鋰 電 池 技 術 及 產 業 發 展 趨 勢



Similar documents
IAA Commercial Vehicles Battery Technology. September 29 th, 2010

MAKING LITHIUM-ION SAFE THROUGH THERMAL MANAGEMENT

High Energy Rechargeable Li-S Cells for EV Application. Status, Challenges and Solutions

The Lithium-Ion Battery. Service Life Parameters

Automotive Lithium-ion Batteries

Performance Testing of Lithium-ion Batteries of Various Chemistries for EV and PHEV Applications

A Comparison of Lead Acid to Lithium-ion in Stationary Storage Applications

Building Battery Arrays with Lithium-Ion Cells

SAFE HARBOR STATEMENT

Second International Renewable Energy Storage Conference November 2007 Bonn/Germany. Overview on current status of lithium-ion batteries

Lithium Iron Phosphate High Current Rechargeable Lithium Ion Batteries

Electric Battery Actual and future Battery Technology Trends

Abuse Testing of Lithium Ion Cells: Internal Short Circuit, Accelerated Rate Calorimetry and Nail Penetration in Large Cells (1-20 Ah)

Lithium-Ion Battery Safety Study Using Multi-Physics Internal Short-Circuit Model

- Founded in Dec by Dr. Volker Klein and Dipl.-Ing. Gerd Sievert.

Sony s Energy Storage System. The Sony Lithium Ion Iron Phosphate (LFP) advantage

Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications

Energy Storage Systems Li-ion Philippe ULRICH

Approval Sheet for. Li-ion Battery (Lithium Iron Phosphate) Model: LiR14505F-600mAh

Storage technologies/research, from physics and chemistry to engineering

Application Note: Use of Low Resistivity Surface Mount PPTC in Li-ion Polymer Battery Packs

Supercapacitors in Micro- and Mild Hybrids with Lithium Titanate Oxide Batteries: Vehicle Simulations and Laboratory Tests

SAFETY PERFORMANCE OF A LARGE FORMAT, PHOSPHATE BASED LITHIUM-ION BATTERY

How Much Lithium does a LiIon EV battery really need?

State of Solid-State Batteries

High capacity battery packs

Li-ion Polymer Battery Specification

Future trends in the rechargeable battery market

PROGRAMME OF WORK FOR THE BIENNIUM Work on the inclusion of ultra capacitors in the UN Model Regulations

li-ion Polymer Battery Specification

Practical Examples of Galvanic Cells

Superior Lithium Polymer Battery

Storage Battery System Using Lithium ion Batteries

IEC nd Edition: All you need to know about the new standard

Inside the Nickel Metal Hydride Battery

Maritime Battery Technology , Lindholmen

Hybrids & Electric Vehicles Challenges and Opportunities

lithium iron phosphate

Lithium Ion Battery Specifications

Experimental Measurements of LiFePO 4 Battery Thermal Characteristics

TRANSPORT OF DANGEROUS GOODS

International English

Upscaling the Li-ion Battery for Sustainable Energy Storage Applications. Josh Thomas. Ångströmlaboratoriet

Working Towards Protection Guidance for Warehouse Storage Li-ion Batteries

Thermal Management of Batteries in Advanced Vehicles Using Phase-Change Materials

Materials Issues in Energy Storage. G. Ceder 3/1/2015 APS workshop San Antonio, TX

SUBAT. "Sustainable Batteries. Action 8.1.B.1.6 Assessment of Environmental Technologies for Support of Policy Decision.

Smart Batteries and Lithium Ion Voltage Profiles

Final Report Economic Analysis of Deploying Used Batteries in Power Systems

Chapter 2 Electric Vehicle Battery Technologies

Fraunhofer System Research for E-Mobility (FSEM) Current LCA results and need for further research

Lithium Battery Shipping Basics. Bob Richard

Saft Li-ion battery systems for hybrid and electric vehicles. Increasing energy efficiency and meeting environmental challenges

A comparative analysis of Lithium Iron Phosphate and Lead-Acid (flooded, gel and AGM) battery technology for marine applications

DESIGN AND SIMULATION OF LITHIUM- ION BATTERY THERMAL MANAGEMENT SYSTEM FOR MILD HYBRID VEHICLE APPLICATION

Clean and energy-efficient vehicles Advanced research and testing Battery systems

Neue Fahrzeugkonzepte mit dem Fokus Nachhaltigkeit: Lithium Ionen Batterien für Elektrofahrzeuge

UN Manual of Tests and Criteria, Sub-section 38.3, Amendments to the 5 th edition, effective 2014 January 1 st

4 ARE ELECTRIC VEHICLES SAFER THAN COMBUSTION ENGINE VEHICLES?

Li-Polymer Battery Technology Specification

The Copernican Moment for Electronic Devices

Advanced Energy Storage Materials for Battery Applications. Advanced Materials December 12 th, Peter H.L. Notten

How To Powertrain A Car With A Hybrid Powertrain

Specification. Li-ion Rechargeable Battery

Analysis of Battery Safety and Hazards Risk Mitigation. Cyrus N. Ashtiani

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems

Overview of Lithium Battery. Safety

Sodium Sulfur Battery. ENERGY STORAGE SYSTEM for Reducing CO2 Emissions

EVERGREEN (C.P.) USA INC. TEL: (650) FAX: (650) SPECIFICATIONS Lithium Battery CR123A- 1700mAh

High-power battery for back-up of telematic systems in cars

1. Scope This specification is applied to ICR Product Specification Table 1 No. Item Rated Performance Remark

Li-ion Rechargeable Battery. Specification

How To Understand The Chemistry Of A Lithium Ion Battery

WANXIANG TS16949 CERTIFIED

Optimising the daily operation of industrial trucks

The Tesla Roadster battery pack is comprised of about 6800 of these cells, and the entire pack has a mass of about 450kg.

PHEV Energy Storage Performance/Life/Cost Trade-off Analysis

LITHIUM/AIR SEMI-FUEL CELLS: HIGH ENERGY DENSITY BATTERIES BASED ON LITHIUM METAL ELECTRODES

GAIA Li-Ion Batteries: Evolution or Revolution?

LITHIUM-ION ENERGY MODULES HEM & HPM SERIES

E-mobility Quarterly Index

Safety Issues for Lithium-Ion Batteries

Designing Applications with Lithium-Ion Batteries

Cella Energy Safe, low cost hydrogen storage. Chris Hobbs

Comparative safety study of Lithium ion Batteries

Elektrofahrzeug mit Range Extender die Entwicklungsherausforderung Electric Vehicle with Range Extender. The developement challenge

Energizer Non-Rechargeable Batteries: Frequently Asked Questions

Lithium Battery Testing Under UN/DOT 38.3

Advanced Secondary Batteries And Their Applications for Hybrid and Electric Vehicles Su-Chee Simon Wang

Testing and Evaluation of Energy Storage Devices

Volvo Cars, Plug-In Hybrid Concept Development

A Guide to the Safe Use of Secondary Lithium Ion Batteries in Notebook-type Personal Computers

Control of High Efficiency PEM Fuel Cells for Long Life, Low Power Applications Part I

LITHIUM BATTERY CR123A SPECIFICATION

Christophe Pillot GLOBAL MARKET ISSUES & TRENDS. Director

Zentrum für Sonnenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)

Modeling of Electric Vehicles (EVs) for EV Grid Integration Study

Cost-Benefit Analysis of Plug-In Hybrid- Electric Vehicle Technology

48V eco-hybrid Systems

Transcription:

鋰 電 池 技 術 及 產 業 發 展 趨 勢 潘 金 平 E-mail: jppan@itri.org.tw Tel: 035-915148 工 業 技 術 研 究 院 材 料 與 化 工 研 究 所 2011/3/22

鋰 電 池 電 動 車 生 產 狀 況 EV Benefits: Cost saving (fuel and maintenance) Reduce/eliminate CO2 emissions Fuel up at home Can provide back up power to your house PEVH:Primearth EV Energy AESC:Automotive Energy Supply BEJ:Blue Energy Japan LEJ:Lithium Energy Japan HVE: 日 立 車 輛 能 源 JCS:Johnson Controls-Saft Advanced Power Solutions

電 動 車 & 動 力 鋰 電 池 : 關 鍵 問 題 EV Li ion Battery Module 電 動 車 關 鍵 問 題 Energy Storage Service Model Electric Propulsion Telematics 動 力 鋰 電 池 關 鍵 問 題 Cost &Safety High Energy High Power High charge Cycle Life

鎳 氫 電 池 便 宜 穩 定 材 料 用 途 價 格 ( 每 顆 / 元 ) 優 勢 劣 勢 電 池 芯 生 產 廠 商 代 表 性 車 款 各 種 電 動 車 用 電 池 比 較 表 49.5-82.5 金 山 電 鎳 氫 鎳 金 屬 為 主 油 電 混 合 車 - 產 品 穩 定 性 高 - 價 格 便 宜 - 工 作 溫 度 範 圍 廣 - 輕 微 用 電 憶 性 Toyota Prius 第 3 代 純 電 動 車 99-115.5 - 能 量 密 度 高 - 起 始 電 壓 高 - 循 環 壽 命 短 - 安 全 性 較 差 能 元 資 料 來 源 : 各 生 產 廠 商 / 非 凡 新 聞 周 刊 98.08.23 三 元 系 鈷 鎳 錳 BMW Mine E Luxgen MPV 鋰 錳 鋰 錳 ( 主 要 ) 純 電 動 車 82.5-105.5 - 技 術 較 為 成 熟 - 大 電 流 放 電 特 性 佳 - 高 溫 (>70 ) 環 境 影 響 壽 命 能 元 有 量 Mitsubishi-SHI I- Mi EV 通 用 Volt 鋰 鐵 鋰 鐵 磷 酸 純 電 動 車 92.5-105.5 鋰 鐵 電 池 循 環 壽 命 長 - 價 格 便 宜 - 循 環 壽 命 長 - 安 全 性 高 - 起 始 電 壓 低 - 技 術 萌 芽 階 段 - 體 積 能 量 密 度 較 低 必 翔 昇 陽 瑞 能 比 亞 迪 F3DM

鋰 離 子 / 鋰 高 分 子 電 池 工 作 原 理 正 極 : LiCoO 2 Li (1-x) CoO 2 +xli + +xe - 負 極 : C 6 +xli + +xe - Li x C 6 Charge 總 反 應 : LiCoO 2 +C 6 Li (1-x) CoO 2 +Li x C 6 Discharge Heterogeneous electrochemical reaction with transportation of ion and electron e - e - M M M M M M e M M M + e - M + M + e - e- e - e - e M M e - M + M + M + M+ + M + M + M M M M Energy density Power density Cycle life Safety Cost Charge rate

6.3% BOM of LFP Battery (40Ah: Prismatic Power Cell) 材 料 成 本 分 析 13.7% 1.1% 3.1% 0.4% 3.5% 2.3% 29.9% Cathode Al Anode Cu Separator Electrolyte Ccover with vent/cid Case Conductive carbon 2.1% PVDF/NMP 23.8% 13.7% Others (pin,ptc,disk,tab,tape)

ESTIMATED MATERIAL COST OF BARE LI-ION CELLS (NOT INCLUDE CAN, SAFETY VENT AND COVER) Cost of positive material is more sensitive for energy cells Power cells need cost reductions in other components too (e.g. separator, electrolyte, Cap design, etc.) A cost target of completed battery for $250~300/kWh is feasible!

各 種 鋰 離 子 電 池 材 料 資 料 來 源 : 1st Int l Rechargeable Battery Expo-Lithium-ion Batteries for Advanced Automobiles, GS Yuasa Corp., 溫 田 敏 之

快 速 充 電 負 極 材 料

High Power Anode Material (Li 3 ) 8a (Li, Ti 5 ) 16d (O 12 ) 32e + 3 e - + 3 Li + 3Ti +4 3Ti +3 (Li 6 ) 16c (Li, Ti 5 ) 16d (O 12 ) 32e Spinel Rock salt Enerdel Toshiba Pros & Cons of Li 4 Ti Ti 5 O 12 - High-rate charge capability - Safe (3D spinel structure) - No SEI (high potential~1.5v) - Long cycle life - Low cost< US 20/Kg - Low capacity(160 mah/g) - Low electron conductivity

高 安 全 電 池 技 術

Capacity & Cell Number of Li-ion Battery 200-5000 cells 1 cell 10 cells 10 recalls of NB & Mb in 2007-08 from leading companies 12

Safety mechanism of Li ion battery (pack) Abuse condition Internal Short External Short Over Charge Charge after Over Discharge 1 St :Electronic Design Protected circuit(i V T abnormal) Protected circuit (PACK) Protected circuit (PACK) Pre-Charge (PACK) 2 nd :Mechanic Design PTC CID 2009 3 rd :Material Design Separator shut down ~130 Thermal setting technology Damage Heating Gas emission Fire Explosion STOBA ( self terminated oligomers with hyper-branched architecture) cross-link @abuse temperature

Nail pentration test of different kinds of cathode chemistry vs. energy density of Li-ion cells Cathode chemistry LiMn 2 O 4 LiCoO 2 Li[Ni,Co,Mn]O 2 Cell energy density (Wh/kg) 132-148 180 160-180 Cell types 18650, 5099130 (soft pack) 503759 (soft pack) 18650, 7799130(soft pack) Cell capacity (Ah) 1.4, 5.0 1.3 2, 10 Nail penetration test (Nail Φ=2.5mm) Φ=2.5~5 mm) w/o STOBA w STOBA Fail Pass Fail Pass Fail Pass

Temperature Curve of the Nail Test of LiCoO 2 Cell 4.5 700 Voltage(V) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Cell Voltage 1.3Ah w/o STOBA 1.3Ah with STOBA Short point temp. 1.3Ah w/o STOBA 1.3Ah with STOBA 600 500 400 300 200 100 Temp.( o C) 0.0 0 0 10 20 30 40 50 60 Time (sec)

Temperature Curve of the Nail Test of LiMn 2 O 4 18650 Cell 650 600 550 500 LiMn 2 O 4, =2.5mm, v=1.0mm/sec w STOBA (1400mA) w/o STOBA (1400mAh) 450 400 Temp. ( o C) 350 300 250 200 150 100 50 0 0 20 40 60 80 100 120 Time (sec)

High C rates test of LiMn 2 O 4 18650 cells w/o STOBA w/o STOBA 4.2 0.2C 1C 2C 8C 10C with STOBA with STOBA 4.2 0.2C 1C 2C 8C 10C 4 4 3.8 3.8 Voltage (V) 3.6 3.4 3.2 Voltage (V) 3.6 3.4 3.2 3 3 2.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Capacity (Ah) 2.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Capacity (Ah) C rates capacity ratio(%) 1C 2C/1C 8C/1C 10C/1C w/o STOBA 1.47Ah 99 96 95 1C 2C/1C 8C/1C 10C/1C with STOBA 1.47Ah 98 93 90

Cycle test of 10Ah LNCM 7799130 cells at RT 100 10Ah 1C-1C cycle RT 25 o C, 4.1-3.2V capacity retention(%) 90 80 70 60 50 40 30 20 10 STOBA inside 0% STOBA 0 0 150 300 450 600 750 900 1050 1200 1350 1500 Resistance (Fresh cell) Resistance (Cycle cell) Resistance increased(%) 10Ah+0% 1.86 m-ohm 4.34 m-ohm (888 cycles) 133% 10Ah+ STOBA 2.31 m-ohm 4.02 m-ohm (1024 cycles) 74%

Cycle life of LiNiCoMnO2 Battery(776285) 1C/1C@RT 1C/1C@55 3000 3000 Discharge Capacity (Ah) 2500 2000 1500 1000 1C/1C Cycle 2 Cyc. 400 Cyc. Eff. @RT (mah) (mah) (%) 500 0% STOBA 2769 2467 89% 2% STOBA 2847 2417 85% 0 0 50 100 150 200 250 300 350 400 Cycle Number Discharge Capacity (Ah) 2500 2000 1500 1000 500 1C/1C Cycle 2 Cyc. 500 Cyc. Eff. @55 o C (mah) (mah) (%) 0% STOBA 2941 1827 62% 2% STOBA 2939 2243 76% 0 0 50 100 150 200 250 300 350 400 450 500 Cycle Number Long cycle life at H.T.

STOBA Production Cell/Pack verification E-Van demonstration project A Good Integration of STOBA (MCL) & Battery Companies & E-Van ( MSL) Amita Use STOBA-inside 5Ah pouch cells to form 1S6P module 84S*2 LiB pack by MSL STOBA-inside Paste MCL 1S6P STOBA material E-One Moli 3S35P Use STOBA-inside 2Ah cylindrical cells to form 3S35P module 28S LiB pack by MSL Delivery of production cells MSL System level verification Cell/Pack testing by MCL

Technology roadmap/ Diffusion Scenario For Battery(Japan) 2008 2010 2015 2020 2030 2050 Battery Capacity Battery Costs Distance per charging EVs PHEVs FCVs Spread 1x 1x 1/2x 130km 1.5x 1/7x Battery improvements 3x 1/10x 200km Lithium ion battery performance improvement Introduce and demo tests (400km,3000hrs) General use of fuel cell vehicles (800km,5000hrs) Commutes 7x 1/40x 500km Post-lithium ion battery development, etc. Genuine Diffusion Related Technology High performance batteries Rare earth substitute materials 後 鋰 電 池 時 代 (2020 年 ) 之 電 池 技 術 發 展 分 析 全 固 態 電 池 金 屬 - 空 氣 電 池 多 價 陽 離 子 電 池 燃 料 電 池 創 新 電 池 實 用 化 2020 年 以 後 之 功 率 型 車 用 電 池 性 能 目 標 : Energy Density: 600Wh/L(2020)/ 1000Wh/L(2030) 250Wh/Kg(2020)/ 500Wh/Kg(2030) Power Density:1500W/Kg(2020)/ 1000W/Kg(2030) Cycle Life: (10-15 年 ) Distance per Charging:200km(2020)/500km(2030) Cost:20JPY/Wh(2020)/10JPY/Wh)(2030)