Private Equity Fund Valuation and Systematic Risk
|
|
|
- Julius Hawkins
- 9 years ago
- Views:
Transcription
1 An Equilibrium Approach and Empirical Evidence Axel Buchner 1, Christoph Kaserer 2, Niklas Wagner 3 Santa Clara University, March 3th 29 1 Munich University of Technology 2 Munich University of Technology 3 Passau University
2 Table of Contents I 1 Motivation 2 3 Assumptions Derivation and Result Numerical Illustration 4 Derivation and Result Numerical Illustration 5
3 General Problem The illiquid character of private equity investments poses particular challenges for private equity (PE) research. As PE investments are not traded on secondary markets, liquidity is low and observable market prices are missing. Lack of Liquidity is a critical issue in evaluating PE investments. Therefore, valuation is a crucial task. The optimal allocation of PE in a investment portfolio typically requires the risk-return characteristics of PE as an asset class.
4 Contents Motivation Model PE as an asset class under the simplifying assumption of a frictionless market and knowledge of investor preferences. Derive a first value assessment (upper boundary) assuming no private valuation information is available. Derive the theoretical (boundary) value of a typical private equity fund based on equilibrium asset pricing considerations. Valuation is based on a stochastic model of a typical fund s cash flows, capital drawdowns and distributions.
5 General Assumptions and Notation Assumption Assumption 1: We consider a Private Equity fund with total (initial) commitments denoted by C. Assumption 2: The PE fund has a total (legal) maturity T l and a commitment period T c, where T l T c must hold. Cumulated capital drawdowns up to t are denoted D t, undrawn committed amounts up to time t are U t. Under these assumptions it must hold: D t = C U t, where D = and U = C.
6 Cumulated Capital Drawdowns I Assumption Assumption 3: Capital drawdowns over the commitment period T c occur in continuous-time. The dynamics of the cumulated drawdowns D t can be described by the ordinary differential equation: dd t = δ t U t 1 { t Tc }dt, where δ t denotes the rate of contribution or simply the fund s drawdown rate at time t. 1 { } is an indicator function.
7 Cumulated Capital Drawdowns II The solution of the ordinary differential equation (1) can be derived by substituting the identity dd t = du t, and using the initial condition U = C. It follows: D t = C C exp dd t = δ t C exp t t δ u du, where t T c, δ u du 1 { t Tc }dt.
8 Stochastic Process Drawdown Rate Assumption Assumption 4: The drawdown rate is modeled by a non-negative stochastic process {δ t, t T c }. In particular, the mean-reverting square root process dδ t = κ(θ δ t )dt + σ δ δt db δ,t is applied, where θ > denotes the long-run mean of the drawdown rate, κ > governs the rate of reversion to this mean and σ δ > reflects the volatility of the drawdown rate. B δ,t is a standard Brownian motion.
9 Simulated Capital Drawdowns I.25 1 Capital drawdowns Cumulated capital drawdowns Figure: Simulated Paths of the Capital Drawdowns (Left) and Cumulated Capital Drawdowns (Right); Parameters: C = 1, κ = 2, θ = 1, δ =.1 and σ δ =.2
10 Simulated Capital Drawdowns II.25 1 Capital drawdowns Cumulated capital drawdowns Figure: Simulated Paths of the Capital Drawdowns (Left) and Cumulated Capital Drawdowns (Right); Parameters: C = 1, κ = 2, θ = 1, δ =.1 and σ δ =.5
11 Simulated Capital Drawdowns III.2 Capital drawdowns Cumulated capital drawdowns Figure: Simulated Paths of the Capital Drawdowns (Left) and Cumulated Capital Drawdowns (Right); Parameters: C = 1, κ =.5, θ = 1, δ =.1 and σ δ =.2
12 Consistency Test: Capital Drawdowns I.18 Cumulated capital drawdowns Capital drawdowns Figure: Full Sample of Liquidated Funds (N = 95); Data set from Venture Economics, January 198 to June 23
13 Consistency Test: Capital Drawdowns II.2 Cumulated capital drawdowns Capital drawdowns Figure: VC-Funds of the Sample of Liquidated Funds (N = 47)
14 Consistency Test: Capital Drawdowns III.2 Cumulated capital drawdowns Capital drawdowns Figure: BO-Funds of the Sample of Liquidated Funds (N = 48)
15 General Assumptions and Notation Assumption Assumption 1: (Non-negative) capital distributions of the PE fund to its investors occur in continuous-time over the fund s legal lifetime T l. Assumption 2: Instantaneous capital distributions p t are assumed to be log-normally distributed according to d lnp t = µ t dt + σ P db P,t, where µ t denotes the time dependent drift and σ P the constant volatility of the stochastic process. B P,t is a standard Brownian motion that is uncorrelated with B δ,t, i.e., Cov t [db P,t, db δ,t ] =.
16 Multiple of the Fund Definition: The funds multiple M t is defined by: M t = t p sds/c. Expected instantaneous capital distributions are related to the fund multiple by the relationship: E t [p t ] = E t [dm t /dt]c. Assumption Assumption 3: The funds expected multiple M t is assumed to follow the ordinary differential equation: E s [dm t ] = α t (m E s [M t ])dt, s t, where m is the multiple s long-run mean and α is the constant speed of reversions to this mean.
17 Stochastic Process Capital Distributions From Assumption 2 it follows: [ t ] p t = p s exp µ u du + σ P (B P,t B P,s ). s If the multiple M t satisfies Assumption 3, it can be shown that the stochastic process of the instantaneous capital distributions is given by: { p t = αt(mc P s )exp 1 } 2 {α(t2 s 2 ) + σp(t 2 s)] + σ P (B P,t B P,s ), where (B P,t B P,s ) = ǫ t t s with ǫt N(, 1).
18 Simulated Capital Distributions I Capital distributions Cumulated capital distributions Figure: Simulated Paths of the Capital Distributions (Left) and Cumulated Capital Distributions (Right); Parameters: C = 1, m = 1.5, α =.5 and σ P =.2
19 Simulated Capital Distributions II Capital distributions Cumulated capital distributions Figure: Simulated Paths of the Capital Distributions (Left) and Cumulated Capital Distributions (Right); Parameters: C = 1, m = 1.5, α =.5 and σ P =.4
20 Simulated Capital Distributions III Capital distributions Cumulated capital distributions Figure: Simulated Paths of the Capital Distributions (Left) and Cumulated Capital Distributions (Right); Parameters: C = 1, m = 1.5, α =.2 and σ P =.2
21 Consistency Test: Capital Distributions I Cumulated capital distributions Capital distributions Figure: Full Sample of Liquidated Funds (N = 95); Data set from Venture Economics, January 198 to June 23
22 Consistency Test: Capital Distributions II Cumulated capital distributions Capital distributions Figure: VC-Funds of the Sample of Liquidated Funds (N = 47)
23 Consistency Test: Capital Distributions III Cumulated capital distributions Capital distributions Figure: BO-Funds of the Sample of Liquidated Funds (N = 48)
24 Simulated Fund Cash Flows Net cash flows Cumulated net cash flows Figure: Simulated Paths of the Net Cash Flows (Left) and Cumulated Net Cash Flows (Right); Parameters: C = 1, κ = 2, θ = 1, δ =.1, σ δ =.2, m = 1.5, α =.5 and σ P =.2
25 Assumptions Derivation and Result Numerical Illustration Assumptions Underlying the Valuation Assumption Assumption 1: PE funds are priced under the risk neutral measure as if they were traded in a frictionless capital market in equilibrium (upper price boundary). Assumption 2: There exists a representative investor with log utility such that in equilibrium expected returns of all assets are generated by a specialized version of the ICAPM. Assumption 3: The drawdown Rate δ t is uncorrelated with returns of the market portfolio. Assumption 4: The covariance σ PM between log capital distributions and returns of the market portfolio is constant.
26 Derivation I Assumptions Derivation and Result Numerical Illustration From Assumption 1 the (upper boundary) market value of a fund Vt F is defined as [ ] [ Tl ] Tl Vt F = E Q e r f (τ t) dp τ F t E Q e r f (τ t) dd τ 1 {t Tc } F t = V P t V D t, t where Vt P (Vt D ) is the present value of all outstanding capital distributions (drawdowns) at time t. Discounting by the riskless rate r f is valid, as all expectations are defined under risk-neutral or equivalent martingale measure Q t
27 Derivation II Assumptions Derivation and Result Numerical Illustration Applying Girsanov s Theorem, it follows that the underlying stochastic processes under the Q-measure are given by: dδ t = [κ (θ δ t ) λ δ σ δ δt ] dt + σ δ δt db Q δ,t, d ln p t = (µ t λ P σ P )dt + σ P db Q P,t, where B Q δ,t and BQ P,t are Q-Brownian motions; λ δ and λ P are market prices of risk, defined by: λ δ µ(δ t, t) r f σ(δ t, t), λ P µ(p t, t) r f σ(p t, t).
28 Result Assumptions Derivation and Result Numerical Illustration From Assumptions 2-4 the market prices of risk are given by λ δ = and λ P = σ PM /σ P. The (upper boundary) value of a private equity fund at any time t [, T l ] during its finite lifetime T l can then be stated as: Tl Vt F =α (m C P t ) e r f (τ t) e C(t,τ) dτ t Tl + U t e r f (τ t) (A (t, τ) B (t, τ)δ t )e A(t,τ) B(t,τ)δt dτ1 {t Tc }, t where A(t, T), B(t, T) and C(t, T) are known deterministic functions.
29 Assumptions Derivation and Result Numerical Illustration Dynamics of the s over Time I 1.5 Value Fund lifetime (in years) Riskless rate.3 Figure: Over the Fund s Lifetime for Varying Values of r f
30 Assumptions Derivation and Result Numerical Illustration Dynamics of the s over Time II Value m Fund lifetime (in years) Figure: Over the Fund s Lifetime for Varying Values of m
31 Assumptions Derivation and Result Numerical Illustration Dynamics of the s over Time III 1.5 Value alpha Fund lifetime (in years) 2 Figure: Over the Fund s Lifetime for Varying Values of α
32 Assumptions Derivation and Result Numerical Illustration Dynamics of the s over Time IV 1.5 Value Fund lifetime (in years) Covariance.1 Figure: Over the Fund s Lifetime for Varying Values of σ PM
33 Assumptions Derivation and Result Numerical Illustration Dynamics of the s over Time V Value Theta Fund lifetime (in years) Figure: Over the Fund s Lifetime for Varying Values of θ
34 Derivation I Derivation and Result Numerical Illustration Same assumptions that were employed to derive the market value (Assumptions 1-4, Section ). The (annualized) instantaneous return R F t of a private equity fund at time t is defined by: R F t = dv F t dt + dpt dt ddt dt Vt F = dv P t dt dv D t dt + dpt dt ddt dt Vt P Vt D. Taking the conditional expectation E P t [ ], the expected instantaneous fund return µ F t is given by: µ F t = E P t [ R F t ] = E P t [ ] dv P t dt Et P E P t [ dv D t dt ] + E P t [ dpt dt [ V P t ] E P t [V D t ] ] [ E P ddt ] t dt.
35 Derivation II Derivation and Result Numerical Illustration From Assumptions 1-4, it must hold that: [ ] [ dv Et P D t = Et P ddt dt dt [ ] [ dv Et P P t = Et P dpt dt dt ] + r f V D t ] + (r f + σ PM )V P t. Remark: Equilibrium where expected returns are generated by the specialized version of the ICAPM (Assumptions 1-2). The first equation holds as drawdowns are assumed to carry zero systematic risk (Assumptions 3). The second equation holds as constant covariance σ PM is assumed for distributions (Assumptions 4).
36 Result I Derivation and Result Numerical Illustration Substituting the previous results, the expected instantaneous fund return is given by: µ F Vt P t = r f + σ PM Vt P Vt D We can also view the expected fund returns from a traditional beta perspective. It follows: µ F t = r f + β F,t (µ M r f ) where µ M is the expected return of the market portfolio and β F,t is the beta coefficient of the fund at time t given by: β F,t = β P V P t Vt P Vt D with β P = σ PM /σ 2 M..
37 Result II Derivation and Result Numerical Illustration Or more generally, when the beta coefficient of the capital drawdowns β D : β F,t = β P V P t Vt P Vt D β D V P V D t t Vt D, i.e., the beta coefficient of the fund returns is the market value weighted average of the betas of the fund s capital distributions and drawdowns. This result implies that the beta coefficient of the fund is non-stationary whenever β P β D holds, i.e., capital distributions and drawdowns carry different levels of systematic risks. Quite similar result to Brennan (1973), Myers and Turnbull (1977) and Turnbull (1977) on the systematic risk of firms.
38 Derivation and Result Numerical Illustration Expected Return and over Time I Expected fund return Figure: Ex-ante Expected Returns Over the Fund s Lifetime Parameters choice: C = 1, T c = T l = 2, r f =.5, κ =.5, θ =.5, σ δ =.1, δ =.5, m = 1.5, α =.25, σ P =.2, σ PM =.5, µ M =.1125 and σ 2 M =.626.
39 Derivation and Result Numerical Illustration Expected Return and over Time II Table: Beta Coefficients Over the Lifetime of the Fund The Table shows the evolution of Vt P, V t P, (V t P/V t P Vt D ) and of the beta coefficient β F,t over the lifetime of the fund. Time t (in years) V P t V D t V P t V P t V D t β F,t
40 Conclusion We perform stochastic modeling and equilibrium pricing of private equity funds as an asset class. The paper provides a solution for the upper boundary market value of private equity funds with typical drawdown and distribution characteristics. Model parameters can be calibrated from a cross-section of historical cash flow data of private equity funds.
41 Outlook Motivation Future work may address the following points: Calibration and estimation for larger (available?) data sets. Pricing results and (short term?) emergence of secondary markets. Incorporate an illiquidity discount in the pricing model.
Modeling the Cash Flow Dynamics of Private Equity Funds Theory and Empirical Evidence
Modeling the Cash Flow Dynamics of Private Equity Funds Theory and Empirical Evidence Axel Buchner, Christoph Kaserer and Niklas Wagner This Version: February 29 Axel Buchner is at the Technical University
CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options
CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common
Stock Price Dynamics, Dividends and Option Prices with Volatility Feedback
Stock Price Dynamics, Dividends and Option Prices with Volatility Feedback Juho Kanniainen Tampere University of Technology New Thinking in Finance 12 Feb. 2014, London Based on J. Kanniainen and R. Piche,
Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 12: The Black-Scholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The Black-Scholes-Merton Model
Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.
LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing
WORKING PAPER SERIES
Working Paper No. 2006-02 Stochastic Modeling of Private Equity An Equilibrium Based Approach to Fund Valuation AXEL BUCHNER CHRISTOPH KASERER NIKLAS WAGNER WORKING PAPER SERIES Center for Entrepreneurial
The Heston Model. Hui Gong, UCL http://www.homepages.ucl.ac.uk/ ucahgon/ May 6, 2014
Hui Gong, UCL http://www.homepages.ucl.ac.uk/ ucahgon/ May 6, 2014 Generalized SV models Vanilla Call Option via Heston Itô s lemma for variance process Euler-Maruyama scheme Implement in Excel&VBA 1.
Online Appendix. Supplemental Material for Insider Trading, Stochastic Liquidity and. Equilibrium Prices. by Pierre Collin-Dufresne and Vyacheslav Fos
Online Appendix Supplemental Material for Insider Trading, Stochastic Liquidity and Equilibrium Prices by Pierre Collin-Dufresne and Vyacheslav Fos 1. Deterministic growth rate of noise trader volatility
Hedging Variable Annuity Guarantees
p. 1/4 Hedging Variable Annuity Guarantees Actuarial Society of Hong Kong Hong Kong, July 30 Phelim P Boyle Wilfrid Laurier University Thanks to Yan Liu and Adam Kolkiewicz for useful discussions. p. 2/4
On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price
On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. Black-Scholes Equation is derived using two methods: (1) risk-neutral measure; (2) - hedge. II.
Simulating Stochastic Differential Equations
Monte Carlo Simulation: IEOR E473 Fall 24 c 24 by Martin Haugh Simulating Stochastic Differential Equations 1 Brief Review of Stochastic Calculus and Itô s Lemma Let S t be the time t price of a particular
Option Pricing. 1 Introduction. Mrinal K. Ghosh
Option Pricing Mrinal K. Ghosh 1 Introduction We first introduce the basic terminology in option pricing. Option: An option is the right, but not the obligation to buy (or sell) an asset under specified
Pricing American Options without Expiry Date
Pricing American Options without Expiry Date Carisa K. W. Yu Department of Applied Mathematics The Hong Kong Polytechnic University Hung Hom, Hong Kong E-mail: [email protected] Abstract This paper
Arbitrage-Free Pricing Models
Arbitrage-Free Pricing Models Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Arbitrage-Free Pricing Models 15.450, Fall 2010 1 / 48 Outline 1 Introduction 2 Arbitrage and SPD 3
Expected default frequency
KM Model Expected default frequency Expected default frequency (EDF) is a forward-looking measure of actual probability of default. EDF is firm specific. KM model is based on the structural approach to
The Black-Scholes pricing formulas
The Black-Scholes pricing formulas Moty Katzman September 19, 2014 The Black-Scholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock
第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model
1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American
A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails
12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint
Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem
Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial
Valuation of the Surrender Option Embedded in Equity-Linked Life Insurance. Brennan Schwartz (1976,1979) Brennan Schwartz
Valuation of the Surrender Option Embedded in Equity-Linked Life Insurance Brennan Schwartz (976,979) Brennan Schwartz 04 2005 6. Introduction Compared to traditional insurance products, one distinguishing
The Black-Scholes Formula
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the
Hedging Options In The Incomplete Market With Stochastic Volatility. Rituparna Sen Sunday, Nov 15
Hedging Options In The Incomplete Market With Stochastic Volatility Rituparna Sen Sunday, Nov 15 1. Motivation This is a pure jump model and hence avoids the theoretical drawbacks of continuous path models.
Black-Scholes Option Pricing Model
Black-Scholes Option Pricing Model Nathan Coelen June 6, 22 1 Introduction Finance is one of the most rapidly changing and fastest growing areas in the corporate business world. Because of this rapid change,
Lecture 1: Stochastic Volatility and Local Volatility
Lecture 1: Stochastic Volatility and Local Volatility Jim Gatheral, Merrill Lynch Case Studies in Financial Modelling Course Notes, Courant Institute of Mathematical Sciences, Fall Term, 2002 Abstract
Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com
Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com In this Note we derive the Black Scholes PDE for an option V, given by @t + 1 + rs @S2 @S We derive the
Introduction to Arbitrage-Free Pricing: Fundamental Theorems
Introduction to Arbitrage-Free Pricing: Fundamental Theorems Dmitry Kramkov Carnegie Mellon University Workshop on Interdisciplinary Mathematics, Penn State, May 8-10, 2015 1 / 24 Outline Financial market
Fundamental Capital Valuation for IT Companies: A Real Options Approach
Capital Valuation for IT Companies: A Real Options Approach Chung Baek 1 Brice Dupoyet 2 Arun Prakash 3 Abstract This study attempts to estimate the fundamental capital value of a growing firm by combining
LECTURE 9: A MODEL FOR FOREIGN EXCHANGE
LECTURE 9: A MODEL FOR FOREIGN EXCHANGE 1. Foreign Exchange Contracts There was a time, not so long ago, when a U. S. dollar would buy you precisely.4 British pounds sterling 1, and a British pound sterling
Barrier Options. Peter Carr
Barrier Options Peter Carr Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU March 14th, 2008 What are Barrier Options?
Brownian Motion and Stochastic Flow Systems. J.M Harrison
Brownian Motion and Stochastic Flow Systems 1 J.M Harrison Report written by Siva K. Gorantla I. INTRODUCTION Brownian motion is the seemingly random movement of particles suspended in a fluid or a mathematical
More Exotic Options. 1 Barrier Options. 2 Compound Options. 3 Gap Options
More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options Definition; Some types The payoff of a Barrier option is path
The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models
780 w Interest Rate Models The Behavior of Bonds and Interest Rates Before discussing how a bond market-maker would delta-hedge, we first need to specify how bonds behave. Suppose we try to model a zero-coupon
Options 1 OPTIONS. Introduction
Options 1 OPTIONS Introduction A derivative is a financial instrument whose value is derived from the value of some underlying asset. A call option gives one the right to buy an asset at the exercise or
Markovian projection for volatility calibration
cutting edge. calibration Markovian projection for volatility calibration Vladimir Piterbarg looks at the Markovian projection method, a way of obtaining closed-form approximations of European-style option
Jung-Soon Hyun and Young-Hee Kim
J. Korean Math. Soc. 43 (2006), No. 4, pp. 845 858 TWO APPROACHES FOR STOCHASTIC INTEREST RATE OPTION MODEL Jung-Soon Hyun and Young-Hee Kim Abstract. We present two approaches of the stochastic interest
Properties of the SABR model
U.U.D.M. Project Report 2011:11 Properties of the SABR model Nan Zhang Examensarbete i matematik, 30 hp Handledare och examinator: Johan Tysk Juni 2011 Department of Mathematics Uppsala University ABSTRACT
Quanto Adjustments in the Presence of Stochastic Volatility
Quanto Adjustments in the Presence of tochastic Volatility Alexander Giese March 14, 01 Abstract This paper considers the pricing of quanto options in the presence of stochastic volatility. While it is
The Alpha and Beta of Private Equity Investments
The Alpha and Beta of Private Equity Investments Axel Buchner University of Passau, Germany October 24, 2014 IwouldliketothankOlegGredil, LudovicPhallippou, andrüdigerstuckeforhelpfulcommentsand discussions.
Tutorial: Structural Models of the Firm
Tutorial: Structural Models of the Firm Peter Ritchken Case Western Reserve University February 16, 2015 Peter Ritchken, Case Western Reserve University Tutorial: Structural Models of the Firm 1/61 Tutorial:
Mathematical Finance
Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European
1 The Black-Scholes model: extensions and hedging
1 The Black-Scholes model: extensions and hedging 1.1 Dividends Since we are now in a continuous time framework the dividend paid out at time t (or t ) is given by dd t = D t D t, where as before D denotes
On Market-Making and Delta-Hedging
On Market-Making and Delta-Hedging 1 Market Makers 2 Market-Making and Bond-Pricing On Market-Making and Delta-Hedging 1 Market Makers 2 Market-Making and Bond-Pricing What to market makers do? Provide
Numerical Methods for Option Pricing
Chapter 9 Numerical Methods for Option Pricing Equation (8.26) provides a way to evaluate option prices. For some simple options, such as the European call and put options, one can integrate (8.26) directly
Stochastic Skew in Currency Options
Stochastic Skew in Currency Options PETER CARR Bloomberg LP and Courant Institute, NYU LIUREN WU Zicklin School of Business, Baruch College Citigroup Wednesday, September 22, 2004 Overview There is a huge
Finite Differences Schemes for Pricing of European and American Options
Finite Differences Schemes for Pricing of European and American Options Margarida Mirador Fernandes IST Technical University of Lisbon Lisbon, Portugal November 009 Abstract Starting with the Black-Scholes
Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13.
Week 11 The Black-Scholes Model: Hull, Ch. 13. 1 The Black-Scholes Model Objective: To show how the Black-Scholes formula is derived and how it can be used to value options. 2 The Black-Scholes Model 1.
Black-Scholes Equation for Option Pricing
Black-Scholes Equation for Option Pricing By Ivan Karmazin, Jiacong Li 1. Introduction In early 1970s, Black, Scholes and Merton achieved a major breakthrough in pricing of European stock options and there
Stocks paying discrete dividends: modelling and option pricing
Stocks paying discrete dividends: modelling and option pricing Ralf Korn 1 and L. C. G. Rogers 2 Abstract In the Black-Scholes model, any dividends on stocks are paid continuously, but in reality dividends
Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies
Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies Drazen Pesjak Supervised by A.A. Tsvetkov 1, D. Posthuma 2 and S.A. Borovkova 3 MSc. Thesis Finance HONOURS TRACK Quantitative
Psychology and Economics (Lecture 17)
Psychology and Economics (Lecture 17) Xavier Gabaix April 13, 2004 Vast body of experimental evidence, demonstrates that discount rates are higher in the short-run than in the long-run. Consider a final
Modeling the Implied Volatility Surface. Jim Gatheral Stanford Financial Mathematics Seminar February 28, 2003
Modeling the Implied Volatility Surface Jim Gatheral Stanford Financial Mathematics Seminar February 28, 2003 This presentation represents only the personal opinions of the author and not those of Merrill
When to Refinance Mortgage Loans in a Stochastic Interest Rate Environment
When to Refinance Mortgage Loans in a Stochastic Interest Rate Environment Siwei Gan, Jin Zheng, Xiaoxia Feng, and Dejun Xie Abstract Refinancing refers to the replacement of an existing debt obligation
Martingale Pricing Applied to Options, Forwards and Futures
IEOR E4706: Financial Engineering: Discrete-Time Asset Pricing Fall 2005 c 2005 by Martin Haugh Martingale Pricing Applied to Options, Forwards and Futures We now apply martingale pricing theory to the
Likewise, the payoff of the better-of-two note may be decomposed as follows: Price of gold (US$/oz) 375 400 425 450 475 500 525 550 575 600 Oil price
Exchange Options Consider the Double Index Bull (DIB) note, which is suited to investors who believe that two indices will rally over a given term. The note typically pays no coupons and has a redemption
ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE
ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE YUAN TIAN This synopsis is designed merely for keep a record of the materials covered in lectures. Please refer to your own lecture notes for all proofs.
LECTURE 10.1 Default risk in Merton s model
LECTURE 10.1 Default risk in Merton s model Adriana Breccia March 12, 2012 1 1 MERTON S MODEL 1.1 Introduction Credit risk is the risk of suffering a financial loss due to the decline in the creditworthiness
α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =
Problem Set 4 Solutions
Chemistry 360 Dr Jean M Standard Problem Set 4 Solutions 1 Two moles of an ideal gas are compressed isothermally and reversibly at 98 K from 1 atm to 00 atm Calculate q, w, ΔU, and ΔH For an isothermal
The Term Structure of Lease Rates with Endogenous Default Triggers and Tenant Capital Structure: Theory and Evidence
The Term Structure of Lease Rates with Endogenous Default Triggers and Tenant Capital Structure: Theory and Evidence Sumit Agarwal, Brent W. Ambrose Hongming Huang, and Yildiray Yildirim Abstract This
Binomial lattice model for stock prices
Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }
Vanna-Volga Method for Foreign Exchange Implied Volatility Smile. Copyright Changwei Xiong 2011. January 2011. last update: Nov 27, 2013
Vanna-Volga Method for Foreign Exchange Implied Volatility Smile Copyright Changwei Xiong 011 January 011 last update: Nov 7, 01 TABLE OF CONTENTS TABLE OF CONTENTS...1 1. Trading Strategies of Vanilla
ANALYZING INVESTMENT RETURN OF ASSET PORTFOLIOS WITH MULTIVARIATE ORNSTEIN-UHLENBECK PROCESSES
ANALYZING INVESTMENT RETURN OF ASSET PORTFOLIOS WITH MULTIVARIATE ORNSTEIN-UHLENBECK PROCESSES by Xiaofeng Qian Doctor of Philosophy, Boston University, 27 Bachelor of Science, Peking University, 2 a Project
ENGINEERING AND HEDGING OF CORRIDOR PRODUCTS - with focus on FX linked instruments -
AARHUS SCHOOL OF BUSINESS AARHUS UNIVERSITY MASTER THESIS ENGINEERING AND HEDGING OF CORRIDOR PRODUCTS - with focus on FX linked instruments - AUTHORS: DANIELA ZABRE GEORGE RARES RADU SIMIAN SUPERVISOR:
Valuation of commodity derivatives when spot prices revert to a cyclical mean
Valuation of commodity derivatives when spot prices revert to a cyclical mean April, 24 Abstract This paper introduces a new continuous-time model based on the logarithm of the commodity spot price assuming
The Fair Valuation of Life Insurance Participating Policies: The Mortality Risk Role
The Fair Valuation of Life Insurance Participating Policies: The Mortality Risk Role Massimiliano Politano Department of Mathematics and Statistics University of Naples Federico II Via Cinthia, Monte S.Angelo
Black-Scholes. 3.1 Digital Options
3 Black-Scholes In this chapter, we will study the value of European digital and share digital options and standard European puts and calls under the Black-Scholes assumptions. We will also explain how
Option Pricing. Chapter 9 - Barrier Options - Stefan Ankirchner. University of Bonn. last update: 9th December 2013
Option Pricing Chapter 9 - Barrier Options - Stefan Ankirchner University of Bonn last update: 9th December 2013 Stefan Ankirchner Option Pricing 1 Standard barrier option Agenda What is a barrier option?
An exact formula for default swaptions pricing in the SSRJD stochastic intensity model
An exact formula for default swaptions pricing in the SSRJD stochastic intensity model Naoufel El-Bachir (joint work with D. Brigo, Banca IMI) Radon Institute, Linz May 31, 2007 ICMA Centre, University
Lectures. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. No tutorials in the first week
Lectures Sergei Fedotov 20912 - Introduction to Financial Mathematics No tutorials in the first week Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 1 1 Introduction Elementary economics
Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.
Chapter 11 Options Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Part C Determination of risk-adjusted discount rate. Part D Introduction to derivatives. Forwards
Markov modeling of Gas Futures
Markov modeling of Gas Futures p.1/31 Markov modeling of Gas Futures Leif Andersen Banc of America Securities February 2008 Agenda Markov modeling of Gas Futures p.2/31 This talk is based on a working
Risk/Arbitrage Strategies: An Application to Stock Option Portfolio Management
Risk/Arbitrage Strategies: An Application to Stock Option Portfolio Management Vincenzo Bochicchio, Niklaus Bühlmann, Stephane Junod and Hans-Fredo List Swiss Reinsurance Company Mythenquai 50/60, CH-8022
Alternative Price Processes for Black-Scholes: Empirical Evidence and Theory
Alternative Price Processes for Black-Scholes: Empirical Evidence and Theory Samuel W. Malone April 19, 2002 This work is supported by NSF VIGRE grant number DMS-9983320. Page 1 of 44 1 Introduction This
Real Estate Investments with Stochastic Cash Flows
Real Estate Investments with Stochastic Cash Flows Riaz Hussain Kania School of Management University of Scranton Scranton, PA 18510 [email protected] 570-941-7497 April 2006 JEL classification: G12
Pricing and Hedging of Oil Futures - A Unifying Approach -
Pricing and Hedging of Oil Futures - A Unifying Approach - Wolfgang Bühler, Olaf Korn, Rainer Schöbel* Contact information: Wolfgang Bühler Olaf Korn Rainer Schöbel University of Mannheim University of
Hedging Barriers. Liuren Wu. Zicklin School of Business, Baruch College (http://faculty.baruch.cuny.edu/lwu/)
Hedging Barriers Liuren Wu Zicklin School of Business, Baruch College (http://faculty.baruch.cuny.edu/lwu/) Based on joint work with Peter Carr (Bloomberg) Modeling and Hedging Using FX Options, March
Lecture 6 Black-Scholes PDE
Lecture 6 Black-Scholes PDE Lecture Notes by Andrzej Palczewski Computational Finance p. 1 Pricing function Let the dynamics of underlining S t be given in the risk-neutral measure Q by If the contingent
Pricing and Risk Management of Variable Annuity Guaranteed Benefits by Analytical Methods Longevity 10, September 3, 2014
Pricing and Risk Management of Variable Annuity Guaranteed Benefits by Analytical Methods Longevity 1, September 3, 214 Runhuan Feng, University of Illinois at Urbana-Champaign Joint work with Hans W.
INTEREST RATES AND FX MODELS
INTEREST RATES AND FX MODELS 8. Portfolio greeks Andrew Lesniewski Courant Institute of Mathematical Sciences New York University New York March 27, 2013 2 Interest Rates & FX Models Contents 1 Introduction
Chapter 13 The Black-Scholes-Merton Model
Chapter 13 The Black-Scholes-Merton Model March 3, 009 13.1. The Black-Scholes option pricing model assumes that the probability distribution of the stock price in one year(or at any other future time)
Monte Carlo Methods in Finance
Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction
An Introduction to Modeling Stock Price Returns With a View Towards Option Pricing
An Introduction to Modeling Stock Price Returns With a View Towards Option Pricing Kyle Chauvin August 21, 2006 This work is the product of a summer research project at the University of Kansas, conducted
Back to the past: option pricing using realized volatility
Back to the past: option pricing using realized volatility F. Corsi N. Fusari D. La Vecchia Swiss Finance Institute and University of Siena Swiss Finance Institute, University of Lugano University of Lugano
