On exponentially ane martingales. Johannes Muhle-Karbe



Similar documents
A Novel Fourier Transform B-spline Method for Option Pricing*

Introduction to Arbitrage-Free Pricing: Fundamental Theorems

Simple Arbitrage. Motivated by and partly based on a joint work with T. Sottinen and E. Valkeila. Christian Bender. Saarland University

MATHEMATICAL FINANCE and Derivatives (part II, PhD)

A spot price model feasible for electricity forward pricing Part II

COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS

Pricing of catastrophe insurance options written on a loss index with reestimation

Explicit Option Pricing Formula for a Mean-Reverting Asset in Energy Markets

Stochastic Skew Models for FX Options

Risk-minimization for life insurance liabilities

MEAN VARIANCE HEDGING AND OPTIMAL INVESTMENT IN HESTON S MODEL WITH CORRELATION

A new Feynman-Kac-formula for option pricing in Lévy models

Stephane Crepey. Financial Modeling. A Backward Stochastic Differential Equations Perspective. 4y Springer

Monte Carlo Methods in Finance

Diusion processes. Olivier Scaillet. University of Geneva and Swiss Finance Institute

Marshall-Olkin distributions and portfolio credit risk

Stochastic Skew in Currency Options

Sensitivity analysis of utility based prices and risk-tolerance wealth processes

Mathematical Finance

QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS

Online Appendix. Supplemental Material for Insider Trading, Stochastic Liquidity and. Equilibrium Prices. by Pierre Collin-Dufresne and Vyacheslav Fos

第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model

Lecture. S t = S t δ[s t ].

Asian Option Pricing Formula for Uncertain Financial Market

Probability and Statistics

On a comparison result for Markov processes

Pricing catastrophe options in incomplete market

The Black-Scholes-Merton Approach to Pricing Options

Sensitivity analysis of European options in jump-diffusion models via the Malliavin calculus on the Wiener space

Optimal design of prot sharing rates by FFT.

Estimating the Degree of Activity of jumps in High Frequency Financial Data. joint with Yacine Aït-Sahalia

Option Pricing with Lévy Processes

Jung-Soon Hyun and Young-Hee Kim

PRICING DIGITAL CALL OPTION IN THE HESTON STOCHASTIC VOLATILITY MODEL

A non-gaussian Ornstein-Uhlenbeck process for electricity spot price modeling and derivatives pricing

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.

Bubbles and futures contracts in markets with short-selling constraints

Time-inhomogeneous Lévy processes in interest rate and credit risk models

Black-Scholes Equation for Option Pricing

Brownian Motion and Stochastic Flow Systems. J.M Harrison

Modelling electricity market data: the CARMA spot model, forward prices and the risk premium

Valuation of Asian Options

Markovian projection for volatility calibration

Option Pricing Formulae using Fourier Transform: Theory and Application

Disability insurance: estimation and risk aggregation

Hedging Exotic Options

Life-insurance-specific optimal investment: the impact of stochastic interest rate and shortfall constraint

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem

Volatility Jumps. April 12, 2010

Who Should Sell Stocks?

Homework #2 Solutions

Black-Scholes Option Pricing Model

LECTURE 9: A MODEL FOR FOREIGN EXCHANGE

Optimal portfolio allocation with higher moments

Optimisation Problems in Non-Life Insurance

Hedging Options In The Incomplete Market With Stochastic Volatility. Rituparna Sen Sunday, Nov 15

Math 526: Brownian Motion Notes

Applications of semimartingales and Lévy processes in finance: duality and valuation

Valuation of Equity-Linked Insurance Products and Practical Issues in Equity Modeling. March 12, 2013

2 The Term Structure of Interest Rates in a Hidden Markov Setting

Essays in Financial Mathematics

Pricing of an Exotic Forward Contract

LOG-TYPE MODELS, HOMOGENEITY OF OPTION PRICES AND CONVEXITY. 1. Introduction

The Black-Scholes Formula

THE BLACK-SCHOLES MODEL AND EXTENSIONS

Modeling the Implied Volatility Surface. Jim Gatheral Stanford Financial Mathematics Seminar February 28, 2003

Pricing options with VG model using FFT

Characterizing Option Prices by Linear Programs

Miscellaneous. Simone Freschi Tommaso Gabriellini Università di Siena

Merton-Black-Scholes model for option pricing. Peter Denteneer. 22 oktober 2009

Pricing of electricity futures The risk premium

Private Equity Fund Valuation and Systematic Risk

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida

BLACK-SCHOLES GOES HYPERGEOMETRIC

Rate of convergence towards Hartree dynamics

Stocks paying discrete dividends: modelling and option pricing

Lecture 1: Stochastic Volatility and Local Volatility

MEAN-VARIANCE HEDGING WITH RANDOM VOLATILITY JUMPS

Option Pricing. Chapter 4 Including dividends in the BS model. Stefan Ankirchner. University of Bonn. last update: 6th November 2013

Modelling Interest Rates for Public Debt Management

Risk management of CPPI funds in switching regime markets.

Grey Brownian motion and local times

Operations Research and Financial Engineering. Courses

Black-Scholes model under Arithmetic Brownian Motion

Introduction to portfolio insurance. Introduction to portfolio insurance p.1/41

Lecture 15. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6

Lecture IV: Option pricing in energy markets

Cross hedging with stochastic correlation

Option Pricing with Time Varying Volatility

Model Independent Greeks

Jump-adapted discretization schemes for Lévy-driven SDEs

Decomposition of life insurance liabilities into risk factors theory and application

Monte Carlo option pricing for tempered stable (CGMY) processes

Rolf Poulsen, Centre for Finance, University of Gothenburg, Box 640, SE Gothenburg, Sweden.

Option Pricing. Prof. Dr. Svetlozar (Zari) Rachev

A SIMPLE OPTION FORMULA FOR GENERAL JUMP-DIFFUSION AND OTHER EXPONENTIAL LÉVY PROCESSES

Hedging of Life Insurance Liabilities

The Black-Scholes pricing formulas

Quanto Adjustments in the Presence of Stochastic Volatility

Option Pricing in ARCH-type Models: with Detailed Proofs. Nr. 10 März 1995

Transcription:

On exponentially ane martingales AMAMEF 2007, Bedlewo Johannes Muhle-Karbe Joint work with Jan Kallsen HVB-Institut für Finanzmathematik, Technische Universität München 1

Outline 1. Semimartingale characteristics 2. Ane processes 3. Exponentially ane martingales 4. Applications HVB-Institut für Finanzmathematik, Technische Universität München 2

Semimartingale characteristics Idea: Local characterization of semimartingales Deterministic: Linear functions characterized by constant increments Derivative: local approximation by linear functions Stochastic analogon: Lévy processes characterized by independent, stationary increments Semimartingale characteristics: local approximation by Lévy processes HVB-Institut für Finanzmathematik, Technische Universität München 3

Semimartingale characteristics Linear function determined by slope b R Distribution of Lévy process (X t ) t R+ on R d determined by Lévy-Khintchine triplet (b, c, F ) (Dierential) Semimartingale characteristics: X t := (b t (ω), c t (ω), F t (ω, )) Local Lévy-Khintchine triplet, time-dependent and random Connection to (integral) characteristics from Jacod & Shiryaev: B t = t 0 b s ds, C t = t 0 c s ds, ν([0, t] G) = t 0 F s (G)ds HVB-Institut für Finanzmathematik, Technische Universität München 4

Semimartingale characteristics Idea: Modeling through local dynamics Deterministic: Ordinary dierential equation d dt X t = f(t, X t ) Stochastic analogon: Martingale problem, X = (b, c, F ) with β, γ, ϕ constant: X Lévy process b t (ω) = β(t, X t (ω)) c t (ω) = γ(t, X t (ω)) F t (ω, G) = ϕ(t, G, X t (ω)) HVB-Institut für Finanzmathematik, Technische Universität München 5

Ane processes Ane process: Characteristics X = (b, c, F ) ane in X : b t (ω) = β 0 + c t (ω) = γ 0 + d Xt (ω)β j j j=1 m Xt (ω)γ j j j=1 F t (G, ω) = ϕ 0 (G) + m Xt (ω)ϕ j j (G) j=1 (β j, γ j, ϕ j ) given Lévy-Khintchine triplets Due, Filipovi & Schachermayer (2003): Admissibility conditions for existence and uniqueness, Filipovi (2005): time-inhomogeneous triplets HVB-Institut für Finanzmathematik, Technische Universität München 6

Ane processes Example: Stochastic volatility model of Heston (1993) S t = E (X) t asset price, v t volatility, where (v, X) solves dv t = (κ λv t )dt + σ v t dz t dx t = (µ + δv t )dt + v t dw t W, Z Brownian motions with constant correlation ϱ Characteristics: ( v X) ane in v = v t = (( ) ( ) ) κ λvt σ, 2 v t σϱv t, 0 µ δv t σϱv t v t HVB-Institut für Finanzmathematik, Technische Universität München 7

Ane processes Example: Model of Carr, Geman, Madan & Yor (2001) X t = X 0 + L Vt dv t = v t dt, dv t = λv t dt + dz t L, Z independent Lévy processes with Lévy-Khintchine triplets (b L, c L, F L ) and (b Z, 0, F Z ) Characteristics: (( ) ( ) b Z λv t 0 0 b L, v t 0 c L, v t 1 G (y, 0)F Z (dy) + 1 G (0, x)f L (dx)v t ) ane in v HVB-Institut für Finanzmathematik, Technische Universität München 8

Exponentially ane martingales X ane process, h truncation function Goal: Conditions for E (X i ) to be a martingale Jacod & Shiryaev (2003) E (X i ) is a local martingale, i h i (x i )x i ϕ j (dx) <, 0 j d βj i + (x i h i (x i ))ϕ j (dx) = 0, 0 j d Continuous case: Local martingale, i βj i = 0, 0 j d Condition on X, easy to check in applications HVB-Institut für Finanzmathematik, Technische Universität München 9

Exponentially ane martingales Criterion for true martingale property? For Lévy process X: E (X) local martingale, E (X) 0 E (X)martingale Does NOT hold in general for ane processes! Some general criteria either hard to check (e.g. Wong & Heyde (2004), Jacod & Shiryaev (2003), Kallsen & Shiryaev (2002)) Others not even necessary in the Lévy case (e.g. Lepingle & Memin (1978)) On the other hand: powerful theory of ane processes HVB-Institut für Finanzmathematik, Technische Universität München 10

Exponentially ane martingales Theorem: X ane relative to admissible Lévy-Khintchine triplets (β j, γ j, ϕ j ), 0 j d. Then E (X i ) is a martingale, if 1. E (X i ) 0, 2. h i (x i )x i ϕ j (dx) <, 0 j d 3. βj i + (x i h i (x))ϕ j (dx) = 0, 0 j d 4. { x k >1} xk 1 + x i ϕ j (dx) <, 1 k, j d Similar criterion for exp(x i ) instead of E (X i ) Extension to time-inhomogeneous ane processes possible HVB-Institut für Finanzmathematik, Technische Universität München 11

Exponentially ane martingales Continuous case (e.g. Heston (1993)): E (X) positive local martingale martingale Also holds for CGMY asset price S S positive, if F L ((, 1)) = 0 S local martingale, if (yh(y))f L (dy) <, b L + (y h(y))f L (dy) = 0 For PII X: E (X) positive local martingale martingale HVB-Institut für Finanzmathematik, Technische Universität München 12

Application 1: Absolutely continuous change of measure X, Y semimartingales with ane characteristics Goal: Criterion for P Y loc P X Application: X model for asset price under physical, Y under risk neutral measure. Equivalence for arbitrage theory Idea: Dene appropriate candidate Z for density process Show: Z exponentially ane, local martingale martingale Dene Q loc P X via density process Z Q = P Y by Girsanov and uniqueness of ane martingale problems HVB-Institut für Finanzmathematik, Technische Universität München 13

Application 1: Absolutely continuous change of measure Similar results by Cheridito, Filipovi and Yor (2005) in more general setup Here, the moment conditions are often less restrictive though Example: Esscher change of measure Condition in Cheridito, Filipovi, & Yor (2005): (H x)e H x ϕ j (dx) <, 0 j d { x >1} Condition here: { x >1} e H x ϕ j (dx) <, 0 j d HVB-Institut für Finanzmathematik, Technische Universität München 14

Application 2: Exponential moments X R d -valued ane process Due, Filipovi and Schachermayer (2003): conditional characteristic function given by E(e iu X T F t ) = exp(φ(t t, iu) + Ψ(T t, iu) X t ), Φ and Ψ solve integro-dierential equations with initial values 0, iu If analytic extension to open set U exists, E(e p X T F t ) = exp(φ(t t, p) + Ψ(T t, p) X t ), p U Problem: construction of analytic extension is often tedious HVB-Institut für Finanzmathematik, Technische Universität München 15

Application 2: Exponential moments Alternative approach: Assume solutions Φ and Ψ to integro-dierential equations with initial values 0 and p R d exist Dene N t := Φ(T t) + Ψ(T t)x t Show: (X, N) is ane, exp(n) is a local martingale Results on time-inhomogeneous exponentially ane martingales, (mild) condition on the big jumps of X martingale Martingale property yields E(e p X T F t ) = E(e N T F t ) = e N t = exp(φ(t t) + Ψ(T t) X t ) HVB-Institut für Finanzmathematik, Technische Universität München 16

Application 3: Portfolio optimization Goal: Find trading strategy ϕ, such that E(u(V T (ϕ))) E(u(V T (ψ))), ψ u utility function Example: Power utility, i.e. u(x) = x 1 p /(1 p) ϕ, ψ admissible, i.e. V (ϕ), V (ψ) 0 Asset price modeled as an ane process, e.g. Heston (1993) or Carr, Geman, Madan & Yor (2001) HVB-Institut für Finanzmathematik, Technische Universität München 17

Application 3: Portfolio optimization Sucient criterion for optimality: If there exists a positive martingale Z, such that 1. (ZS) T is a local martingale 2. Z T = u (V T (ϕ)) 3. (ZV (ϕ)) T is a martingale we have E(u(V T (ϕ))) E(u(V T (ψ))), ψ Observation: S, V (ϕ) and u (V (ϕ)) exponentially ane HVB-Institut für Finanzmathematik, Technische Universität München 18

Application 3: Portfolio optimization Idea: Make an exponentially ane ansatz for Z as well! Computation of ansatz functions through drift conditions Verication of the candidate processes with results on exponentially ane martingales Approach works for the models proposed by Heston (1993) and Carr, Geman, Madan & Yor (2001) among others HVB-Institut für Finanzmathematik, Technische Universität München 19

References Carr, Geman, Madan & Yor (2001): Stochastic volatility for Lévy processes, Mathematical Finance 13(3), 345-382. Cheridito, Filipovi & Yor (2005): Equivalent and absolutely continuous measure changes for jump-diusion processes, The Annals of Applied Probability 15(3), 1713-1732 Due, Filipovi & Schachermayer (2003): Ane processes and applications in nance, The Annals of Applied Probability, 13(3), 984-1053 Filipovi (2005): Time-inhomogeneous ane processes, Stochastic Processes and their Applications 115(4), 639-659 Heston (1993): A closed-form solution for options with stochastic volatilities with applications to bond and currency options, The Review of Financial Studies, 6(2), 327-343 HVB-Institut für Finanzmathematik, Technische Universität München 20

References Jacod & Shiryaev (2003): Limit theorems for stochastic processes, Springer Verlag, Berlin, second edition Kallsen & Shiryaev (2002): The cumulant process and Esscher's change of measure, Finance and Stochastics, 6(4), 397-428 Lépingle & Mémin (1978): Sur l'intégrabilité uniforme des martingales exponentielles, Zur Wahrscheinlichkeit Verwandte Gebiete, 42(3), 175-203 Wong & Heyde (2004): On the martingale property of stochastic exponentials, Journal of Applied Probability, 41(3), 654-664 HVB-Institut für Finanzmathematik, Technische Universität München 21