Recent and Future Activities in HPC and Scientific Data Management Siegfried Benkner
|
|
|
- Richard Williamson
- 10 years ago
- Views:
Transcription
1 Recent and Future Activities in HPC and Scientific Data Management Siegfried Benkner Research Group Scientific Computing Faculty of Computer Science University of Vienna AUSTRIA
2 Research Group Scientific Computing One of twelve research groups at the Faculty of Computer Science, University of Vienna. Parallel Computing / HPC o o o Programming Models and Languages Compiler and Runtime Technologies Programming Environments and Tools Vienna Fortran, HPF+, Hybrid Programming, Multicore, GPU, Phi Grid/Cloud/Big Data o Compute and Data Services o Semantic Data Integration o Big Data and HPC Vienna Cloud Environment, VPH-Share,
3 Recent Research Projects PEPPHER, Performance Portability and Programmability for Heterogeneous Many-core Architectures European Commission, FP7, , Coordinator VPH-SHARE, Virtual Physiological Human - Sharing for Healthcare, European Commission, FP7, AutoTune - Automatic Online Tuning, European Commission, FP7, RETIDA - Real-Time Data Analytics for the Mobility Domain, FFG,
4 EU Project PEPPHER Performance Portability & Programmability for Heterogeneous Many-Core Architectures FP7 ICT, Computing Systems; Partners: UNIVIE, INRIA, LIU, Intel, Movidus, Codeplay, KIT, Chalmers, TUW Methodology & framework for development of performance portable code Execute same application efficiently on different heterogeneous architectures Support real hybrid execution to exploit all available computing units Application (C/C++ PEPPHER Framework Many-core CPU CPU+GPU PEPPHER Sim PePU (Movidius Focus: Single-node heterogeneous architectures Intel MIC
5 PEPPHER Framework Applications Embedded General Purpose HPC High-Level Coordination/Patterns/Skeletons Pla%orm Pla%orm Model Component Model (PDL Descriptor (PDL Components C/C++, OpenMP, CUDA, OpenCL, TBB, Offload Autotuned Algorithms Data Structures Transformation & Composition Component Task Graph Performance Models Performance feedback PEPPHER Run-time (StarPU Scheduling Strategy Scheduling Strategy Drivers (CUDA, OpenCL, OpenMP CPU GPU MIC SIM PePU Pla%orm Pla%orm Pla%orm Model Model (PDL Descriptor (PDL (PDL
6 The AutoTune Project FP7 ICT, Computing Systems; 42 months, Partners: TUM, UAB, CAPS, LRZ, ICHEC, UVIE Combine performance analysis and tuning into single framework. Periscope Tuning Framework (PTF Extend Periscope with automatic tuning plugins for performance and energy efficiency tuning. Design'Time' Coding' Performance'Analysis' Execute whole tuning process online (performance analysis and tuning during single application run. Use expert knowledge to guide search for performance properties and tuned versions. Tuning' Run,me' Performance'Analysis' Tuning'
7 Periscope Tuning Framework (PTF Parallel architectures Multicore servers Supercomputers (SuperMUC Accelerated systems (GPU, Xeon Phi Tuning (at Different Layers of SW Stack High-level language (directives/annotations Compilers / Transformation systems Runtime systems and libraries Operating system Programming paradigms MPI, MPI/OpenMP OpenCL/CUDA Parallel Patterns (PEPPHER Developed Tuning Plugins MPI Parameter Tuning Pipeline Patterns for CPU/GPU DVFS Plugin Compiler Flags Selection MPI Master/Worker Tuning OpenCL Worksize Tuning PTF available as open source:
8 EU Project VPH-Share Virtual Physiological Human: Sharing for Healthcare (European Commission, FP7, , Coordinator: The University of Sheffield VPH-Share developed a Cloud infostructure to facilitate integration of/ access to... Patient data across different systems, hospitals, countries... Information/models related to various parts and processes of human body Knowledge (guidelines, standards, protocols in research and clinical practice Specific requirements Complex, distributed, heterogeneous data (multi-scale, multi-modal Sensitive data (security, privacy, legal issues, data quality Specialized analytics to integrate bioinformatics and systems biology information with clinical observations
9 Retrieve Existing Data Select Workflow Infer missing items Return Results & Support Run simulation Infostructure VPH Outreach Knowledge Discovery Data Inference Data Services: Patient/Population HPC Infrastructure DraC 1v0, July 2012 University of Sheffield, UK Partners: VPH OP ViroLab Patient Centred Computational Workflows Knowledge Management Compute Services Project No: Co-ordinator: Personalised Model Patient Avatar Application Patient Data Workflow Inputs Workflow Outputs Users Decision Support Storage Services CYFRONET, PL Sheffield Teaching Hospitals, UK ATOS Origin, ES Kings College London, UK Universitat Pompeu Fabra, ES Empirica, DE SCS SRL, IT NHS IC, UK INRIA, FR IOR, IT Open Univ., UK Philips Elec., NL TU Eindhoven, NL Univ. Auckland, NZ Uv Amsterdam, NL UCL, UK Univ. Vienna, AT AATRM, ES FCRB, ES Cloud Platform (Public / Private (DEISA / PRACE p- medicine & VPH- Share: Sankt Augus9n, Friday, 31st August
10 VPH-Share Data Management Data Publication Suite select & annotate data with semantic concepts, de-identify selected data items expose data as Cloud services Institution Data Publication Suite Internal( Dataset( Publish Cloud Infrastructure Data Management Deploy & Expose Datasets Dataset Service Dataset( Data Service Environment (VDSE based on Vienna Cloud Environment (VCE provision of data sets (RDBs as Cloud services access via SQL or SPARQL provide on-demand customized views federation across multiple data sets preserve autonomy of underlying data sources Client Client Client SQL/SPARQL Virtual Dataset Service Query Dataset Service Virtual Dataset Services Dataset( Dataset( DBS DBS Semantic mechanisms to discover, link and search data Dataset Service Vienna Data Service Environment DBS DBS S. Benkner, Research Group Scientific Computing, University of Vienna.
11 VPH-Share Data Publication Suite S. Benkner, Research Group Scientific Computing, University of Vienna.
12 RETIDA Real-time data analytics for the mobility domain Austrian FFG, ICT of the Future, Real-time integration and analytics of large-scale heterogeneous data sources mobile phone data, floating car data, GIS, weather, social media, Massively parallel, adaptive execution of generic data analytics workflows support for heterogeneous architectures (GPUs, Xeon Phi, Application-specific visualizations S. Benkner, Research Group Scientific Computing, University of Vienna.
13 RETIDA Streaming Data Sources BatchProcessingLayer Scalable Storage (HDFS complete data set Stream processing (current data ServingLayer Computation of batch views Batch views Real-Time views Increment views Queries Real%TimeProcessingLayer Hadoop-based lambda architecture scalable and fault-tolerant processing real-time vs. batch High performance data pipeline C++ re-configurable framework real-time processing capabilities S. Benkner, Research Group Scientific Computing, University of Vienna.
14 Future Research Programming Support for Big Data Applications Taking Advantage of Heterogeneous Architectures Streaming and Real-Time Support Runtime systems for Big Data Applications Cloud-based Scientific Data Management (VDSE S. Benkner, Research Group Scientific Computing, University of Vienna.
Recent Advances in Periscope for Performance Analysis and Tuning
Recent Advances in Periscope for Performance Analysis and Tuning Isaias Compres, Michael Firbach, Michael Gerndt Robert Mijakovic, Yury Oleynik, Ventsislav Petkov Technische Universität München Yury Oleynik,
GPU System Architecture. Alan Gray EPCC The University of Edinburgh
GPU System Architecture EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? GPU-CPU comparison Architectural reasons for GPU performance advantages GPU accelerated systems
3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC-2016) March 10-11, 2016 VIT University, Chennai, India
3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC-2016) March 10-11, 2016 VIT University, Chennai, India Call for Papers Cloud computing has emerged as a de facto computing
1 st Symposium on Colossal Data and Networking (CDAN-2016) March 18-19, 2016 Medicaps Group of Institutions, Indore, India
1 st Symposium on Colossal Data and Networking (CDAN-2016) March 18-19, 2016 Medicaps Group of Institutions, Indore, India Call for Papers Colossal Data Analysis and Networking has emerged as a de facto
Part I Courses Syllabus
Part I Courses Syllabus This document provides detailed information about the basic courses of the MHPC first part activities. The list of courses is the following 1.1 Scientific Programming Environment
Dr. Raju Namburu Computational Sciences Campaign U.S. Army Research Laboratory. The Nation s Premier Laboratory for Land Forces UNCLASSIFIED
Dr. Raju Namburu Computational Sciences Campaign U.S. Army Research Laboratory 21 st Century Research Continuum Theory Theory embodied in computation Hypotheses tested through experiment SCIENTIFIC METHODS
HPC Wales Skills Academy Course Catalogue 2015
HPC Wales Skills Academy Course Catalogue 2015 Overview The HPC Wales Skills Academy provides a variety of courses and workshops aimed at building skills in High Performance Computing (HPC). Our courses
Reference Architecture, Requirements, Gaps, Roles
Reference Architecture, Requirements, Gaps, Roles The contents of this document are an excerpt from the brainstorming document M0014. The purpose is to show how a detailed Big Data Reference Architecture
An Oracle White Paper November 2010. Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics
An Oracle White Paper November 2010 Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics 1 Introduction New applications such as web searches, recommendation engines,
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON Overview * Introduction * Multiple faces of Big Data * Challenges of Big Data * Cloud Computing
HPC technology and future architecture
HPC technology and future architecture Visual Analysis for Extremely Large-Scale Scientific Computing KGT2 Internal Meeting INRIA France Benoit Lange [email protected] Toàn Nguyên [email protected]
Introducing PgOpenCL A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child
Introducing A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child Bio Tim Child 35 years experience of software development Formerly VP Oracle Corporation VP BEA Systems Inc.
Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o [email protected]
Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o [email protected] Informa(on & Communica(on Technology Sec(on (ICTS) Interna(onal Centre for Theore(cal Physics (ICTP) Mul(ple Socket
Xeon+FPGA Platform for the Data Center
Xeon+FPGA Platform for the Data Center ISCA/CARL 2015 PK Gupta, Director of Cloud Platform Technology, DCG/CPG Overview Data Center and Workloads Xeon+FPGA Accelerator Platform Applications and Eco-system
Programming models for heterogeneous computing. Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga
Programming models for heterogeneous computing Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga Talk outline [30 slides] 1. Introduction [5 slides] 2.
Case Study on Productivity and Performance of GPGPUs
Case Study on Productivity and Performance of GPGPUs Sandra Wienke [email protected] ZKI Arbeitskreis Supercomputing April 2012 Rechen- und Kommunikationszentrum (RZ) RWTH GPU-Cluster 56 Nvidia
High Performance Computing
High Parallel Computing Hybrid Program Coding Heterogeneous Program Coding Heterogeneous Parallel Coding Hybrid Parallel Coding High Performance Computing Highly Proficient Coding Highly Parallelized Code
Data-intensive HPC: opportunities and challenges. Patrick Valduriez
Data-intensive HPC: opportunities and challenges Patrick Valduriez Big Data Landscape Multi-$billion market! Big data = Hadoop = MapReduce? No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard,
High Performance Computing and Big Data: The coming wave.
High Performance Computing and Big Data: The coming wave. 1 In science and engineering, in order to compete, you must compute Today, the toughest challenges, and greatest opportunities, require computation
Data-Flow Awareness in Parallel Data Processing
Data-Flow Awareness in Parallel Data Processing D. Bednárek, J. Dokulil *, J. Yaghob, F. Zavoral Charles University Prague, Czech Republic * University of Vienna, Austria 6 th International Symposium on
Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers
Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers Haohuan Fu [email protected] High Performance Geo-Computing (HPGC) Group Center for Earth System Science Tsinghua University
Data Center and Cloud Computing Market Landscape and Challenges
Data Center and Cloud Computing Market Landscape and Challenges Manoj Roge, Director Wired & Data Center Solutions Xilinx Inc. #OpenPOWERSummit 1 Outline Data Center Trends Technology Challenges Solution
Debugging in Heterogeneous Environments with TotalView. ECMWF HPC Workshop 30 th October 2014
Debugging in Heterogeneous Environments with TotalView ECMWF HPC Workshop 30 th October 2014 Agenda Introduction Challenges TotalView overview Advanced features Current work and future plans 2014 Rogue
BSC vision on Big Data and extreme scale computing
BSC vision on Big Data and extreme scale computing Jesus Labarta, Eduard Ayguade,, Fabrizio Gagliardi, Rosa M. Badia, Toni Cortes, Jordi Torres, Adrian Cristal, Osman Unsal, David Carrera, Yolanda Becerra,
Scalable and High Performance Computing for Big Data Analytics in Understanding the Human Dynamics in the Mobile Age
Scalable and High Performance Computing for Big Data Analytics in Understanding the Human Dynamics in the Mobile Age Xuan Shi GRA: Bowei Xue University of Arkansas Spatiotemporal Modeling of Human Dynamics
Introduction to GPU Programming Languages
CSC 391/691: GPU Programming Fall 2011 Introduction to GPU Programming Languages Copyright 2011 Samuel S. Cho http://www.umiacs.umd.edu/ research/gpu/facilities.html Maryland CPU/GPU Cluster Infrastructure
Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing
Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing Innovation Intelligence Devin Jensen August 2012 Altair Knows HPC Altair is the only company that: makes HPC tools
IoT is a King, Big data is a Queen and Cloud is a Palace
IoT is a King, Big data is a Queen and Cloud is a Palace Abdur Rahim Innotec21 GmbH, Germany Create-Net, Italy Acknowledgements- ikaas Partners (KDDI and other partnes) Intelligent Knowledge-as-a-Service
Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms
Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Family-Based Platforms Executive Summary Complex simulations of structural and systems performance, such as car crash simulations,
Data Centric Systems (DCS)
Data Centric Systems (DCS) Architecture and Solutions for High Performance Computing, Big Data and High Performance Analytics High Performance Computing with Data Centric Systems 1 Data Centric Systems
Introduction to grid technologies, parallel and cloud computing. Alaa Osama Allam Saida Saad Mohamed Mohamed Ibrahim Gaber
Introduction to grid technologies, parallel and cloud computing Alaa Osama Allam Saida Saad Mohamed Mohamed Ibrahim Gaber OUTLINES Grid Computing Parallel programming technologies (MPI- Open MP-Cuda )
Optimizing a 3D-FWT code in a cluster of CPUs+GPUs
Optimizing a 3D-FWT code in a cluster of CPUs+GPUs Gregorio Bernabé Javier Cuenca Domingo Giménez Universidad de Murcia Scientific Computing and Parallel Programming Group XXIX Simposium Nacional de la
The Lattice Project: A Multi-Model Grid Computing System. Center for Bioinformatics and Computational Biology University of Maryland
The Lattice Project: A Multi-Model Grid Computing System Center for Bioinformatics and Computational Biology University of Maryland Parallel Computing PARALLEL COMPUTING a form of computation in which
Access, Documentation and Service Desk. Anupam Karmakar / Application Support Group / Astro Lab
Access, Documentation and Service Desk Anupam Karmakar / Application Support Group / Astro Lab Time to get answer to these questions Who is allowed to use LRZ hardware? My file system is full. How can
Cluster, Grid, Cloud Concepts
Cluster, Grid, Cloud Concepts Kalaiselvan.K Contents Section 1: Cluster Section 2: Grid Section 3: Cloud Cluster An Overview Need for a Cluster Cluster categorizations A computer cluster is a group of
An introduction to the @neurist System Architecture
IST 027703 Integrated Project of the 6 th Framework Programme www.aneurist.org White Paper An introduction to the rist System Architecture April, 2009 White Paper: An Introduction to therist System Architecture
Parallel Computing: Strategies and Implications. Dori Exterman CTO IncrediBuild.
Parallel Computing: Strategies and Implications Dori Exterman CTO IncrediBuild. In this session we will discuss Multi-threaded vs. Multi-Process Choosing between Multi-Core or Multi- Threaded development
HPC with Multicore and GPUs
HPC with Multicore and GPUs Stan Tomov Electrical Engineering and Computer Science Department University of Tennessee, Knoxville CS 594 Lecture Notes March 4, 2015 1/18 Outline! Introduction - Hardware
Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi
Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi ICPP 6 th International Workshop on Parallel Programming Models and Systems Software for High-End Computing October 1, 2013 Lyon, France
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control EP/K006487/1 UK PI: Prof Gareth Taylor (BU) China PI: Prof Yong-Hua Song (THU) Consortium UK Members: Brunel University
Oracle Big Data SQL Technical Update
Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical
Silviu Panica, Marian Neagul, Daniela Zaharie and Dana Petcu (Romania)
Silviu Panica, Marian Neagul, Daniela Zaharie and Dana Petcu (Romania) Outline Introduction EO challenges; EO and classical/cloud computing; EO Services The computing platform Cluster -> Grid -> Cloud
Big Data Visualization on the MIC
Big Data Visualization on the MIC Tim Dykes School of Creative Technologies University of Portsmouth [email protected] Many-Core Seminar Series 26/02/14 Splotch Team Tim Dykes, University of Portsmouth
Mining Large Datasets: Case of Mining Graph Data in the Cloud
Mining Large Datasets: Case of Mining Graph Data in the Cloud Sabeur Aridhi PhD in Computer Science with Laurent d Orazio, Mondher Maddouri and Engelbert Mephu Nguifo 16/05/2014 Sabeur Aridhi Mining Large
Manjrasoft Market Oriented Cloud Computing Platform
Manjrasoft Market Oriented Cloud Computing Platform Aneka Aneka is a market oriented Cloud development and management platform with rapid application development and workload distribution capabilities.
Outline. High Performance Computing (HPC) Big Data meets HPC. Case Studies: Some facts about Big Data Technologies HPC and Big Data converging
Outline High Performance Computing (HPC) Towards exascale computing: a brief history Challenges in the exascale era Big Data meets HPC Some facts about Big Data Technologies HPC and Big Data converging
Jean-Pierre Panziera Teratec 2011
Technologies for the future HPC systems Jean-Pierre Panziera Teratec 2011 3 petaflop systems : TERA 100, CURIE & IFERC Tera100 Curie IFERC 1.25 PetaFlops 256 TB ory 30 PB disk storage 140 000+ Xeon cores
Standard Big Data Architecture and Infrastructure
Standard Big Data Architecture and Infrastructure Wo Chang Digital Data Advisor Information Technology Laboratory (ITL) National Institute of Standards and Technology (NIST) [email protected] May 20, 2016
News and trends in Data Warehouse Automation, Big Data and BI. Johan Hendrickx & Dirk Vermeiren
News and trends in Data Warehouse Automation, Big Data and BI Johan Hendrickx & Dirk Vermeiren Extreme Agility from Source to Analysis DWH Appliances & DWH Automation Typical Architecture 3 What Business
Big Data R&D Initiative
Big Data R&D Initiative Howard Wactlar CISE Directorate National Science Foundation NIST Big Data Meeting June, 2012 Image Credit: Exploratorium. The Landscape: Smart Sensing, Reasoning and Decision Environment
< IMPACT > START ACCELERATE IMPACT
START ACCELERATE IMPACT IMPACT project has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n 632828 START ACCELERATE IMPACT WEBINAR #2 Technology
A Brief Introduction to Apache Tez
A Brief Introduction to Apache Tez Introduction It is a fact that data is basically the new currency of the modern business world. Companies that effectively maximize the value of their data (extract value
Extending the Power of FPGAs. Salil Raje, Xilinx
Extending the Power of FPGAs Salil Raje, Xilinx Extending the Power of FPGAs The Journey has Begun Salil Raje Xilinx Corporate Vice President Software and IP Products Development Agenda The Evolution of
Bringing Big Data Modelling into the Hands of Domain Experts
Bringing Big Data Modelling into the Hands of Domain Experts David Willingham Senior Application Engineer MathWorks [email protected] 2015 The MathWorks, Inc. 1 Data is the sword of the
A Case Study - Scaling Legacy Code on Next Generation Platforms
Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (2015) 000 000 www.elsevier.com/locate/procedia 24th International Meshing Roundtable (IMR24) A Case Study - Scaling Legacy
Resource Scheduling Best Practice in Hybrid Clusters
Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe Resource Scheduling Best Practice in Hybrid Clusters C. Cavazzoni a, A. Federico b, D. Galetti a, G. Morelli b, A. Pieretti
Evaluation of CUDA Fortran for the CFD code Strukti
Evaluation of CUDA Fortran for the CFD code Strukti Practical term report from Stephan Soller High performance computing center Stuttgart 1 Stuttgart Media University 2 High performance computing center
Seeking Opportunities for Hardware Acceleration in Big Data Analytics
Seeking Opportunities for Hardware Acceleration in Big Data Analytics Paul Chow High-Performance Reconfigurable Computing Group Department of Electrical and Computer Engineering University of Toronto Who
Building Platform as a Service for Scientific Applications
Building Platform as a Service for Scientific Applications Moustafa AbdelBaky [email protected] Rutgers Discovery Informa=cs Ins=tute (RDI 2 ) The NSF Cloud and Autonomic Compu=ng Center Department
HIGH PERFORMANCE BIG DATA ANALYTICS
HIGH PERFORMANCE BIG DATA ANALYTICS Kunle Olukotun Electrical Engineering and Computer Science Stanford University June 2, 2014 Explosion of Data Sources Sensors DoD is swimming in sensors and drowning
Workprogramme 2014-15
Workprogramme 2014-15 e-infrastructures DCH-RP final conference 22 September 2014 Wim Jansen einfrastructure DG CONNECT European Commission DEVELOPMENT AND DEPLOYMENT OF E-INFRASTRUCTURES AND SERVICES
NVIDIA CUDA Software and GPU Parallel Computing Architecture. David B. Kirk, Chief Scientist
NVIDIA CUDA Software and GPU Parallel Computing Architecture David B. Kirk, Chief Scientist Outline Applications of GPU Computing CUDA Programming Model Overview Programming in CUDA The Basics How to Get
From Distributed Computing to Distributed Artificial Intelligence
From Distributed Computing to Distributed Artificial Intelligence Dr. Christos Filippidis, NCSR Demokritos Dr. George Giannakopoulos, NCSR Demokritos Big Data and the Fourth Paradigm The two dominant paradigms
Experiences With Mobile Processors for Energy Efficient HPC
Experiences With Mobile Processors for Energy Efficient HPC Nikola Rajovic, Alejandro Rico, James Vipond, Isaac Gelado, Nikola Puzovic, Alex Ramirez Barcelona Supercomputing Center Universitat Politècnica
Overview of HPC Resources at Vanderbilt
Overview of HPC Resources at Vanderbilt Will French Senior Application Developer and Research Computing Liaison Advanced Computing Center for Research and Education June 10, 2015 2 Computing Resources
So#ware Tools and Techniques for HPC, Clouds, and Server- Class SoCs Ron Brightwell
So#ware Tools and Techniques for HPC, Clouds, and Server- Class SoCs Ron Brightwell R&D Manager, Scalable System So#ware Department Sandia National Laboratories is a multi-program laboratory managed and
Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes
Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes Eric Petit, Loïc Thebault, Quang V. Dinh May 2014 EXA2CT Consortium 2 WPs Organization Proto-Applications
Scientific Computing Programming with Parallel Objects
Scientific Computing Programming with Parallel Objects Esteban Meneses, PhD School of Computing, Costa Rica Institute of Technology Parallel Architectures Galore Personal Computing Embedded Computing Moore
High Performance Spatial Queries and Analytics for Spatial Big Data. Fusheng Wang. Department of Biomedical Informatics Emory University
High Performance Spatial Queries and Analytics for Spatial Big Data Fusheng Wang Department of Biomedical Informatics Emory University Introduction Spatial Big Data Geo-crowdsourcing:OpenStreetMap Remote
Intel HPC Distribution for Apache Hadoop* Software including Intel Enterprise Edition for Lustre* Software. SC13, November, 2013
Intel HPC Distribution for Apache Hadoop* Software including Intel Enterprise Edition for Lustre* Software SC13, November, 2013 Agenda Abstract Opportunity: HPC Adoption of Big Data Analytics on Apache
BIG DATA AND ANALYTICS
BIG DATA AND ANALYTICS Björn Bjurling, [email protected] Daniel Gillblad, [email protected] Anders Holst, [email protected] Swedish Institute of Computer Science AGENDA What is big data and analytics? and why one must bother
Big Data Analytics. Chances and Challenges. Volker Markl
Volker Markl Professor and Chair Database Systems and Information Management (DIMA), Technische Universität Berlin www.dima.tu-berlin.de Big Data Analytics Chances and Challenges Volker Markl DIMA BDOD
2015 The MathWorks, Inc. 1
25 The MathWorks, Inc. 빅 데이터 및 다양한 데이터 처리 위한 MATLAB의 인터페이스 환경 및 새로운 기능 엄준상 대리 Application Engineer MathWorks 25 The MathWorks, Inc. 2 Challenges of Data Any collection of data sets so large and complex
The UNECE Big Data Sandbox: What Means to What Ends?
Distr. GENERAL UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE (UNECE) CONFERENCE OF EUROPEAN STATISTICIANS Working Paper No. 17 th April 2015 ENGLISH ONLY Workshop on the Modernisation of Statistical Production
Exascale Challenges and General Purpose Processors. Avinash Sodani, Ph.D. Chief Architect, Knights Landing Processor Intel Corporation
Exascale Challenges and General Purpose Processors Avinash Sodani, Ph.D. Chief Architect, Knights Landing Processor Intel Corporation Jun-93 Aug-94 Oct-95 Dec-96 Feb-98 Apr-99 Jun-00 Aug-01 Oct-02 Dec-03
Cray: Enabling Real-Time Discovery in Big Data
Cray: Enabling Real-Time Discovery in Big Data Discovery is the process of gaining valuable insights into the world around us by recognizing previously unknown relationships between occurrences, objects
Auto-Tuning TRSM with an Asynchronous Task Assignment Model on Multicore, GPU and Coprocessor Systems
Auto-Tuning TRSM with an Asynchronous Task Assignment Model on Multicore, GPU and Coprocessor Systems Murilo Boratto Núcleo de Arquitetura de Computadores e Sistemas Operacionais, Universidade do Estado
The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System
The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System Qingyu Meng, Alan Humphrey, Martin Berzins Thanks to: John Schmidt and J. Davison de St. Germain, SCI Institute Justin Luitjens
The PHI solution. Fujitsu Industry Ready Intel XEON-PHI based solution. SC2013 - Denver
1 The PHI solution Fujitsu Industry Ready Intel XEON-PHI based solution SC2013 - Denver Industrial Application Challenges Most of existing scientific and technical applications Are written for legacy execution
HPC Programming Framework Research Team
HPC Programming Framework Research Team 1. Team Members Naoya Maruyama (Team Leader) Motohiko Matsuda (Research Scientist) Soichiro Suzuki (Technical Staff) Mohamed Wahib (Postdoctoral Researcher) Shinichiro
Managing Adaptability in Heterogeneous Architectures through Performance Monitoring and Prediction
Managing Adaptability in Heterogeneous Architectures through Performance Monitoring and Prediction Cristina Silvano [email protected] Politecnico di Milano HiPEAC CSW Athens 2014 Motivations System
Using the Grid for the interactive workflow management in biomedicine. Andrea Schenone BIOLAB DIST University of Genova
Using the Grid for the interactive workflow management in biomedicine Andrea Schenone BIOLAB DIST University of Genova overview background requirements solution case study results background A multilevel
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, [email protected] Assistant Professor, Information
Parallel Computing. Benson Muite. [email protected] http://math.ut.ee/ benson. https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage
Parallel Computing Benson Muite [email protected] http://math.ut.ee/ benson https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage 3 November 2014 Hadoop, Review Hadoop Hadoop History Hadoop Framework
