A System for Possible Early Warning of Disastrous Solar Flares Jere Jenkins Ephraim Fischbach
116m In Decay 500 450 400 350 y = -0.000203x + 6.044443 R 2 = 0.980358 7 6 5 Counts/10s 300 250 200 4 3 ln(counts/10s) 150 2 100 50 1 0 0 0 2000 4000 6000 8000 10000 12000 14000 Time (s) Counts ln(counts) Linear (ln(counts))
Brookhaven National Laboratory Measurement of 32 Si Half-life David Alburger Garman Harbottle Eleanor Norton
D.E. Alburger, G. Harbottle, E.F. Norton, Earth and Planetary Science Letters 78 (1986) 168.
D.E. Alburger, G. Harbottle, E.F. Norton, Earth and Planetary Science Letters 78 (1986) 168.
D.E. Alburger, G. Harbottle, E.F. Norton, Earth and Planetary Science Letters 78 (1986) 168.
D.E. Alburger, G. Harbottle, E.F. Norton, Earth and Planetary Science Letters 78 (1986) 168.
Physikalisch-Technische Bundesanstalt (PTB) Europium Half-lives and Long Term Detector Stability Helmut Siegert Heinrich Schrader Ulrich Schötzig
H. Siegert, H. Schrader, U. Schoetzig, Applied Radiation and Isotopes 49 (1998) 1397.
H. Siegert, H. Schrader, U. Schötzig, Applied Radiation and Isotopes 49 (1998) 1397.
(7.51±1.07) x 10 5 Events missing
40 hours precursor
1.002 REVISED ROI 54 Mn Gross/Net December 2006 With Integrated GOES-11 X-rays A B C D E F G H 1.0E+00 1.001 1.0E-01 Normalized, Undecayed 54 Mn Counts/4 hrs 1.000 0.999 0.998 1.0E-02 1.0E-03 1.0E-04 1.0E-05 Integrated X-ray Energy (W/m 2 ) 0.997 1.0E-06 0.996 1.0E-07 11/29 12/4 12/9 12/14 12/19 12/24 12/29 1/3 1/8 Date (2006) For the letter key, see following page.
December 2006 Tag EName Start Stop Peak GOES Class Derived Position (SXI- GOES12 or EIT High Cadence Wavelength) gev_20061205_0745 2006/12/05 07:45:00 08:06:00 08:03:00 M1.8 S05E71 ( 930 ) gev_20061205_0907 2006/12/05 09:07:00 09:14:00 09:11:00 C1.5 S06E71 ( 930 ) A gev_20061205_1018 2006/12/05 10:18:00 10:45:00 10:35:00 X9.0 S06E59 ( 930 ) gev_20061206_0130 2006/12/06 01:30:00 03:15:00 02:20:00 M1.3 S06E67 ( 930 ) gev_20061206_0802 2006/12/06 08:02:00 09:03:00 08:23:00 M6.0 S02E65 ( 930 ) B gev_20061206_1829 2006/12/06 18:29:00 19:00:00 18:47:00 X6.5 S05E57 ( 930 ) C gev_20061206_2014 2006/12/06 20:14:00 20:22:00 20:19:00 M3.5 S03E55 ( 930 ) gev_20061207_0427 2006/12/07 04:27:00 05:20:00 04:45:00 C6.1 S05E51 ( 930 ) D gev_20061213_0214 2006/12/13 02:14:00 02:57:00 02:40:00 X3.4 S07W22 ( 930 ) gev_20061214_1636 2006/12/14 16:36:00 16:59:00 16:49:00 C1.2 S08W39 ( 930 ) E gev_20061214_2107 2006/12/14 21:07:00 22:26:00 22:15:00 X1.5 S06W46 ( 930 ) F gev_20061217_1447 2006/12/17 14:47:00 18:37:00 17:09:00 C2.1 S07W89 ( 930 ) gev_20061222_0345 2006/12/22 03:45:00 03:59:00 03:51:00 A2.2 S09E89 G gev_20061222_0449 2006/12/22 04:49:00 05:19:00 04:56:00 A5.7 N13E16 H gev_20061231_0706 2006/12/31 07:06:00 07:39:00 07:17:00 C1.3 S01E75 ( 933 ) Flare intensity denoted by letter class, A, B, C, M, X (least to greatest). Letter tags denote markers in plot on previous page.
40 hours precursor Why neutrinos? Minimum in relative count rate occurred at night, coincident with the timing of the flare (21:37 EST) Measured decay rate was trending down for ~40 hours (1.67 Earth rotations). This implies that the probable agent could pass through the Earth unimpeded. The only known particle emitted by the Sun that can do that is the neutrino.
Solar Neutrinos? 1.2 1.15 1.1 Super-K Data Correlation = 0.38, 181 points, prob=3x10-7 1.04 1.03 1.02 Normalized Nu-flux 1.05 1 0.95 0.9 0.85 1.01 1 0.99 0.98 0.97 1/R 2, a.u. -2 0.8 0.96 10/28/95 3/11/97 7/24/98 12/6/99 4/19/01 9/1/02 Date 7 Pt Avgd Normalized Phi-nu 1/R^2 Data from Yoo, et al., Phys Rev D 68, 092002 (2003)
7 Pt Avg'd Normalized BNL With Earth-Sun Distance 1.0020 1.04 1.03 Normalized BNL 1.0010 1.0000 0.9990 0.9980 1.02 1.01 1.00 0.99 0.98 0.97 0.96 08/81 02/82 09/82 03/83 10/83 04/84 11/84 06/85 12/85 07/86 1/R^2 (a.u.^2) Date Un-decayed 7pt avg USNO 1/R^2 Pearson Correlation Coefficient r=0.66, N=233, Prob=1.0x10-31 Data from: Alburger, et al., Earth and Planet. Sci. Lett., 78, (1986) 168-176
Raw Undecayed 226Ra PTB Data with Earth-Sun Distance Normalized 226 Ra Data 1.005 1.004 1.003 1.002 1.001 1 0.999 0.998 0.997 0.996 1.08 1.06 1.04 1.02 1.00 0.98 0.96 0.94 1/R 2 (a.u. -2 ) 0.995 3/23/83 3/22/84 3/22/85 3/22/86 3/22/87 3/21/88 3/21/89 3/21/90 3/21/91 3/20/92 3/20/93 3/20/94 3/20/95 3/19/96 3/19/97 3/19/98 3/19/99 3/18/00 0.92 Date Normalized Undecayed USNO 1/R^2 Pearson Correlation Coefficient r=0.62, N=1974, Prob=5.13x10-210 Data from Siegert, et al., Appl. Radiat. Isot. 49, 1397 (1998) Fig. 1
BNL 32Si and PTB 226Ra Data with Earth-Sun Distance BNL and PTB U(t) 1.002 1.04 1.03 1.001 1.02 1.01 1 1 0.99 0.999 0.98 0.97 0.998 0.96 1983.50 1984.00 1984.50 1985.00 1985.50 1986.00 1986.50 1/R 2 (a.u. -2 ) Date Raw BNL Raw PTB USNO 1/R^2 Pearson Correlation Coefficient r=0.66, N=39, Prob=5.8x10-6
Tritium t (days) t = 0 = 1 Jan. 1980 Reference: E. D. Falkenberg, Apeiron 8 (2), 32 (2001)
OSURR Cl-36
Parkhomov, A.G., Researches of alpha and beta radioactivity at long-term observations, arxiv:1004.1761v1 [physics.gen-ph], (2010)
Further Evidence Sub-annual periodicities
BNL/PTB Solar Core Period The joint power spectrum formed from the weighted-runningmean BNL and PTB power spectra. The peak is found at 11.23 year -1 with J=10.34.
Joint Power Statistic (Rieger) The joint power statistic using the BNL and PTB power spectra. The arrows indicate the search band 2.00 yr -1 to 2.25 yr -1. The peak is found at 2.11 yr -1 with joint power statistic J = 30.65.
From: Jenkins, J.H., et al., Concerning the Time Dependence of the Decay Rate of 137Cs. Physics Letters B, 2012(Under Review).
54 Mn Decays 2008-2013
54 Mn Half-life (2008-2013) Literature value (NNDC, 2013): T 1/2 = 312.12(6) days Detail (Net counts): 34,442 1-hour counts 1568.8 days (5.03 half-lives), 1.11x10 11 events detected in full energy peak. Weighted linear fit: T 1/2 = 311.662(1) days, χ 2 /d.o.f. = 1.66 Weighted exponential fit: General model Exp1: f(x) = a*exp(b*x) Coefficients (with 95% confidence bounds): a = 1.196e+07 (1.196e+07, 1.196e+07) b = -0.002224 (-0.002224, -0.002224) T 1/2 =311.667(1) days Goodness of fit: SSE: 1.707e+008 R-square: 1.00000 Adjusted R-square: 1.00000 RMSE: 70.4
Preliminary Results Data from 1/3/10-12/9/11 NOAA identifies 12033 solar events for the same period Our tests produced 256 decay flags Looking at the 413 strongest events, we find that 37% of the decay flags were followed by a stong solar event within 24 hours 50% of the solar events were preceded by at least one decay flag
Publications to date Jenkins, J.H. and E. Fischbach, Perturbation of nuclear decay rates during the solar flare of 2006 December 13. Astroparticle Physics, 2009. 31(6): p. 407-411. [DOI: 10.1016/j.astropartphys.2009.04.005] Jenkins, J.H., et al., Evidence of Correlations Between Nuclear Decay Rates and Earth-Sun Distance. Astroparticle Physics, 2009. 32(1): p. 42-46. [DOI: 10.1016/j.astropartphys.2009.05.004] Fischbach, E., et al., Space Science Reviews, 2009. 145(3): p. 285-335. [DOI: 10.1007/s11214-009-9518-5] Jenkins, J.H., D.W. Mundy, and E. Fischbach, Nucl. Instr. and Meth. A, 2010. 620(2-3): p. 332-342. [DOI: 10.1016/j.nima.2010.03.129] Sturrock, P.A., et al.,. Astroparticle Physics, 2010. 34(2): p. 121-127. [DOI: 10.1016/j.astropartphys.2010.06.004] Lindstrom, R. M., et al., Nucl. Instr. and Meth. A, 622 (2010) 93. [DOI: 10.1016/j.nima.2010.06.270] Javorsek II, D., et al., Astroparticle Physics, 2010. 34(3): p. 173-178. [DOI: 10.1016/j.astropartphys.2010.06.011] Fischbach, E., et al., Evidence for Solar Influences on Nuclear Decay Rates. Proceedings of the Fifth Meeting on CPT and Lorentz Symmetry, editor V.A. Kostelecky, Bloomington, Indiana, USA: World Scientific, p. 168-172. Sturrock, P.A., et al., Solar Physics, 2010. 267(2): p. 251-265. [DOI: 10.1007/s11207-010-9659-4] Sturrock, P., E. Fischbach, and J. Jenkins, Solar Physics, 2011. 272(1): p. 1-10. [DOI: 10.1007/s11207-011-9807-5] Sturrock, P.A., et al., The Astrophysical Journal, 2011. 737(2): p. 65. [ DOI: 10.1088/0004-637X/737/2/65] Lindstrom, R.M., et al., Nucl. Instr. and Meth. A, 2011. 659(1): p. 269-271. [DOI: 10.1016/j.nima.2011.08.046] Fischbach, E et al., Astrophysics and Space Science, 2012. 337(1): p. 39-45. [DOI: 10.1007/s10509-011-0808-5] Jenkins, J.H., et al., Astroparticle Physics, 2012. 37: p. 81-88. [DOI: 10.1016/j.astropartphys.2012.07.008] Krause, D.E., et al., Astroparticle Physics, 2012. 36(1): p. 51-56. [DOI: 10.1016/j.astropartphys.2012.05.002] Javorsek, D., et al., Astrophysics and Space Science, 2012. 342(1): p. 9-13. [DOI: 10.1007/s10509-012-1148-9] Sturrock, P.A., et al., Astroparticle Physics, 2012. 35(11): p. 755-758. [DOI: 10.1016/j.astropartphys.2012.03.002] Sturrock, P.A., et al., Astroparticle Physics, 2012. 36(1): p. 18-25. [DOI: 10.1016/j.astropartphys.2012.04.009] O Keefe, D., et al., Astrophysics and Space Science, 2013. 344(2): p. 297-303. [DOI: 10.1007/s10509-012-1336-7] Jenkins, J.H., et al., Applied Radiation and Isotopes, 2013. 74(0): p. 50-55. [DOI: 10.1016/j.apradiso.2012.12.010]
Questions?