MDPs with Continuous and Discrete Variables

Transcription:

QUANTIZATION by Joseph RONSIN Outlnes Scalar quantzaton Dstorton Non unform quantzaton Vector quantzaton

Quantzaton 3 : Dscretsaton of color space One value for a set of values on an nterval Defnng number of ntervals Depends on dsplay (physcal factors) Depends on human vsual propertes (SVH) x Contnuous ampltude Quantzaton Y = Q(x) Dscrete values Quantzaton Topcs: Acquston Processng: reducton of number of grey levels or colors nsde orgnal mage Mnmal Dstorson 4 Interest Reducton of number of bts Dsplayng a pcture wth N bts on a dsplay wth M<N bts Quantzaton types Scalar (lnear or not) Vectoral

Type of mages Dfferent Quantzatons and correspondng types of mages bnary I(x,y) { 0,1 } black whte Monochrome or grey I(x,y) [ a, b ] often a = 0 et b = 55 black whte 5 color RVB I(x,y) = I r (x,y) I v (x,y) I b (x,y) Outlnes Scalar quantzaton 6 Dstorton Non unform quantzaton Vector quantzaton

Scalar Quantzaton : 7 Quantzaton levels q -1 q q +1 Output Qx d -1 d d +1 decson thresholds Input X Q ( x ) q d x 0 mn d x L max f d x d 1 wth 0,..., L 1 x x, x mn max Scalar Quantzaton Other representaton: Quantzaton Characterstc 8 Unform Quantzaton N reconstructon levels Q(x) Output q N/ q d d +1 d N/-1 X : Input

Impossble d affcher l mage. Dstorson Measure of dstorson: objectve crteron 9 For an orgnal mage MxN represented wth B bts dynamc of symbols : B -1 = L x,j and y, pxels of orgnal mage and quantzed mage MSE (Mean Square Error) 1 MSE MN M N 1 j1 x j y j PSNR (Peak Sgnal-to-Nose Rato) PSNR 0log 10 L MSE Non unform leads to ntervals of dfferent szes Adaptaton to dstrbuton of values to quantze Optmal Quantzer Objectve: Fnd best d and q hypothess: optmsaton crteron probablty densty p(x) Crteron of Mean Square Error Non unform Quantzaton Mnmzaton of MSE non unform probablty densty non lnear quantzaton 10

Impossble d affcher l mage. Non unform Quantzaton MSE Mnmzaton MAX Quantzer reconstructon levels: centroïds of areas defned by p(x) and decson regons d 1 d decson thresholds d : n the mddle of lmt values of ntervals Symetry wth 0 ( x q ) p( x) dx 0 0 q q d d d 1 et L 1,,..., 0 L 1,,..., 1 L q q 11 Outlnes Scalar quantzaton 1 Dstorton Non unform quantzaton Vector quantzaton

Vector Quantzaton Prncpe / example 4 color Image Symbols 00 / 01 / 11 / 10 4 color Image Image: Symbols 0/1 13 00 00 00 01 01 00 01 10 11 01 1 1 00 01 10 11 11 01 10 11 11 VECTOR QUANTIZATION Bnary Dctonnary Q = 1 0 0 1 Index choce for the nearest one of current regon Resultng number of bts Let: Image : matrx MxN I(x,y) [ L mn, L max ] Necessary number of bts for representaton of grey levels n L s K 14 So for scalar quantzaton: L = K Total number of bts: b = M x N x K Then for vector quantzaton: blocks m x n p blocks to code M : dctonary sze b = p x log (M)

Bblographe [1] Véronque Coat, Cours et supports de cours, INSA Rennes [] Max Mgnotte, "Tratement d'mages Introducton", support de cours, Unversté de Montréal [3] Grégory Bzarr, "Etude des mécansmes de dégradaton du lumnophore", thèse de doctorat, décembre 003 [4] Sofane Laran, "Percepton et nterprétaton de sectons et blocs ssmques: oculométre et analyse d'mages", Thèse de l'ujf, Mathématques Applquées, Grenoble, 4 Octobre 000. [5] http://www.chusa.jusseu.fr/pedagoge/pcem1/bophysque/opt_phys_a_005.pdf [6] Adelson, «E.H. Lghtness Percepton and Lghtness Illusons». In The New Cogntve Neuroscences, nd ed., M. Gazzanga, ed. Cambrdge, MA: MIT Press, pp. 339-351, (000). [7] Perre Kornprobst, Cours et supports de cours, INRIA [8] M. Burel, C. Obert, «DICOM Quantfcaton vectorelle», 005 [9] Perre MATHIEU, Cours, DEA ARAVIS, Polytech Nce-Sopha 15 MAX Quantzer Decson thresholds and reconstructon Levels for MAX s quantzer Unforme Gaussen Laplacen Raylegh 16 bts d r d r d r d r 1-1.0000-0.5000 - -0.7979 - -0.7071 0.0000 1.657 0.0000 0.5000 0.0000 0.7979 0.0000 0.7071.0985.9313 1.0000 - - - -1.0000-0.7500 - -1.5104 - -1.8340 0.0000 0.8079-0.5000-0.500-0.9816-0.458-1.169-0.4198 1.545 1.7010-0.0000 0.500 0.0000 0.458 0.0000 0.4198.1667.635 0.5000 0.7500 0.9816 1.5104 1.169 1.8340 3.465 3.8604 1.0000 3-1.0000-0.8750 - -.1519 - -3.0867 0.0000 0.5016-0.7500-0.650-1.7479-1.3439 -.3796-1.675 0.7619 1.0-0.5000-0.3750-1.0500-0.7560-1.57-0.8330 1.594 1.4966-0.500-0.150-0.5005-0.451-0.533-0.334 1.737 1.9688 0.0000 0.150 0.0000 0.451 0.0000 0.334.18.4675 0.500 0.3750 0.5005 0.7560 0.533 0.8330.7476 3.077 0.5000 0.650 1.0500 1.3439 1.57 1.675 3.3707 3.7137 0.7500 0.8750 1.7479.1519.3796 3.0867 4.14 4.7111 1.0000

MAX Quantzer 17 Unforme Gaussen Laplacen Raylegh bts d r d r d r d r 4-1.0000-0.9375 - -.736 - -4.4311 0.0000 0.3057-0.8750-0.815 -.4008 -.0690-3.740-3.0169 0.4606 0.6156-0.7500-0.6875-1.8435-1.6180 -.5971 -.1773 0.7509 0.8863-0.650-0.565-1.4371-1.56-1.8776-1.5778 1.0130 1.1397-0.3750-0.315-0.7995-0.6568-0.9198-0.787 1.5064 1.677-0.500-0.1875-0.54-0.3880-0.5667-0.4048 1.7499 1.871-0.150-0.065-0.58-0.184-0.664-0.140 1.9970.10 0.0000 0.065 0.0000 0.184 0.0000 0.140.517.3814 0.150 0.1875 0.58 0.3880 0.644 0.4048.518.6550 0.500 0.315 0.54 0.6568 0.5667 0.757.801.949 0.3750 0.4375 0.7995 0.943 0.9198 1.1110 3.1110 3.779 0.5000 0.565 1.0993 1.56 1.3444 1.5778 3.4566 3.6403 0.650 0.6875 1.4371 1.6180 1.8776.1773 3.8588 4.077 0.7500 0.815 1.8435.0690.971 3.0169 4.3579 4.6385 0.8750 0.9375.4008.736 3.740 4.4311 5.0649 5.4913 1.0000 ² 18 END