3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC-2016) March 10-11, 2016 VIT University, Chennai, India
|
|
|
- Angelina Lewis
- 10 years ago
- Views:
Transcription
1 3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC-2016) March 10-11, 2016 VIT University, Chennai, India Call for Papers Cloud computing has emerged as a de facto computing model, enabling software, infrastructure, and information to be used as services over the network in an on-demand manner. Currently, both industry and high-resolution datasets that allow for data-intensive decision-making, at a level never before imagined. The Second International Symposium on Cloud Computing and Big Data Challenges (ISBCC 16) solicits high quality original research papers in all aspects of Cloud Computing, Big Data, sematic cloud, networking with emphases on Cloud Systems, Cloud Services and Big Data Management in Clouds. Topics Topics include but are not limited to: 1. Architecture Cloud Infrastructure as a Service Cloud Platform as a Service Cloud federation and hybrid cloud infrastructure Programming models and systems/tools Green data center Networking technologies for data center Cloud system design with FPGA, GPU, and APU Monitoring, management and maintenance Economic and business models Dynamic resource provisioning 2. MapReduce Performance characterization and optimization MapReduce on multi-core, GPU MapReduce on hybrid distributed environments
2 MapReduce on opportunistic / heterogeneous computing systems Extension of the MapReduce programming model Debugging and simulation of MapReduce systems Data-intensive applications using MapReduce Optimized storage for MapReduce applications Fault-tolerance & Self-capabilities 3. Security and Privacy Accountability Audit in clouds Authentication and authorization Cryptographic primitives Reliability and availability Trust and credential management Usability and security Security and privacy in clouds Legacy systems migration Cloud Integrity and Binding Issues 4. Services and Applications Cloud Service Composition Query and discovery models for cloud services Trust and Security in cloud services Change management in cloud services Organization models of cloud services Innovative cloud applications and experiences Business process and workflow management Service-Oriented Architecture in clouds 5. Virtualization Server, storage, network virtualization Resource monitoring Virtual desktop Resilience, fault tolerance Modeling and performance evaluation Security aspects Enabling disaster recovery, job migration Energy efficient issues 6. HPC on Cloud Load balancing for HPC clouds Middleware framework for HPC clouds Scalable scheduling for HPC clouds HPC as a Service Performance Modeling and Management Programming models for HPC clouds
3 HPC cloud applications Optimal cloud deployment for HPC 7. Big Data Science and Foundations Novel Theoretical Models for Big Data New Computational Models for Big Data Data and Information Quality for Big Data New Data Standards 8. Big Data Infrastructure Cloud/Grid/Stream Computing for Big Data High Performance/Parallel Computing Platforms for Big Data Autonomic Computing and Cyber-infrastructure, System Architectures, Design and Deployment Energyefficient Computing for Big Data Programming Models and Environments for Cluster, Cloud, and Grid Computing to Support Big Data Software Techniques and Architectures in Cloud/Grid/Stream Computing Big Data Open Platforms New Programming Models for Big Data beyond Hadoop/MapReduce, STORM Software Systems to Support Big Data Computing 9. Big Data Management Advanced database and Web Applications Novel Data Model and Databases for Emerging Hardware Data Preservation Data Provenance Interfaces to Database Systems and Analytics Software Systems Data Protection, Integrity and Privacy Standards and Policies Information Integration and Heterogeneous and Multi-structured Data Integration Data management for Mobile and Pervasive Computing Data Management in the Social Web Crowd sourcing Spatiotemporal and Stream Data Management Scientific Data Management Workflow Optimization Database Management Challenges: Architecture, Storage, User Interfaces 10. Big Data Search and Mining Social Web Search and Mining Web Search Algorithms and Systems for Big Data Search Distributed, and Peer-to-peer Search Big Data Search Architectures, Scalability and Efficiency Data Acquisition, Integration, Cleaning, and Best Practices Visualization Analytics for Big Data Computational Modeling and Data Integration
4 Large-scale Recommendation Systems and Social Media Systems Cloud/Grid/Stream Data Mining- Big Velocity Data Link and Graph Mining Semantic-based Data Mining and Data Pre-processing Mobility and Big Data 11. Big Data Security & Privacy Intrusion Detection for Gigabit Networks Anomaly and APT Detection in Very Large Scale Systems High Performance Cryptography Visualizing Large Scale Security Data Threat Detection using Big Data Analytics Privacy Threats of Big Data Privacy Preserving Big Data Collection/Analytics HCI Challenges for Big Data Security & Privacy User Studies for any of the above Sociological Aspects of Big Data Privacy 12. Big Data Applications Complex Big Data Applications in Science, Engineering, Medicine, Healthcare, Finance, Business, Law, Education, Transportation, Retailing, Telecommunication Big Data Analytics in Small Business Enterprises (SMEs), Big Data Analytics in Government, Public Sector and Society in General Real-life Case Studies of Value Creation through Big Data Analytics Big Data as a Service Big Data Industry Standards Experiences with Big Data Project Deployments 13. Additional Topics this year Semantic Cloud Cognition and Semantic Web Mobile Web Wireless Sensor networks Machine Learning Web Science e-healthcare Green Computing Internet of Things (IOT)
5 Industrial Track The Industrial Track solicits papers describing implementations of Big Data solutions relevant to industrial settings. The focus of industry track is on papers that address the practical, applied, or pragmatic or new research challenge issues related to the use of Big Data in industry. We accept full papers (up to 6 pages) and extended abstracts (2-4 pages). Submission Guidelines All paper submissions must represent original and unpublished work. Each submission will be peer reviewed by at least three program committee members. Submission of a paper should be regarded as an undertaking that, should the paper be accepted, at least one of the authors will register for the conference and present the work. Submit your paper(s) as a PDF at the submission site Publication Accepted and presented papers will be included in the conference proceedings, SPRINGER - Smart Innovation, Systems and Technologies (SCOPUS). Authors of accepted papers, or at least one of them, are requested to register and present their work at the conference, otherwise their papers will not be included in the proceedings Distinguished Papers Distinguished papers presented at the conference, after further revision, will be recommended for publication in special issues of the following journal Indian Journal of Science and Technology(SCOPUS) Call for Special Sessions A special session is a group of 6 papers (or multiple of 6), organized on the initiative of any volunteer proposing NO MORE than 2 papers inside. Special session topics must be in areas consistent with those of the conference. In order to avoid that Special Sessions tend to draw papers from Regular Tracks, the Special Sessions on Topics not enough specific and too general will be rejected. Organizer Instructions: Any potential organizer (or group of organizers: no more than 2) has to complete the following tasks: Provide Special Sessions Chairs with a provisional title of the special session; Send a Call for Papers dedicated to that special session to Special Sessions Chair: Deadline November 28, 2015;
6 Send a potential list of authors to be invited to submit a paper; Send a list of potential reviewers (at least 3 reviewers per paper) to facilitate the review process If less than 6 papers will be submitted before the end of the deadline, the submitted papers will be moved to regular tracks to be reviewed as regular contributions. Special Session Chair: Dr. D Rekha, SCSE, VIT Chennai. Important Dates: Electronic submission of full papers / Extended abstract: November 10, 2015 Notification of paper acceptance: November 25, 2015 Camera-ready of accepted papers: December 01, 2015 Symposium: March 10-11, 2016
1 st Symposium on Colossal Data and Networking (CDAN-2016) March 18-19, 2016 Medicaps Group of Institutions, Indore, India
1 st Symposium on Colossal Data and Networking (CDAN-2016) March 18-19, 2016 Medicaps Group of Institutions, Indore, India Call for Papers Colossal Data Analysis and Networking has emerged as a de facto
تعریف Big Data. موضوعات مطرح در حوزه : Big Data. 1. Big Data Foundations
بو نام خدا گسارش مطالعو برخی مفاىیم زىره رضایی کینجی تعریف Big Data Big Data کلکغیو ی اص هجووػ داد ای بغیاس بضسگ و پیچیذ اعت ک ایي اهش هوجب هی شود پشداصػ آى با اعتفاد اص عیغتن ای هذیشیت پایگا داد و یا
IEEE International Conference on Computing, Analytics and Security Trends CAST-2016 (19 21 December, 2016) Call for Paper
IEEE International Conference on Computing, Analytics and Security Trends CAST-2016 (19 21 December, 2016) Call for Paper CAST-2015 provides an opportunity for researchers, academicians, scientists and
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON Overview * Introduction * Multiple faces of Big Data * Challenges of Big Data * Cloud Computing
On the features and challenges of security and privacy in distributed internet of things. C. Anurag Varma [email protected] CpE 6510 3/24/2016
On the features and challenges of security and privacy in distributed internet of things C. Anurag Varma [email protected] CpE 6510 3/24/2016 Outline Introduction IoT (Internet of Things) A distributed IoT
Exploiting the power of Big Data
Exploiting the power of Big Data Timos Sellis School of Computer Science and Information Technology [email protected] ITECHLAW Asia-Pacific Conference, February 26-28, 2014 Melbourne Australia Timeline
Cloud Courses Description
Courses Description 101: Fundamental Computing and Architecture Computing Concepts and Models. Data center architecture. Fundamental Architecture. Virtualization Basics. platforms: IaaS, PaaS, SaaS. deployment
IEEE JAVA Project 2012
IEEE JAVA Project 2012 Powered by Cloud Computing Cloud Computing Security from Single to Multi-Clouds. Reliable Re-encryption in Unreliable Clouds. Cloud Data Production for Masses. Costing of Cloud Computing
and Deployment Roadmap for Satellite Ground Systems
A Cloud-Based Reference Model and Deployment Roadmap for Satellite Ground Systems 2012 Ground System Architectures Workshop February 29, 2012 Dr. Craig A. Lee The Aerospace Corporation The Aerospace Corporation
SDN Security Challenges. Anita Nikolich National Science Foundation Program Director, Advanced Cyberinfrastructure July 2015
SDN Security Challenges Anita Nikolich National Science Foundation Program Director, Advanced Cyberinfrastructure July 2015 Cybersecurity Enhancement Act 2014 Public-Private Collaboration on Security (NIST
Big Data R&D Initiative
Big Data R&D Initiative Howard Wactlar CISE Directorate National Science Foundation NIST Big Data Meeting June, 2012 Image Credit: Exploratorium. The Landscape: Smart Sensing, Reasoning and Decision Environment
Cloud Courses Description
Cloud Courses Description Cloud 101: Fundamental Cloud Computing and Architecture Cloud Computing Concepts and Models. Fundamental Cloud Architecture. Virtualization Basics. Cloud platforms: IaaS, PaaS,
Towards a Thriving Data Economy: Open Data, Big Data, and Data Ecosystems
Towards a Thriving Data Economy: Open Data, Big Data, and Data Ecosystems Volker Markl [email protected] dima.tu-berlin.de dfki.de/web/research/iam/ bbdc.berlin Based on my 2014 Vision Paper On
MEng, BSc Applied Computer Science
School of Computing FACULTY OF ENGINEERING MEng, BSc Applied Computer Science Year 1 COMP1212 Computer Processor Effective programming depends on understanding not only how to give a machine instructions
Syslog Analyzer ABOUT US. Member of the TeleManagement Forum. [email protected] +1-916-290-9300 http://www.ossera.com
Syslog Analyzer ABOUT US OSSera, Inc. is a global provider of Operational Support System (OSS) solutions for IT organizations, service planning, service operations, and network operations. OSSera's multithreaded
Data Refinery with Big Data Aspects
International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 7 (2013), pp. 655-662 International Research Publications House http://www. irphouse.com /ijict.htm Data
Indian Journal of Science The International Journal for Science ISSN 2319 7730 EISSN 2319 7749 2016 Discovery Publication. All Rights Reserved
Indian Journal of Science The International Journal for Science ISSN 2319 7730 EISSN 2319 7749 2016 Discovery Publication. All Rights Reserved Perspective Big Data Framework for Healthcare using Hadoop
MEng, BSc Computer Science with Artificial Intelligence
School of Computing FACULTY OF ENGINEERING MEng, BSc Computer Science with Artificial Intelligence Year 1 COMP1212 Computer Processor Effective programming depends on understanding not only how to give
Intel HPC Distribution for Apache Hadoop* Software including Intel Enterprise Edition for Lustre* Software. SC13, November, 2013
Intel HPC Distribution for Apache Hadoop* Software including Intel Enterprise Edition for Lustre* Software SC13, November, 2013 Agenda Abstract Opportunity: HPC Adoption of Big Data Analytics on Apache
A Study on Security and Privacy in Big Data Processing
A Study on Security and Privacy in Big Data Processing C.Yosepu P Srinivasulu Bathala Subbarayudu Assistant Professor, Dept of CSE, St.Martin's Engineering College, Hyderabad, India Assistant Professor,
Authentication. Authorization. Access Control. Cloud Security Concerns. Trust. Data Integrity. Unsecure Communication
Volume 4, Issue 6, June 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A Three Layered
Deep Learning Meets Heterogeneous Computing. Dr. Ren Wu Distinguished Scientist, IDL, Baidu [email protected]
Deep Learning Meets Heterogeneous Computing Dr. Ren Wu Distinguished Scientist, IDL, Baidu [email protected] Baidu Everyday 5b+ queries 500m+ users 100m+ mobile users 100m+ photos Big Data Storage Processing
2015 The MathWorks, Inc. 1
25 The MathWorks, Inc. 빅 데이터 및 다양한 데이터 처리 위한 MATLAB의 인터페이스 환경 및 새로운 기능 엄준상 대리 Application Engineer MathWorks 25 The MathWorks, Inc. 2 Challenges of Data Any collection of data sets so large and complex
AN OVERVIEW ABOUT CLOUD COMPUTING
International Journal of Information Technology and Knowledge Management January-June 2012, Volume 5, No. 1, pp. 27-30 AN OVERVIEW ABOUT CLOUD COMPUTING R. Anandhi 1, and K. Chitra 2 ABSTRACT: This paper
Big Data Driven Knowledge Discovery for Autonomic Future Internet
Big Data Driven Knowledge Discovery for Autonomic Future Internet Professor Geyong Min Chair in High Performance Computing and Networking Department of Mathematics and Computer Science College of Engineering,
Search and Data Mining: Techniques. Applications Anya Yarygina Boris Novikov
Search and Data Mining: Techniques Applications Anya Yarygina Boris Novikov Introduction Data mining applications Data mining system products and research prototypes Additional themes on data mining Social
Cluster, Grid, Cloud Concepts
Cluster, Grid, Cloud Concepts Kalaiselvan.K Contents Section 1: Cluster Section 2: Grid Section 3: Cloud Cluster An Overview Need for a Cluster Cluster categorizations A computer cluster is a group of
High Performance Computing
High Parallel Computing Hybrid Program Coding Heterogeneous Program Coding Heterogeneous Parallel Coding Hybrid Parallel Coding High Performance Computing Highly Proficient Coding Highly Parallelized Code
Building Platform as a Service for Scientific Applications
Building Platform as a Service for Scientific Applications Moustafa AbdelBaky [email protected] Rutgers Discovery Informa=cs Ins=tute (RDI 2 ) The NSF Cloud and Autonomic Compu=ng Center Department
Master of Science in Health Information Technology Degree Curriculum
Master of Science in Health Information Technology Degree Curriculum Core courses: 8 courses Total Credit from Core Courses = 24 Core Courses Course Name HRS Pre-Req Choose MIS 525 or CIS 564: 1 MIS 525
ICT Perspectives on Big Data: Well Sorted Materials
ICT Perspectives on Big Data: Well Sorted Materials 3 March 2015 Contents Introduction 1 Dendrogram 2 Tree Map 3 Heat Map 4 Raw Group Data 5 For an online, interactive version of the visualisations in
Big Data-ready, Secure & Sovereign Cloud
Copernicus Big Data Workshop Big Data-ready, Secure & Sovereign Cloud A Technology Enabler for Copernicus Data Innovation March 14 th, 2014 Brussels F. BOUJEMAA R&D Manager E. MICONNET - Head of Cyber
IoT is a King, Big data is a Queen and Cloud is a Palace
IoT is a King, Big data is a Queen and Cloud is a Palace Abdur Rahim Innotec21 GmbH, Germany Create-Net, Italy Acknowledgements- ikaas Partners (KDDI and other partnes) Intelligent Knowledge-as-a-Service
Vortex White Paper. Simplifying Real-time Information Integration in Industrial Internet of Things (IIoT) Control Systems
Vortex White Paper Simplifying Real-time Information Integration in Industrial Internet of Things (IIoT) Control Systems Version 1.0 February 2015 Andrew Foster, Product Marketing Manager, PrismTech Vortex
COMP9321 Web Application Engineering
COMP9321 Web Application Engineering Semester 2, 2015 Dr. Amin Beheshti Service Oriented Computing Group, CSE, UNSW Australia Week 11 (Part II) http://webapps.cse.unsw.edu.au/webcms2/course/index.php?cid=2411
Massive Cloud Auditing using Data Mining on Hadoop
Massive Cloud Auditing using Data Mining on Hadoop Prof. Sachin Shetty CyberBAT Team, AFRL/RIGD AFRL VFRP Tennessee State University Outline Massive Cloud Auditing Traffic Characterization Distributed
Articles IEEE have removed from their database
Articles IEEE have removed from their database Application of Game-Theoretic and Virtual Algorithms in Information Retrieval System 2008 International Conference on MultiMedia and Information Technology
Recent and Future Activities in HPC and Scientific Data Management Siegfried Benkner
Recent and Future Activities in HPC and Scientific Data Management Siegfried Benkner Research Group Scientific Computing Faculty of Computer Science University of Vienna AUSTRIA http://www.par.univie.ac.at
Contents. Preface Acknowledgements. Chapter 1 Introduction 1.1
Preface xi Acknowledgements xv Chapter 1 Introduction 1.1 1.1 Cloud Computing at a Glance 1.1 1.1.1 The Vision of Cloud Computing 1.2 1.1.2 Defining a Cloud 1.4 1.1.3 A Closer Look 1.6 1.1.4 Cloud Computing
Las Tecnologías de la Información y de la Comunicación en el HORIZONTE 2020
Las Tecnologías de la Información y de la Comunicación en el HORIZONTE 2020 A Coruña, 2 de Diciembre de 2013 Luis Rodríguez-Roselló ex-jefe de Unidad Network Technologies European Commission - DG CONNECT
Security Infrastructure for Trusted Offloading in Mobile Cloud Computing
Security Infrastructure for Trusted Offloading in Mobile Cloud Computing Professor Kai Hwang University of Southern California Presentation at Huawei Forum, Santa Clara, Nov. 8, 2014 Mobile Cloud Security
Bellevue University Cybersecurity Programs & Courses
Undergraduate Course List Core Courses: CYBR 250 Introduction to Cyber Threats, Technologies and Security CIS 311 Network Security CIS 312 Securing Access Control CIS 411 Assessments and Audits CYBR 320
Special Issue on Advances of Utility and Cloud Computing Technologies and Services
Special Issue on Advances of Utility and Cloud Computing Technologies and Services Aims Computing is rapidly moving towards a model where it is provided as services that are delivered in a manner similar
Workprogramme 2014-15
Workprogramme 2014-15 e-infrastructures DCH-RP final conference 22 September 2014 Wim Jansen einfrastructure DG CONNECT European Commission DEVELOPMENT AND DEPLOYMENT OF E-INFRASTRUCTURES AND SERVICES
NSF Workshop on Big Data Security and Privacy
NSF Workshop on Big Data Security and Privacy Report Summary Bhavani Thuraisingham The University of Texas at Dallas (UTD) February 19, 2015 Acknowledgement NSF SaTC Program for support Chris Clifton and
ATTPS Publication: Trustworthy ICT Taxonomy
Publication: worthy ICT Taxonomy Roger Berkley worthy ICT Taxonomy Research Cybersecurity technology is a considerably large subdomain of ICT. Technology experts like Gartner have identified at least 94
How to Do/Evaluate Cloud Computing Research. Young Choon Lee
How to Do/Evaluate Cloud Computing Research Young Choon Lee Cloud Computing Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing
Big-Data Computing with Smart Clouds and IoT Sensing
A New Book from Wiley Publisher to appear in late 2016 or early 2017 Big-Data Computing with Smart Clouds and IoT Sensing Kai Hwang, University of Southern California, USA Min Chen, Huazhong University
A SURVEY ON MAPREDUCE IN CLOUD COMPUTING
A SURVEY ON MAPREDUCE IN CLOUD COMPUTING Dr.M.Newlin Rajkumar 1, S.Balachandar 2, Dr.V.Venkatesakumar 3, T.Mahadevan 4 1 Asst. Prof, Dept. of CSE,Anna University Regional Centre, Coimbatore, [email protected]
Information Management course
Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli ([email protected])
The Virtual Grid Application Development Software (VGrADS) Project
The Virtual Grid Application Development Software (VGrADS) Project VGrADS: Enabling e-science Workflows on Grids and Clouds with Fault Tolerance http://vgrads.rice.edu/ VGrADS Goal: Distributed Problem
Distribution transparency. Degree of transparency. Openness of distributed systems
Distributed Systems Principles and Paradigms Maarten van Steen VU Amsterdam, Dept. Computer Science [email protected] Chapter 01: Version: August 27, 2012 1 / 28 Distributed System: Definition A distributed
Big Data and Complex Networks Analytics. Timos Sellis, CSIT Kathy Horadam, MGS
Big Data and Complex Networks Analytics Timos Sellis, CSIT Kathy Horadam, MGS Big Data What is it? Most commonly accepted definition, by Gartner (the 3 Vs) Big data is high-volume, high-velocity and high-variety
REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc])
305 REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc]) (See also General Regulations) Any publication based on work approved for a higher degree should contain a reference
International Journal of Advanced Engineering Research and Applications (IJAERA) ISSN: 2454-2377 Vol. 1, Issue 6, October 2015. Big Data and Hadoop
ISSN: 2454-2377, October 2015 Big Data and Hadoop Simmi Bagga 1 Satinder Kaur 2 1 Assistant Professor, Sant Hira Dass Kanya MahaVidyalaya, Kala Sanghian, Distt Kpt. INDIA E-mail: [email protected]
locuz.com Big Data Services
locuz.com Big Data Services Big Data At Locuz, we help the enterprise move from being a data-limited to a data-driven one, thereby enabling smarter, faster decisions that result in better business outcome.
Key Challenges in Cloud Computing to Enable Future Internet of Things
The 4th EU-Japan Symposium on New Generation Networks and Future Internet Future Internet of Things over "Clouds Tokyo, Japan, January 19th, 2012 Key Challenges in Cloud Computing to Enable Future Internet
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control EP/K006487/1 UK PI: Prof Gareth Taylor (BU) China PI: Prof Yong-Hua Song (THU) Consortium UK Members: Brunel University
Big Data on Microsoft Platform
Big Data on Microsoft Platform Prepared by GJ Srinivas Corporate TEG - Microsoft Page 1 Contents 1. What is Big Data?...3 2. Characteristics of Big Data...3 3. Enter Hadoop...3 4. Microsoft Big Data Solutions...4
Introduction to Cyber Security / Information Security
Introduction to Cyber Security / Information Security Syllabus for Introduction to Cyber Security / Information Security program * for students of University of Pune is given below. The program will be
Horizontal IoT Application Development using Semantic Web Technologies
Horizontal IoT Application Development using Semantic Web Technologies Soumya Kanti Datta Research Engineer Communication Systems Department Email: [email protected] Roadmap Introduction Challenges
Cloud Computing and Software Agents: Towards Cloud Intelligent Services
Cloud Computing and Software Agents: Towards Cloud Intelligent Services Domenico Talia ICAR-CNR & University of Calabria Rende, Italy [email protected] Abstract Cloud computing systems provide large-scale
Are You Ready for Big Data?
Are You Ready for Big Data? Jim Gallo National Director, Business Analytics April 10, 2013 Agenda What is Big Data? How do you leverage Big Data in your company? How do you prepare for a Big Data initiative?
Big Data and Analytics: Challenges and Opportunities
Big Data and Analytics: Challenges and Opportunities Dr. Amin Beheshti Lecturer and Senior Research Associate University of New South Wales, Australia (Service Oriented Computing Group, CSE) Talk: Sharif
Sanjeev Kumar. contribute
RESEARCH ISSUES IN DATAA MINING Sanjeev Kumar I.A.S.R.I., Library Avenue, Pusa, New Delhi-110012 [email protected] 1. Introduction The field of data mining and knowledgee discovery is emerging as a
Smart City Australia
Smart City Australia Slaven Marusic Department of Electrical and Electronic Engineering The University of Melbourne, Australia ARC Research Network on Intelligent Sensors, Sensor Networks and Information
Adapting scientific computing problems to cloud computing frameworks Ph.D. Thesis. Pelle Jakovits
Adapting scientific computing problems to cloud computing frameworks Ph.D. Thesis Pelle Jakovits Outline Problem statement State of the art Approach Solutions and contributions Current work Conclusions
BIG DATA AND ANALYTICS
BIG DATA AND ANALYTICS Björn Bjurling, [email protected] Daniel Gillblad, [email protected] Anders Holst, [email protected] Swedish Institute of Computer Science AGENDA What is big data and analytics? and why one must bother
TECHNOLOGY GUIDE THREE. Emerging Types of Enterprise Computing
TECHNOLOGY GUIDE THREE Emerging Types of Enterprise Computing TECHNOLOGY GU IDE OUTLINE TG3.1 Introduction TG3.2 Server Farms TG3.3 Virtualization TG3.4 Grid Computing TG3.5 Utility Computing TG3.6 Cloud
Big Data on Cloud Computing- Security Issues
Big Data on Cloud Computing- Security Issues K Subashini, K Srivaishnavi UG Student, Department of CSE, University College of Engineering, Kanchipuram, Tamilnadu, India ABSTRACT: Cloud computing is now
A Service for Data-Intensive Computations on Virtual Clusters
A Service for Data-Intensive Computations on Virtual Clusters Executing Preservation Strategies at Scale Rainer Schmidt, Christian Sadilek, and Ross King [email protected] Planets Project Permanent
Top Ten Security and Privacy Challenges for Big Data and Smartgrids. Arnab Roy Fujitsu Laboratories of America
1 Top Ten Security and Privacy Challenges for Big Data and Smartgrids Arnab Roy Fujitsu Laboratories of America 2 User Roles and Security Concerns [SKCP11] Users and Security Concerns [SKCP10] Utilities:
NIST Big Data Public Working Group
NIST Big Data Public Working Group Requirements May 13, 2014 Arnab Roy, Fujitsu On behalf of the NIST BDWG S&P Subgroup S&P Requirements Emerging due to Big Data Characteristics Variety: Traditional encryption
Doctor of Philosophy in Computer Science
Doctor of Philosophy in Computer Science Background/Rationale The program aims to develop computer scientists who are armed with methods, tools and techniques from both theoretical and systems aspects
Big Data: Overview and Roadmap. 2015 eglobaltech. All rights reserved.
Big Data: Overview and Roadmap 2015 eglobaltech. All rights reserved. What is Big Data? Large volumes of complex and variable data that require advanced techniques and technologies to enable capture, storage,
NASA s Big Data Challenges in Climate Science
NASA s Big Data Challenges in Climate Science Tsengdar Lee, Ph.D. High-end Computing Program Manager NASA Headquarters Presented at IEEE Big Data 2014 Workshop October 29, 2014 1 2 7-km GEOS-5 Nature Run
Curriculum Vitae. PhD (Computer Science) Course Work Completed University : Bharathiyar University, Tamilnadu, India
Curriculum Vitae Sreekanth Rallapalli Senior Lecturer, Faculty of Computing, Botho University, Gabarone, Botswana, Africa E mail: [email protected] [email protected] PROFESSIONAL
Exploration on Security System Structure of Smart Campus Based on Cloud Computing. Wei Zhou
3rd International Conference on Science and Social Research (ICSSR 2014) Exploration on Security System Structure of Smart Campus Based on Cloud Computing Wei Zhou Information Center, Shanghai University
SYLLABUSES FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (applicable to students admitted in the academic year 2015-2016 and thereafter)
MSc(CompSc)-1 (SUBJECT TO UNIVERSITY S APPROVAL) SYLLABUSES FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (applicable to students admitted in the academic year 2015-2016 and thereafter) The curriculum
IEEE 2015-2016 JAVA TITLES
ECWAY ECHNOLGIES IEEE 2015-2016 JAVA TITLES BE, B.TECH, ME, M.TECH, MSC, MCA PROJECTS Abstract: Introduction: Literature Survey: System Analysis: Existing System: Disadvantages: Proposed System: Advantages:
Search and Data Mining: Techniques. Introduction Anna Yarygina Boris Novikov
Search and Data Mining: Techniques Introduction Anna Yarygina Boris Novikov Data Analytics: Conference Sections Fundamentals for data analytics Mechanisms and features Big Data Huge data Target analytics
Augmented Search for Web Applications. New frontier in big log data analysis and application intelligence
Augmented Search for Web Applications New frontier in big log data analysis and application intelligence Business white paper May 2015 Web applications are the most common business applications today.
