LectureNotesinArticialIntelligence,cSpringerVerlag,1997 TableauxMethodsforAccessControlin DistributedSystems Abstract.Theaimofaccesscontrolistolimitwhatusersofdistributed systemscandodirectlyorthroughtheirprograms.asthesizeofthe UniversityofCambridge,England(UK) e-mail:fabio.massacci@cl.cam.ac.uk ComputerLaboratory FabioMassacci? systemsandthesensitivityofdataincreaseformalmethodsofanalysis introducesrelationsbetweenmodalitieswhichcannotbecompiledinto terestingtechnicalchallenges,sinceithasnotthetree-modelproperty, Lampsonet.al.Besidetheapplicativeinterest,thecalculusposesincesscontrolindistributedsystemdevelopedatDEC-SRCbyAbadi, axiomschemas,andhassomefeaturesoftheuniversalmodality. areoftenrequired. Thispaperpresentsaprexedtableauxmethodforthecalculusofac- 1Introduction Accesscontrolisakeyissueforthesecurityofcomputersystems(see[25]for anintroduction).itsmainpurposeistorestraintheactionswhichlegitimate (ormalicious)usersmayperform,eitherdirectlyorindirectly(throughtheir whichdistinguishesitfroms5(viasatisabilityonnontree-models). Asaside-eectweshowatableauxcalculusfortheuniversalmodality programs).itsneedarisesinanysystemwithmultipleusersandsensitiveinformationorsharedresourcessuchasthemilitary[4],bankingandcommerce[7] reasoningtechniques.forinstance,accesscontrolmustbecombinedwithauthentication[31],andpoliciesmustberenedatthevariouslevelsofdelegation [22].Thedenitionofthejurisdictioncapabilitiesofcommunicatingagentsplays munications,delegationofmanagementetc.)whichrequirenewmodellingand alsoakeyroleintheanalysisofsecurityprotocols[5,28].indeedaccesscontrol isjustaproblemofjurisdictionincomplexanddistributedsystems. Distributedsystemsfaceadditionalchallenges(e.g.largescale,insecurecom- orhealthcareservices[2]. (tableauxbased)automatedreasoningtechniquesforaccesscontrol. comesinfeasible.henceformalmethods,logicsandautomatedreasoningtech- niquescanbeusefultoolsforthevericationofsecuritypoliciesandaccess controlprocedures(seee.g.[5,20,19,22,31]).ourtargetisthedevelopmentof?currentaddress:dip.informaticaesistemistica,universitadiroma\lasapienza", viasalaria113,i-00198roma(i),e-mailmassacci@dis.uniroma1.it. Assystemsbecomemorecomplex,human(andinformal)vericationbe- 1
Sw-admin fm205 Remote-User Deputy Postm Postmaster pb User Sys-admin gt maj maj:titanroommanager,knows aboutunix,decstations,alphas, Ethernet,ATM,printersystems, backupsystemsandtex. gt:knowsaboutunix,suns,hp bobcatsandsnakes,gnuemacs,x, Ethernet,Lispandsimilar languages.deputypostmaster. pb:postmaster,knowsaboutunix, Suns,X,mail,news,andwide areacommunications. [...]Ifyouanticipateaneedto loginfromoutsidecambridge,you shouldconsultmajorpb. Fig.1.From\ComputingFacilitiesattheComputerLaboratory" Theprinciplesofaccesscontrolcanbedescribedwithfewabstractions:subjects(humans,programsetc.),objects(data,otherprogramsetc.)andprivileges whichsubjectsdetainonobjects(e.g.read,writeandexecuteinunix).theuse oftheseabstractionsisthebasisofmostformalmodelsproposedintheliterature,startingfromtheclassicalaccessmatrix[18,24]tomoreadvancedsystems [10,19,22,23].Akeyfeatureofthenewapproachesistheattempttomodel morecloselythe(hierarchical)relationshipsbetweenthevarioussubjects,where someprivilegescanbeinheritedalongthechains(e.g.fig.1). Theuseoftheseabstractionsleadsnaturallytowardsaformalisationofthe problemwithmultimodallogics:onesubject,onemodality.therehasabeena numberofworksonmodellingsecurityandobligationsinamultiagentssetting, e.g.[8,17,30],andinparticularwefocusontheexpressivecalculusdeveloped atdec-src[1].thiscalculusisinterestingforanumberofreasons: {itprovidesauniformframeworkforreasoningaboutaccesscontrolinpresenceofdelegationandhasasimplesemantics[1]; {itconstitutesthebasisofarealsystem[19,31]; {itsfeaturesposeinterestingtechnicalchallengesfordeduction. Oneofthecharacteristics,whichchallenge\standard"tableauxcalculi,isthe presenceofformulaeusedformodellingdelegationcerticatesandhierarchical relationshipsbetweensubjects(i.e.modalities).thoserelationshavethesame forceofaxiomschemasandareclosetorole-value-mapconstructsofailanguages [26].Thekeydicultyisthatwecannot\compile"themintotableauxrules (noraxiomschemas)sincetheirpresencedependsontheparticularnonlogical axiomsandtheparticulartheoremwewanttoprove.twodierenttheorems (i.e.accessrequestswithdierentdelegationcerticates)mayimposetotally dierentrelationsbetweensubjects.2
alsohindersastraightforwardextensionoftableauxcalculi.finallyitshares somepropertiesoftheuniversalmodality[12,13]whichcannotbeaxiomatised2. Anotherfeatureofthelogicistheabsenceofthetreemodelpropertywhich tableauxisnotnewforsecurityanddatesbacktotheverussystem[20]. asatargetcalculusfortranslationsfromthematrixmethods[27].theuseof implementationalongthelineofleantheoremproving[3]anditspotentialuse 21]giventheirexibilitytoadapttovariouslogics,thepossibilityofasimple onlybediscoveredon-lineduringthedeductionprocess. Inanutshell,someglobalpropertiesoftheunderlyingKripkemodelscan constituteaforestratherthanatreeandthesetofglobalaxiomsismodiedat runtime.thisrequirestochangethedenitionoftableaubranchesandmakes possibleasimpleiterativeconstructionfortheuniversalmodality. Theproposedsolutionusesanextensionofprexedtableauxwhereprexes ThetableauxmethodproposedhereisbasedonSimpleStepTableaux[9,14, calculusandacorrectoneforthewholelanguage(thecalculusisundecidablein general).thismethodextendsthedeductioncapabilitiesof[1]aswecanprove importantpropertieswhichmustbeaddedasnon-logicalaxiomsin[1,19]. Wederiveasoundandcompletedecisionmethodforalargefragmentofthe followedbyanappendixontheuniversalmodality. 2TheDEC-SRCCalculusforAccessControl (x5)andsketchitssoundnessandcompletenessproofs(x6).conclusions(x7)are manticalfeatures(x3).wediscussthetableauxcalculus(x4)withsomeexamples EXPTIMEtableauformulti-modallogicswiththeuniversalmodality[12,13]. Animportantside-eectofthesetechniques,shownintheappendix,isan Tomakethepaperself-containedwesketchtheintuitionsbehindthecalculus Inwhatfollows,wepresenttheDEC-SRCcalculus(x2)andanalyseitsse- andreferto[1]foraformaltreatmentandto[19,31]foritsapplications. jects,orprincipals,anddenotedbya,b,kaetc.complexprincipals(porq) theprincipalpclaimingtoquotearequestfromq.noticethatpmayclaimto arebuiltbyconjunction\&"andquoting\j".theintuitionisthatp&qis aprincipalwiththeprivilegesofbothpandq,whereaspjqcorrespondsto quoteqevenwhenqneversaidanything. Users,roles,groupsandcryptographickeysarerepresentedbyatomicsub- instanceaforb:=(a&d)jbwheredisadelegationserver[1]. whenaisclaimingtoactasadelegateforb;thelatterwhenaspeaksusing statements(r)areuninterpretedoperationsorrequests[1,23]i.e.propositional letterswhichcanbetrueinaparticularstateofthesystem(requestgranted) arole3r.sincetheycanbeencodedusingjand&,wedonotusethem.for 2Thismayalsoexplainwhyonlyasoundaxiomatisationhasbeendevisedin[1]. Otheroperatorsarepossiblei.e.AforBandAasR[1]:theformerisused 3Foradistinctionbetweenthesecurityconceptsofroleandgroupsee[10,23]. Operationsoverobjectsarerepresentedbystatementsdenotedbys.Atomic 3
^(fm205jusr)controlsread(mail)majsays(fm205)usr)^ Usrcontrolslogin(telnet)^ RemUsrcontrolslogin(ftp)^ SysAdmcontrols(fm205)Usr)^ SwAdm)Usr^ PostMaster)Usr^ Usr)RemUsr SysAdm)SwAdm^ SysAdm)PostMaster^ ^gt)deppostm^ maj)sysadm^ gt)swadm^ pb)postmaster^ Fig.2.ALogicalFormalisationofFig.1 fm205sayslogin(telnet)^ fm205saysread(mail) fm205)remusr interpretationis\iftelnethasbeengrantedsohasftp". orfalse(notgranted).complexstatementsarebuiltwithbooleanconnectives ^;:;etc.:forinstancelogintelnetloginftpwhoseintuitive(andformal) ment\pcontrolss"capturestheintuitionthatprincipalphasaccesscontrol groupmembership:p)gmeansthatphasatleastallprivilegesofgroupg. PcanspeakforQ.IfPsayssthiswouldbeasQitselfsaids.Itisalsousedfor itas\somebodyingrouppsayss". Prequestsstobegranted.IfPisagroupthenwefollow[1,19]andinterpret statementp)q.theintuitionisthatphasatleastalltheprivilegesofqi.e. Principalsandstatementsarelinkedbyprivilegesattributions[23]:thestate- Torepresentuserrequestsweusethemodalstatement\Psayss":principal overs.intheliteratureonauthenticationthisiscalledjurisdictionofaprincipal [5,28]andaxiomatisedasAsayss^Acontrolsss. Theaimistotoreplaceitbyamorecomplexbutmorerealisticaxiom,where Hierarchicalrelationsbetweenprincipalsareconstructedwiththespeaks-for 3FormalSyntaxandSemantics therelationbetweentwoprincipalsaandbisexpressedwiththe)operator: Thelanguage(describedinformallyinx2)isthefollowing,whereAisanatomic stancefm205)usrinfig.2dependsonmaj'sstatements. AparticularP)Qmaydependsonthestatementsofotherprincipals.Forin- Asayss^Bcontrolss^\somerelationbetweenAandB"s: principalandranatomicpropositionalrequest: Otherconnectivesareabbreviations,e.g.ss0:(s^:s0).AlsoPcontrolss isashortcutfor(psayss)s. P;Q::=AjP&Qj(PjQ)s;s0::=rj:sjs^s0jPsayssj(P)Q) 4
w.l.o.g.sincep)qisequivalenttop)a^a)qforanewatomica. eachstatementoftheformpsayss,thestatementsiseitheranatomicrequest forma)q(respectivelyp)a)i.e.theleft(right)principalisatomic.itis weaklyleft(right)restrictedwhenstatementsp)qareadmittediftheyoccur oragroupmembership(bothpossiblynegated).forinstancetheformalisation underthescopeofanoddnumberofnegations4.itisrequestrestrictedwhenin infig.2isleft,rightandrequestrestricted. Astatementisleft(right)restrictedwhenspeaks-forsubformulaehavethe InthesequelweassumethatinP)QeitherPorQisanatomicprincipal, uninterpreted[19,23].ifweadd,amongthepossibleprivileges,thepossibility westillhavearightrestrictedlanguage. tohandoverdelegationtootherprincipalssuchaspicontrols(qj)ak),then requestrissimplytheconjunctionsofstatementsvipicontrolsr,whereris erarchiesandgroupandrolemembership,asinfig.1,therightmostprincipal sentedbyacl(accesscontrollists).inthedec-srclanguage,anaclfora isatomic.moreover,inalmostallsystems[25],privilegesattributionsarerepre- Inpracticestatementsarerightandrequestrestricted.If)isusedforhi- compatibilityofastatewiththerequestsmadebyaprincipalintherealworld. interpretationsuchthatforeveryatomicprincipalaitisaiwwandfor everypropositionalletterritisriw.theniisextendedasfollows: ThesemanticsisbasedonKripkemodels[1,11,16]:arelationmodelsthe AmodelisapairhW;Ii,whereWisanonemptysetofstatesandIan (:s)i=w?si isnotempty.astatementsisvalidiforeverymodelhw;iiitis(s)i=w. (s^s0)i=si\s0i Forsimplicity,wewritewk?sforw2sIandinterchangeasetofstatements Denition1.AstatementsissatisableithereisamodelhW;Iiwhere(s)I (PjQ)I=hw;wij9whw;wi2PIandhw;wi2QI (P&Q)I=PI[QI (P)Q)I=ifQIPIthenWelse; (Psayss)I=wj8w2Wifhw;wi2PIthenw2sI withtheirconjunction.nextweintroducethesetofglobalaxiomsgwhich Denition2.AstatementsisalogicalconsequenceofG,i.e.Gj=s,ifor Globalaxiomscanbeincorporatedintheaxiomatizationof[1]withthemodal theaccesscontrolsystem:groupsmembership,privilegesattributionsetc. becausethemodaldeductiontheoremleadstoanexponentialblowup[15]. deductiontheorem[16,11],buttheirexplicitrepresentationismoreeective holdsineverypossibleworld[11,21].theyarenon-logicalaxiomsdescribing everyhw;iiif8w2w;wk?g,then8w2w;wk?s. 4Forinstancetheformula:Asays((B&C))D)isweaklyleftrestrictedsincethe groupmembership(b&c))disunderthescopeofonenegation. 5
wherewehavethefollowingtwoconditions: Wecanrepresentexplicitytherelationwiththeuniversalmodality[u]as: Remark.ThesemanticsofP)Qreectsglobalpropertiesofthemodel,isclose totheuniversalmodality[12,13],andcanintroduceaxiomschemasonthey. Akeypropertyisthepossibilityofintroducingaxiomschemas\onthey". ForinstanceP)PjPforcesthetransitivityofrelationPI,wherePmaybea (P)locQ)I=wj8w2Wifhw;wi2QIthenhw;wi2PI ([u]s)i=if8v2wvk?sthenwelse; P)Q[u](P)locQ) A)AjA^:(A)B)^Bsays?^:(Asays?)^Asays(Bsays?^:Asays?) complexprincipal.yet,theseglobalpropertiesmayormaynotbepresent.as W=f1;11;2gandAI=fh1;11i;h11;11igandBI=fh2;2ig.Thekeypointis hasnotreemodelatall,althoughitissatisableintheworld1ofthemodelwith anexample,supposewehaveasays(b)bjb).transitivityofbwillfollow thatthismodelhastwoclusters(connectedcomponents)sothat1satisesthe onlyif:asays?isthecase.sob'spropertiesdependontheparticularglobal axiomsandtheoremswearetryingtoprove. (local)saysstatementsand2satisestheglobal:(a)b). Anotherfeatureistheabsenceofthetree-modelproperty[29,16]: ofthelogicwithanhilbertsystem[12,13,29]. unionasin\traditional"modallogics[29].thisisduetothe\hidden"presence oftheuniversalmodalitywhichmakesimpossiblethecompletecharacterisation details)ispointedoutin[1]. Inmodeltheoreticterms,(un)satisabilityisnotpreservedunderdisjoint shortp=q)forthecorrespondingpandq.forgroupsintroduceaprincipali quoting\j"andequationsbetweenwordsp=qtostatementsp)q^q)p(for problemof(semi)groups:mapelementstoatomicprincipals,composition\"to foridentity,oneacfortheconverseofeachatomica,andtherelativeequations. NextuseanewprincipalGrwithglobalaxiomsGrjA=Grforeveryatomic Thelogicisalsoundecidableandareductiontopushdownautomata(without ThenonecanprovethatGrsays(P0=Q0)isvalidwiththoseassumptionsi theequationp0=q0holdsforthegroup[26]. AandthestatementGrsays(P=Q)foreveryp=qcharacterisingthegroup. Asimplerproofusesthetechniquesof[26]andreducesvaliditytotheworld 4ATableauxCalculus prexanddenedas::=nj:a:n.akeydierencefrom\standard"prexed Prexedtableauxuseprexedstatements,i.e.pairsh:siwheresisastatement andisanalternatingsequenceofintegersnandatomicprincipalsacalled 6
hquotei:::(pjqsayss) handi:::(p&qsayss) ::Psayssj::Qsayss[and]::P&Qsayss ::Psays(Qsayss)[quote]::PjQsayss :Psays(Qsayss) hai:::(asayss) :A:m::s:A:mnew[A]::Asayss Glob:. :sifispresentinbands2gb :A:n:s:A:npresent :Qsayss :Psayss arcsarelabelledwithatomicprincipalsandnodewithintegers.withkdierent tableaux[11,14]isthatasetofprexesnowdescribesaforestoftrees,where D(A)::Asayss ::Asays:swithsome:A:nalreadypresentinthebranch initialprexeswehave,ingraph-theoreticterminology,kconnectedcomponents orclusters[16].withglobalaxiomsandtheoperator)wecanimposean euclideanortransitiveclosuresonaclusterbutwecannotcollapsetwoclusters. Stillthedenitionoftableauissimilartoprexedtableauxformodallogics Fig.3.PDL-likeRulesforModalConnectives ofglobalaxiomsduringthedeductionprocessandthereforedierentbranches [11,14,21]:atableauTisarooted(binary)treewherenodesarelabelledwith mayendupwithdierentglobalaxioms. ofglobalaxioms.thisdenitionisessentialbecauseweneedtomodifytheset Thus,eachtimewebranchthetreeweshouldalsoduplicate(intheory)theset theroottoaleafoftandgbisasetofglobalaxioms. prexedstatementsintheusualfashion. Denition3.AbranchofatableauTisapairhB;GBiwhereBisapathfrom fromr)tomarkunsaidstatementsasinfig.4.sincep)qimpliesthatif PsayssthenQsayssforalls,itsnegationmeansthatthereis\something" Therulesforconjunction,quoting,theuseofglobalaxiomsandthetransitional rulesforatomicprincipalsareinfig.3. thatprexalreadyinb,anditisnewifitisnotalreadypresent. Tocopewith)weintroduceanewsetofpropositionalatomsxi(distinct Therulesforpropositionalconnectivesarestandard[11,14,21]andomitted. AprexispresentinabranchhB;GBi,ifthereisaprexedstatementwith (anunknownxi)whichpsaidbutqdidn't.thersttworulescorrespondto 7
hugri:::(p)q) hrgri::p)a::(asayss) n::(qsaysxi)xiandnnew[ugr]: n:psaysxi ::(Psayss) [Lgr]::Asayss:A)Q :Qsayss thelocalfeaturesofthe)operator,whereasthelastisduetoits\universal" Fig.4.Rulesforthespeaks-foroperator GB:=GB[fP)Qg :P)Q whilerightrestrictedlanguagesdonotneedrule[lgr]. avour.thehugri-rulecombinesbothaspects. Furthersimplicationsarepossible:P)(A&B)jQislogicallyequivalentto Remark.WeaklyleftrestrictedstatementsdonotneedrulehRgriandD(A) P)AjQ^P)BjQ.ThisrulecanbeaddedwhenQisemptysinceitmay skippedifaprexedformula:a:n::sisalreadypresentetc. forsomesand.itisopenifallpossibleruleshavebeenappliedanditisnot Denition4.AbranchhB;GBiisclosedifBcontainsboth:sand::s, subformula:(p)q),nomatteritsprex.inasimilarwayrulehaicanbe closed.atableauisclosedifallbranchesareclosed;itisopenifatleastone leadtoright-restrictedformulae.rulehugrimustbeappliedonlyonceforeach branchisopen. Denition5.AvaliditytableauproofforstatementswithglobalaxiomsGis aclosedtableaustartingwiththebranchhf1::sg;gi. Theorem7(StrongWL-Completeness).IfsisalogicalconsequenceofG GthensisalogicalconsequenceofG. secondisthemostimportantfromanapplicativepointofview). Wegiveacompletenessresultonlyfortwomainfragments(asnotedinx3the Theorem6(StrongSoundness).Ifshasatableauproofwithglobalaxioms Inadualwayasatisabilitywitnessisanyopenbranchofthetableaustarting andg[f:sgareweaklyleftrestrictedthenshasaproof. withhf1:sg;gi,whenthecalculusiscompleteforthefragmentathand. bebasedonrstordertranslations)isimportantforsecurityanalysisbecause satisabilitygivesinformationonsecurityweaknesses. Remark.Adecisionmethod(ratherthanasemidecidableprocedurewhichcould Theorem8(StrongWRR-Completeness).Ifsisalogicalconsequenceof GandG[f:sgareweaklyrightandrequestrestrictedthenshasaproof. 8
(h)1:a:3::? (g)2::(asaysx1) (d)1:asays(p)a) (a)1::(:(asays?)(acontrolsp)a)) (c)1::acontrols(p)a) (b)1::(asays?) (f)2:psaysx1 (e)1::(p)a) (i)1:a:3:p)a byreducingcontrolsfrom(c) byhaifrom(b) byrulesfrom(a) (m)2:p)a (l)g1:=fp)ag by[a]from(d) byglobfromg1 by[ugr]from(i) byhugrifrom(e) Foradecisionmethodasimplecondition,checkableinpolynomialtime,can beimposedontheglobalaxiomsandtheconsequences.associateagraphto theglobalaxiomsandthenegationoftheformulatobeproved:eachatomic Fig.5.TableauxProofofanHand-oAxiom contradictionbetween(e;m) loopcheckingwithanextendednotionofthefisher-ladnerclosure.noticethat, intheembeddingofthewordproblem(x3),theprincipalgrcreatescycles. evennumberofnegation,drawanarcfromtheatomicprincipalsinptothose inq.ifthisgraphisacyclicthenthetableauconstructionterminatesbyusing principalisrepresentedbyanodeandforeveryp)q,underthescopeofan derivationofanhand-oaxiom[1,19]. [10,23]:if)isusedforhierarchiesofgroups/rolesthencyclesarenotallowed. 5Examples Forsakeofsimplicity,weassumethatwehaveadirect(obvious)rulefor controlsratherthantranslatingitbackto^and:.arstexampleisthe Inaccesscontrol,acyclicityisnotarestrictionbutratherarequirement keystepisrule[ugr]whichcannotbeaxiomatised. by[1]andareaddedasaxioms.thetableauderivationisshowninfig.5.the able)formulabelow(orinx3)withonlyonesetofglobalaxiomsasin[11,21]. Suchaxiomsareusedbyprincipalstohand-overtheirprivilegesin[1,19].Notice that,althoughvalid,theycannotbeprovedwithinthehilbertsystemdeveloped Tocheckthatglobalaxiomsmustbeassociatedtoabranch,trythe(satis- :(Asays?)(Acontrols(P)A)): from[1,page719]whereacareful(andnontrivial)hilbertproofisgiven. Fora\real-life"deduction(Fig.6)wetakedelegationwithoutcerticates :(A&Bsays?)^Asays(B)A)^Asaysr^Bsays:r 9
(a)1::(kbsays(scsaysr)^kssays(kb)b)^(bja)controlsrr) (b)1:kbsays(scsaysr)rulesfrom(a) (h)1:scontrols(kb)b)byglob (c)1:kssays(kb)b) (g)1:ssays(kb)b) (d)1:bjacontrolsr (e)1::r (f)1:ks)s (h)1::ssays(kb)b) (m)1:r (n)1::(bjasaysr)redcontrolsfrom(d).& (l)1:bsays(scsaysr)by[lgr]from(b);(i) (i)1:kb)b by[lgr]from(c);(f) (s)1:b:2:asaysr (o)1::bsays(asaysr)byhquoteifrom(n) (r)1:b:2:sc)a (q)1:b:2:scsaysr (p)1:b:2::asaysrbyhbifrom(o) redcontrolsfrom(h) by[b]from(l) byglob userwithasucientlypowerfulsmartcard,baworkstationandcaleserver. Example.\AdelegatestoBwhomakesrequeststoC.ForinstanceAmaybea Fig.6.TableauProofofDelegationwithoutCerticates by[lgr]from(q);(r) [...]WhenBwishestomakearequestronA'sbehalf,Bsendsthesigned receivestherequestrhehasevidencethatbhassaidahasrequestedrbut requestsalongwitha'sname...intheformatkbsays(asaysr)...whenc notthatahasdelegatedtob;thencconsultstheacl[accesscontrollist] forrequestranddetermineswhethertherequestshouldbegranted.[...]a certicationauthorityprovidesthecerticatesfortheprincipals'publickeysas whereksiss'spublickey." Weaddalevelofindirectiontotheoriginalproblem(bymodellingexplicitly needed.thenecessarycerticatesarekssays(ka)a)andkssays(kb)b), thesmartcardsc)andusethelogicforthereasoningoftheserverc.theset ofglobalaxiomsandthestatementtobeprovenare: itisnotalwaysvalid!itdependsontheserver'sstatementsi.e.ssays(kb)b). rules).indeedkb)bcorrespondstobikib,i.e.kbsayssbsayssbut InFig.6only[Lgr]-ruleisused.AderivationwithonlyhRgri-ruleispossible. G:=fKS)S;Scontrols(KB)B);Sc)Ag Thisisanexampleofthe\incompilability"ofP)Qintoaxiomschemas(or s:=(kbsays(scsaysr)^kssays(kb)b)^(bja)controlsr)r 10
6Soundnessand(Partial)Completeness preservedbytableauxrules.afterthiskeylemma,therestisstandard[11]. Toprovesoundnesswemapprexestostatesandshowthatsatisabilityis groupsmembershipdependonthesecuritypolicyandthecurrentcerticates. possibilityofadding\on-line"propertiesiscriticalheresincedelegationsand Withouttheserver'scerticatei.e.withadierenttheorem,itdoesn'thold.The Denition9.LetBbeasetofprexedformulaeandhW;Iiamodel,amapping h{();{(:a:n)i2ai. isafunction{()fromprexestostatess.t.foralland:a:npresentinbitis obtainedbyanapplicationofatableauruleisalsosat. Theorem11(SafeExtension).IfTisaSATtableau,thenthetableauT0 Denition10.AtableaubranchhB;GBiissatisable(SATforshort)inthe )operatoristheonlynewcase. mapping{()suchthatforeveryh:sbipresentinbitis{()k?sb.atableauis Proof.Byinductionontherulesappliedasin[11,Chapter8]or[9,14,21].The modelhw;iiifforeverysg2gbandeveryw2witiswk?sgandthereisa modelhw;iiandamapping{()suchthat{()k?p)q.hence(p)q)i=w SATifonebranchissuch. fortheglobalpropertyof)(itisnotemptyasitcontains{()).thereforeadding thegbcondition(andfutureapplicationsoftheglob-rule). ittogbasdonebythe[ugr]doesnotchangethesatisabilityofthebranchwrt hw;wi2qiwithhw;wi62pi.set{(n)=wforthenewprexnand(xi)i= W?fwgforthenewxi.Clearly{(n)k?Psaysxibut{(n)k6?(Qsaysxi).ut Supposethath:P)QioccursinsomeSATbranch.Thentheremustbea adenition)anduseanopenbranchtoconstructamodel.akeypropertythe anditsextensionisdiscussed. proceduremustguaranteeisdownwardsaturation[11,21]:allapplicablerules musthavebeenapplied.theproofisgivenforweaklyleftrestrictedstatements Ifh::(P)Q)iispresentthenbyhp{()k?:(P)Q).Hencethereisa Theorem12(ModelExistence).IfhB;GBiisanopenbranchwithweakly leftrestrictedstatementsonly,thenthereisamodelhw;iionwhichitissat. Forcompletenessweapplyasystematicandfairprocedure(see[11,14]for Incorporatetheconstraintsdueto)andbuildIfromI0asfollows: Proof.Constructapre-modelhW;I0iasfollows: AI0:=fh;:A:nijand:A:narepresentinBg ri0:=fj:r2bg W:=fjispresentinBg 11
Afterthisclosurephasewemustprovethatifh:si2Bthen{()k?sby inductionontheconstructionofs,where{()=.theproofissimilartothose {foreveryformula:a)poccurringinb h;i2aiitish:siinbsothatwecanapplyinductiontoh:si,get usedforpdl[9]ormodallogics[11,14,21]. {repeatuntilax-pointisreached. Thedicultcaseish:Asayssisincewemustprovethatforallprexes ifh;i2pithenaddh;itoai; computepi; k?sandthentheclaim. saturationofthebranchandadoubleinduction:ontheformulasizeandonthe Proposition13.Beforeeachiterationstep,ifh:PsayssiispresentinBand iterationsoftheclosurephaseneededtoenterh;iintoai.forthebasecase somenor(ii)h;i2pibeforetheclosurephaseandpiaiafterwards. weusethefollowingresult,provenbyinductiononpandsasin[9]: introducedinaiduringtheclosurephase.hencewecanhave(i)=:a:nfor Therstcaseisstandard[11,21]whereasforthesecondcaseweusethe Thedierencewith\traditional"proofs[11,21]isthatsomeprexesare present.nowapplytheinductionhypothesis. weusemutualsaturationbetweengloband[ugr]rules.if:a)poccursinb andthereforewhenwasaddedinaiintheclosurephasealsoh:siwas Fortheinductionstepobservethatwheneverh:A)Piispresentthenby saturationh:asayssiimpliesh:psayssi.soapplyprop.13togeth:si h;i2pithenh:siispresentinb satisestheglobalconditionandpiai. then[ugr]impliesthata)p2gb.byglobwehavethatforalls2gband allprexesinbitish:si.henceeverysatisesthelocalconditioni.e.w Thelocalconditionfor)issatisedbyconstruction.Fortheglobalcondition onlydicultpartisduetoliteralsl(ror:r). isthatweonlyhaveliteralsorstatementsoftheformp)aunderthescopeof oftheinductionstep:ifh::(asaysl)iandp)aisalsopresentthenthereisis nonatomicpcannotpropagateoverh:p)ai.howeverwecanprovethedual says.theoperator)doesnotcreateproblemsgivenitsglobalnatureandthe Thepreviousproofforh:Asayssidoesnotworksinceh:Psayssifor Fortherightandrequestrestrictedfragmentofthelanguagethekeypoint ut witheachh::(asaysl)i.atthisstageweneedtousethed(a)-rule,toprove ah;i2pisuchthat::l.thismeansthatallh:psaysl0iareconsistent thatthosepstatementsareconsistentalsowitheachh:asaysl00i.byd(a) onlyworksforrequestrestrictedstatements. weobtainh::(asays:l00)iandthenapplythedualproperty. themselves,andeachofthemwithallpsaysl0.thismeansthatwhenweadda oftheunspeciedl0orl00insothattheresultisstillamodel.again,this h;ifromaitopiintheclosurephasewecanalwaysextendthevaluation Sincealll;l0;l00areliteralsthisisenough:allAsayslareconsistentamong 12
7Conclusion Themajorcontributionofthispaperisthedevelopmentofatableauxmethod alsoclariedsomemodeltheoreticfeaturesofthecalculusthatmakesdicult itsaxiomaticcharacterisation.thecompletenessresultspresentedhereextend forthecalculusofaccesscontrolofabadi,lampsonetal.[1,19,31].wehave S5andtheuniversalmodality(onnontreemodels). intheappendix.thereforewecandistinguish,inprooftheoreticterms,between withtheuniversalmodality[13]andasoundandcompletecalculusispresented directionofprovidingafullyautomatedverier,possiblyusingtheresultsof[3]. liketableautoaforestofprexes,aruntimeupdateofglobalaxiomsandthe correspondingmodicationofthenotionofbranch.futureresearchisinthe thosein[1]andprovidethebasisforafulledgedautomatisation. Aclaimthatwedonotmakeisthatlogicandsemantictableauxshouldbe Asanaside,thesetableauxtechniquescanbeusedformultimodallogics Thistableauxmethodrequiresnoveltechniquessuchaspassingfromatree- respectsecuritypolicies.thisworkisastepinthisdirection. unacceptableslow-downs.logicandtableaux(orsimilarlogic-basedmethods) shouldbeusedforvericationandprototyping,forcheckingthataccessprotocols usedforrun-timedecisionsonaccesscontrol.althoughpossible,thismayleadto byasi,cnrandmurst40%and60%grantsandbyepsrcgrantgr/k77051 whichhelpedtoimprovethispaper.thisresearchhasbeenpartlysupported AppliedLogicgroup(IRIT)andtheanonymousrefereesformanysuggestions Acknowledgements IwouldliketothankL.PaulsonandtheComputerLaboratoryfortheirhospitalityinCambridge,M.Abadi,theComputerSecuritygroup(Cambridge),the \AuthenticationLogics". References 2.R.Anderson.Asecuritypolicymodelforclinicalinformationsystems.InProc.of 1.M.Abadi,M.Burrows,B.Lampson,andG.Plotkin.Acalculusforaccesscontrol 4.D.BellandL.LaPadula.Securecomputersystems:uniedexpositionandMUL- 3.B.BeckertandR.Gore.Freevariabletableauxforpropositionalmodallogics.In 5.M.Burrows,M.Abadi,andR.Needham.Alogicforauthentication.ACMTrans. the15thieeesymp.onsecurityandprivacy.ieeecomp.societypress,1996. indistributedsystems.acmtrans.onprog.lang.andsys.,15(4):706{734,1993. 6.M.CastilhoandA.Herzig.Analternativetotheiterationoperatorofpropositionaldynamiclogic.Tech.Rep.96-05-R,IRIT(Toulouse),Univ.PaulSabatier, jan1996. TICS.ReportESD-TR-75-306,TheMITRECorporation,March1976. theseproceedings,1997. SystemResearchCenter,1989. oncomp.sys.,8(1):18{36,1990.alsoavailableasres.rep.src-39,dec- 13
7.D.ClarkandD.Wilson.Acomparisonofcommercialandmilitarycomputersecuritypolicies.InProc.ofthe6thIEEESymp.onSecurityandPrivacy,pp.184{194. 1987. 8.F.CuppensandR.Demolombe.Adeonticlogicforreasoningaboutcondentiality.In3rdInt.WorkshoponDeonticLogicinComputerScience,Sesimbra, Portugal,1996. 9.G.DeGiacomoandF.Massacci.Tableauxandalgorithmsforpropositionaldynamiclogicwithconverse.InProc.ofthe13thInt.Conf.onAutomatedDeduction (CADE-96),LNAI1104,pp.613{628,1996. 10.D.Ferraiolo,J.Cugini,andK.Richard.Role-basedaccesscontrol(rbac):Features andmotivations.inproc.oftheannual(computersecurityapplicationsconf., 1995. 11.M.Fitting.ProofMethodsforModalandIntuitionisticLogics.Reidel,1983. 12.V.Goranko.Modaldenabilityinenrichedlanguages.NotreDameJ.ofFormal Logic,31(1),1990. 13.V.GorankoandS.Passy.Usingtheuniversalmodality:Gainsandquestions.J. oflogicandcomputation,2(1):5{30,1992. 14.R.Gore.Tableauxmethodformodalandtemporallogics.Tech.Rep.TR-ARP- 15-5,AustralianNationalUniv.,1995. 15.J.HalpernandY.Moses.Aguidetocompletenessandcomplexityformodallogics ofknowledgeandbelief.articialintelligence,54:319{379,1992. 16.G.HughesandM.Cresswell.aCompaniontoModalLogic.Methuen,1984. 17.C.Krogh.Obligationsinmultiagentsystems.In5thScandinavianConferenceon ArticialIntelligence(SCAI-95),pp.29{31.ISOPress,1995. 18.B.Lampson.Protection.ACMOperatingSys.Reviews,8(1):18{24,1974. 19.B.Lampson,M.Abadi,M.Burrows,andE.P.Wobber.Authenticationindistributedsystems:Theoryandpractice.ACMTrans.onComp.Sys.,10(4):265{ 310,1992. 20.B.Marick.Theverusdesignvericationsystem.InProc.ofthe2ndIEEESymp. onsecurityandprivacy,pp.150{157,1983. 21.F.Massacci.Stronglyanalytictableauxfornormalmodallogics.InProc.ofthe 12thInt.Conf.onAutomatedDeduction(CADE-94),LNAI814,pp.723{737, 1994. 22.J.MoetandM.Sloman.Policyhierarchiesfordistributedsystemsmanagement. IEEEJ.onSelectedAreasinCommunications,11(9),1993. 23.R.Sandhu,E.Coyne,H.Feinstein,andC.Youman.Role-basedaccesscontrols models.ieeecomputer,29(2),february1996. 24.R.Sandhu.Thetypedaccessmatrixmodel.InProc.ofthe11thIEEESymp.on SecurityandPrivacy,pp.122{136,1992. 25.R.SandhuandP.Samarati.Accesscontrol:Principlesandpractice.IEEECommunicationsMagazine,pp.40{48,September1994. 26.M.Schmidt-Schauss.SubsumptioninKL-ONEisundecidable.InProc.ofthe1st Int.Conf.onthePrinciplesofKnowledgeRepresentationandReasoning(KR-89), pp.421{431,1989. 27.S.SchmittandC.Kreitz.Convertingnon-classicalmatrixproofsintosequentstylesystems.InProc.ofthe13thInt.Conf.onAutomatedDeduction(CADE-96), LNAI1104,pp.418{432,1996. 28.P.F.SyversonandP.C.vanOorschot.Onunifyingsomecryptographicprotocols logics.inproc.ofthe13thieeesymp.onsecurityandprivacy.ieeecomp. SocietyPress,1994. 14
31.E.Wobber,M.Abadi,andM.Burrows.AuthenticationintheTaosoperating 29.J.vanBenthem.Correspondencetheory.InHandbookofPhilosophicalLogic, 30.R.vanderMeyden.Thedynamiclogicofpermission.J.ofLogicandComputation,6(3):465{479,1996. volumeii.reidel,1986. almostpdlvariant(closeto[6]althoughtheyhaveaweakercommonknowledge ATableauxfortheUniversalModality Wecaneasilydeneatableauxcalculusformultimodallogicswiththeuniversalmodality:useAsayssas[A]stogetthelogicKnormorepreciselyan system.acmtrans.oncomp.sys.,12(1):3{32,1994. modality);addthesinglesteptableaux(sst)rulesfortheothersmodallogics Theorem14(UniversalModality).IfR1;:::;Rnaresoundandcomplete SSTrulesforthe(multi)modallogicsL1;:::;Ln[14,21]thenthetableaux ofknowledgeandbeliefbetweenknands5n[14,21];nallyuseamodied versionofrulehugriand[ugr]describedbelow. Forthesoundnesspartwereplace:P)Qwith:[u]sandP)Qwithsin logicl1:::lnwiththeuniversalmodality. calculusenhancedwithrules[u]andhuiissoundandcompleteformultimodal hui:::[u]s n::snnew[u]::[u]s thecorrespondingargumentofthm.11.forcompleteness,themutualinduction GB:=GB[fsg betweentheapplicationoftheglob-ruleandthe[u]-ruleisidenticaltothm.12. fromtheuniversalmodalityinprooftheoreticterms(closedvsopenbranches validity[12,13,29]andthusbytraditionaltableaux(and1-clustermodels). forsomeformulae).ofcoursethisdistinctioncanonlybedoneassatisability onk-clustersmodelsfork2,sinces5and[u]cannotbedistinguishedby Itispossibleto\distinguishthe(axiomatically)indistinguishable"i.e.S5 Forinstance,withtheS5-rulesfor[A]and[B]givenin[14,21]: 2jG[fsgj). niquesfrom[9,14]andndamodel(ifany)ofsizeatmosto(jg[fsgj combine[a]onlywith[u]andobtaindierenttableaux. havedierenttableaux:oneopen,andthesecondclosed.soreplacinganoccurrenceof[a]with[u]changesthesatisabilityofaformula.equallyonecan Wecanalsoderiveasmallmodeltheorembyadaptingloopcheckingtech- SAT:=hBi[A]r^hBi[A]:rUNSAT:=hBi[A]r^hBi[u]:r ThisarticlewasprocessedusingtheLATEXmacropackagewithLLNCSstyle 15