Modeling Rotor Wakes with a Hybrid OVERFLOW-Vortex Method on a GPU Cluster
|
|
|
- Fay Bennett
- 10 years ago
- Views:
Transcription
1 Modeling Rotor Wakes with a Hybrid OVERFLOW-Vortex Method on a GPU Cluster Mark J. Stock, Ph.D., Adrin Gharakhani, Sc.D. Applied Scientific Research, Santa Ana, CA Christopher P. Stone, Ph.D. Computational Science & Engineering, Seattle, WA Funding: AMRDEC SBIR Phase I Grant, NSF grant via Teragrid, and NCRR award
2 Outline Motivation physical and numerical Method Lagrangian vortex particle methods Hybrid coupling scheme Test simulations
3 Motivation Rotor wakes are long-lived Blade interaction causes noise, loss of lift Obstructions make motion unpredictable Understanding vortex ring state
4 Eulerian CFD Advantages High-order methods Body-fitted grids with high aspect ratio Generality Disadvantages Numerical diffusion Gridding effort Start-up Far-field BCs
5 Lagrangian CFD Advantages Numerical diffusion can be explicit (not limited by CFL) Lower dimension grids Efficient use of computational elements/far-field BCs automatic Continuity preserved by construction No start-up problems Disadvantages Computationally expensive Largely incompressible Spatial adaptation difficult
6 Hybrid solution Euler solver near boundaries Capture boundary layer Proper vorticity creation at boundary Lagrangian solver in wake Maintain vorticity in wake No need for overset grids to far-field
7 OVERFLOW 2.1ae Developed over 20 years by P.G. Buning et al. Fully-compressible Navier-Stokes Eulerian solver Chimera overset structured grids Supports multi-threading via OpenMP Distributed parallelism via MPI
8 Ω-Flow v2 Developed over 10 years by A. Gharakhani et al. at ASR Multipole-accelerated treecode N-body solver Multipole-accelerated BEM solver Supports multi-threading via OpenMP Distributed parallelism via MPI Accelerates computations on capable GPUs See our other paper: A GPU-Accelerated Boundary Element Method and Vortex Particle Method, AIAA
9 Lagrangian vortex methods Navier-Stokes equations in vorticity Dω Dt = ω u + ν 2 ω Discretized onto Lagrangian particles N v ω( x, t) = i=1 Γ i = ω i V i Γ i (t) φ σ ( x x i )
10 Lagrangian vortex methods Helmholtz integral formula u( x) = U + V + S V ω ( x ) G( x, x ) dv ( x ) θ( x ) G( x, x ) dv ( x ) ( γ ( x ) + ˆn( x ) u( x ) ) G( x, x ) ds( x ) S (ˆn( x ) u( x ) ) G( x, x ) ds( x )
11 Lagrangian vortex methods Inviscid flow x i t = ū i Γ i t = Γ i ū i Viscous diffusion via VRM (Shankar and van Dommelen, 1996) Γ i t = ν 2 Γi Anisotropic SGS dissipation (Cottet et al. 1996, 2003)
12 Faster summations Barnes and Hut Treecode (1986), Greengard-Rokhlin FMM (1987) Distributed-memory parallelization (Salmon 1991) Data structures organized to prevent cache misses Real spherical multipoles cast to Cartesian for far-field
13 Faster summations Wall-clock time (s) GPU vs. CPU treecode performance 4-cores Phenom 8-cores Xeon 4-cores Opt GTX 8-cores Xeon + 2xTesla 2012 s 1495 s s for 10M vortons e+06 1e+07 1e+08 Number of vortons, N v
14 Hybrid scheme Eulerian domain Requires only near-body grids, particle separations wide Outer BC will be set by Lagrangian solution Lagrangian domain Particles exist throughout Eulerian domain Particle strengths are only modified when they are the middle of the Eulerian domain---away from either boundary BEM solution accounts for near-body vorticity
15 Hybrid method - procedure 1) Interpolate vorticity from Eulerian grid to particles a) Prepare a Cartesian grid covering the Euler domain b) Interpolate ω from all Euler grid cells not within Δx of body c) Mask out particles outside Euler region, too close to body, and too close to outer Euler boundary (2-3 Δx) d) Reset those particles strengths from this field 2) Advance Lagrangian solution, fill gaps 3) Compute velocities at outer Euler boundary nodes 4) Complete Euler BCs assuming constant ρ 5) Advance Euler solution
16 Hybrid method - interpolation
17 Hybrid method - interpolation
18 Hybrid method - compressibility Currently Lagrangian regime is incompressible Euler BCs are set using: ρ = const e = 1 γ(γ 1) + M2 2
19 Test cases Sphere, Re=100 Finite wing, 6.6:1 AR 4-bladed rotor (no hub), 0.23 advance ratio
20 Test systems Nodes cores per node GPUs GPU PEs/ node Local 1 2.5GHz 2x GTX GHz Lincoln GHz 1/2x Tesla S GHz gfortran 4.3.2, OpenMP, CUDA 2.2, and OpenMPI
21 Sphere at ReD=100
22 Sphere at ReD=100 Primary Δx Δt Newton subiterations Euler grid nodes Full OVERFLOW 0.03D to x/d= M Hybrid D 0.05 / M plus 1M particles
23 Sphere at ReD=100
24 Sphere at ReD= OVERFLOW Hybrid Streamwise velocity, u/u! Streamwise position, x/d
25 6.6:1 AR wing at 12 NACA 0015 section 6.6 AR regular planform at α =12 Flat tips M = 0.17, Re = 1,500,000 Similar to McAlister & Takahashi, NASA TP-3151, 1991.
26 6.6:1 AR wing at 12 Pure OVERFLOW
27 6.6:1 AR wing at 12 Primary Δx Δt Newton subiterations Euler grid nodes Full OVERFLOW 0.04c to x/c= M Hybrid 0.04c * 4.3M plus 1M particles
28 6.6:1 AR wing at 12 Hybrid method
29 6.6:1 AR wing at 12 Hybrid method, ω magnitude 0.3, 0.5
30 6.6:1 AR wing at 12 Vertical velocity, w/u x-x tip = 0.2c x-x tip = 1c Experiments OVERFLOW, C-grid Hybrid, inviscid, O-grid x-x tip = 2c x-x tip = 4c Vertical velocity, w/u! Spanwise position, (y tip -y)/c Spanwise position, (y tip -y)/c
31 4-Bladed isolated rotor NACA 0012 section AR regular planform, root is 3.17c from hub Flat tips No cyclic pitch Twist is 0 at hub, 8 at tip M = 0.124, Re = 860,500 Advance ratio = , α = Similar to Elliot, Althoff, Saily, NASA TM , 1988.
32 4-Bladed isolated rotor Near-body grid for both cases
33 4-Bladed isolated rotor Primary Δx Δt Newton subiterations Euler grid nodes Full OVERFLOW 0.06c to x/c=26 1/2 per step M Hybrid 0.06c 1 per step 10* 11.7M plus 55M particles
34 4-Bladed isolated rotor 720 Pure OVERFLOW Hybrid method
35 4-Bladed isolated rotor 720 Hybrid method
36 4-Bladed isolated rotor 720 Pure OVERFLOW
37 4-Bladed isolated rotor 900 Hybrid method
38 4-Bladed isolated rotor
39 4-Bladed isolated rotor
40 4-Bladed isolated rotor 970 Hybrid method
41 4-Bladed isolated rotor 970 Hybrid method
42 Conclusions Hybrid Lagrangian-Eulerian method created in short time Wake maintains all benefits of Vortex Particle Method Near-body retains all benefits of Eulerian overset grid method Coupling between regimes is fully two-way Connected GPU devices allow ~1 TFLOP/s per node
43 Thank you AIAA AMRDEC, NSF, NCRR You, for your attention Please see our other talk: A GPU-Accelerated Boundary Element Method and Vortex Particle Method AIAA , Thursday, 1100 hrs, room 23B
A New Solution Adaption Capability for the OVERFLOW CFD Code
A New Solution Adaption Capability for the OVERFLOW CFD Code Pieter G. Buning NASA Langley Research Center, Hampton, VA 10 th Symposium on Overset Composite Grid and Solution Technology September 20-23,
CFD Lab Department of Engineering The University of Liverpool
Development of a CFD Method for Aerodynamic Analysis of Large Diameter Horizontal Axis wind turbines S. Gomez-Iradi, G.N. Barakos and X. Munduate 2007 joint meeting of IEA Annex 11 and Annex 20 Risø National
Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms
Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms Björn Rocker Hamburg, June 17th 2010 Engineering Mathematics and Computing Lab (EMCL) KIT University of the State
Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT
Adam Dziubiński CFD group IoA FLUENT Content Fluent CFD software 1. Short description of main features of Fluent 2. Examples of usage in CESAR Analysis of flow around an airfoil with a flap: VZLU + ILL4xx
Accelerating CFD using OpenFOAM with GPUs
Accelerating CFD using OpenFOAM with GPUs Authors: Saeed Iqbal and Kevin Tubbs The OpenFOAM CFD Toolbox is a free, open source CFD software package produced by OpenCFD Ltd. Its user base represents a wide
Acceleration of a CFD Code with a GPU
Acceleration of a CFD Code with a GPU Dennis C. Jespersen ABSTRACT The Computational Fluid Dynamics code Overflow includes as one of its solver options an algorithm which is a fairly small piece of code
Coupled CFD and Vortex Methods for Modelling Hydro- and Aerodynamics of Tidal Current Turbines and On- and Offshore Wind Turbines
Coupled CFD and Vortex Methods for Modelling Hydro- and Aerodynamics of Tidal Current Turbines and On- and Offshore Wind Turbines SIMPACK User Meeting 2014 Augsburg, Germany October 9 th, 2014 Dipl.-Ing.
Turbomachinery CFD on many-core platforms experiences and strategies
Turbomachinery CFD on many-core platforms experiences and strategies Graham Pullan Whittle Laboratory, Department of Engineering, University of Cambridge MUSAF Colloquium, CERFACS, Toulouse September 27-29
PyFR: Bringing Next Generation Computational Fluid Dynamics to GPU Platforms
PyFR: Bringing Next Generation Computational Fluid Dynamics to GPU Platforms P. E. Vincent! Department of Aeronautics Imperial College London! 25 th March 2014 Overview Motivation Flux Reconstruction Many-Core
Computational Modeling of Wind Turbines in OpenFOAM
Computational Modeling of Wind Turbines in OpenFOAM Hamid Rahimi [email protected] ForWind - Center for Wind Energy Research Institute of Physics, University of Oldenburg, Germany Outline Computational
TIME-ACCURATE SIMULATION OF THE FLOW AROUND THE COMPLETE BO105 WIND TUNNEL MODEL
TIME-ACCURATE SIMULATION OF THE FLOW AROUND THE COMPLETE BO105 WIND TUNNEL MODEL Walid Khier, Thorsten Schwarz, Jochen Raddatz presented by Andreas Schütte DLR, Institute of Aerodynamics and Flow Technology
Module 6 Case Studies
Module 6 Case Studies 1 Lecture 6.1 A CFD Code for Turbomachinery Flows 2 Development of a CFD Code The lecture material in the previous Modules help the student to understand the domain knowledge required
Simulation of Fluid-Structure Interactions in Aeronautical Applications
Simulation of Fluid-Structure Interactions in Aeronautical Applications Martin Kuntz Jorge Carregal Ferreira ANSYS Germany D-83624 Otterfing [email protected] December 2003 3 rd FENET Annual Industry
Aerodynamics of Rotating Discs
Proceedings of ICFD 10: Tenth International Congress of FluidofDynamics Proceedings ICFD 10: December 16-19, 2010, Stella Di MareTenth Sea Club Hotel, Ain Soukhna, Egypt International Congress of Red FluidSea,
Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers
Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers Haohuan Fu [email protected] High Performance Geo-Computing (HPGC) Group Center for Earth System Science Tsinghua University
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms Amani AlOnazi, David E. Keyes, Alexey Lastovetsky, Vladimir Rychkov Extreme Computing Research Center,
GPU Acceleration of the SENSEI CFD Code Suite
GPU Acceleration of the SENSEI CFD Code Suite Chris Roy, Brent Pickering, Chip Jackson, Joe Derlaga, Xiao Xu Aerospace and Ocean Engineering Primary Collaborators: Tom Scogland, Wu Feng (Computer Science)
OpenFOAM in Wind Energy: Wind Turbines as a source term. Paolo Schito, Luca Bernini, Alberto Zasso
OpenFOAM in Wind Energy: Wind Turbines as a source term Paolo Schito, Luca Bernini, Alberto Zasso Analysis of Wind Turbine 2 Wind turbine aerodynamics simulation is an important task for develop future
AeroFluidX: A Next Generation GPU-Based CFD Solver for Engineering Applications
AeroFluidX: A Next Generation GPU-Based CFD Solver for Engineering Applications Dr. Bjoern Landmann Dr. Kerstin Wieczorek Stefan Bachschuster 18.03.2015 FluiDyna GmbH, Lichtenbergstr. 8, 85748 Garching
High Performance Computing in CST STUDIO SUITE
High Performance Computing in CST STUDIO SUITE Felix Wolfheimer GPU Computing Performance Speedup 18 16 14 12 10 8 6 4 2 0 Promo offer for EUC participants: 25% discount for K40 cards Speedup of Solver
Purdue University - School of Mechanical Engineering. Objective: Study and predict fluid dynamics of a bluff body stabilized flame configuration.
Extinction Dynamics of Bluff Body Stabilized Flames Investigator: Steven Frankel Graduate Students: Travis Fisher and John Roach Sponsor: Air Force Research Laboratory and Creare, Inc. Objective: Study
Comparison between OpenFOAM CFD & BEM theory for variable speed variable pitch HAWT
ITM Web of Conferences 2, 05001 (2014) DOI: 10.1051/itmconf/20140205001 C Owned by the authors, published by EDP Sciences, 2014 Comparison between OpenFOAM CFD & BEM theory for variable speed variable
OpenFOAM Optimization Tools
OpenFOAM Optimization Tools Henrik Rusche and Aleks Jemcov [email protected] and [email protected] Wikki, Germany and United Kingdom OpenFOAM Optimization Tools p. 1 Agenda Objective Review optimisation
(Toward) Radiative transfer on AMR with GPUs. Dominique Aubert Université de Strasbourg Austin, TX, 14.12.12
(Toward) Radiative transfer on AMR with GPUs Dominique Aubert Université de Strasbourg Austin, TX, 14.12.12 A few words about GPUs Cache and control replaced by calculation units Large number of Multiprocessors
ABSTRACT FOR THE 1ST INTERNATIONAL WORKSHOP ON HIGH ORDER CFD METHODS
1 ABSTRACT FOR THE 1ST INTERNATIONAL WORKSHOP ON HIGH ORDER CFD METHODS Sreenivas Varadan a, Kentaro Hara b, Eric Johnsen a, Bram Van Leer b a. Department of Mechanical Engineering, University of Michigan,
Structured grid flow solvers such as NASA s OVERFLOW compressible Navier-Stokes flow solver 1, 2
19th AIAA Computational Fluid Dynamics 22-25 June 2009, San Antonio, Texas AIAA 2009-3998 OVERSMART A Solution Monitoring And Reporting Tool for the OVERFLOW Flow Solver David L Kao and William M Chan
Design and Optimization of a Portable Lattice Boltzmann Code for Heterogeneous Architectures
Design and Optimization of a Portable Lattice Boltzmann Code for Heterogeneous Architectures E Calore, S F Schifano, R Tripiccione Enrico Calore INFN Ferrara, Italy Perspectives of GPU Computing in Physics
Load Balancing Strategies for Multi-Block Overset Grid Applications NAS-03-007
Load Balancing Strategies for Multi-Block Overset Grid Applications NAS-03-007 M. Jahed Djomehri Computer Sciences Corporation, NASA Ames Research Center, Moffett Field, CA 94035 Rupak Biswas NAS Division,
Parallel 3D Image Segmentation of Large Data Sets on a GPU Cluster
Parallel 3D Image Segmentation of Large Data Sets on a GPU Cluster Aaron Hagan and Ye Zhao Kent State University Abstract. In this paper, we propose an inherent parallel scheme for 3D image segmentation
Overset composite grids for the simulation of complex moving geometries
EUA4X#21 Poster Session MASCOT06, IAC-CNR, Roma, Italy Overset composite grids for the simulation of complex moving geometries Joel Guerrero DICAT, University of Genoa, Via Montallegro 1, 16145 Genoa,
A Fast Double Precision CFD Code using CUDA
A Fast Double Precision CFD Code using CUDA Jonathan M. Cohen *, M. Jeroen Molemaker** *NVIDIA Corporation, Santa Clara, CA 95050, USA (e-mail: [email protected]) **IGPP UCLA, Los Angeles, CA 90095, USA
PASSIVE CONTROL OF SHOCK WAVE APPLIED TO HELICOPTER ROTOR HIGH-SPEED IMPULSIVE NOISE REDUCTION
TASK QUARTERLY 14 No 3, 297 305 PASSIVE CONTROL OF SHOCK WAVE APPLIED TO HELICOPTER ROTOR HIGH-SPEED IMPULSIVE NOISE REDUCTION PIOTR DOERFFER AND OSKAR SZULC Institute of Fluid-Flow Machinery, Polish Academy
CFD Applications using CFD++ Paul Batten & Vedat Akdag
CFD Applications using CFD++ Paul Batten & Vedat Akdag Metacomp Products available under Altair Partner Program CFD++ Introduction Accurate multi dimensional polynomial framework Robust on wide variety
CFD Simulation of the NREL Phase VI Rotor
CFD Simulation of the NREL Phase VI Rotor Y. Song* and J. B. Perot # *Theoretical & Computational Fluid Dynamics Laboratory, Department of Mechanical & Industrial Engineering, University of Massachusetts
HPC enabling of OpenFOAM R for CFD applications
HPC enabling of OpenFOAM R for CFD applications Towards the exascale: OpenFOAM perspective Ivan Spisso 25-27 March 2015, Casalecchio di Reno, BOLOGNA. SuperComputing Applications and Innovation Department,
A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS
A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS SUDHAKARAN.G APCF, AERO, VSSC, ISRO 914712564742 [email protected] THOMAS.C.BABU APCF, AERO, VSSC, ISRO 914712565833
Unsteady CFD of a Marine Current Turbine using OpenFOAM with Generalised Grid Interface
Unsteady CFD of a Marine Current Turbine using OpenFOAM with Generalised Grid Interface Thomas P. Lloyd, Stephen R. Turnock and Victor F. Humphrey Fluid-Structure Interactions Research Group; Institute
Scalable and High Performance Computing for Big Data Analytics in Understanding the Human Dynamics in the Mobile Age
Scalable and High Performance Computing for Big Data Analytics in Understanding the Human Dynamics in the Mobile Age Xuan Shi GRA: Bowei Xue University of Arkansas Spatiotemporal Modeling of Human Dynamics
C3.8 CRM wing/body Case
C3.8 CRM wing/body Case 1. Code description XFlow is a high-order discontinuous Galerkin (DG) finite element solver written in ANSI C, intended to be run on Linux-type platforms. Relevant supported equation
Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics
Lecture 11 Boundary Layers and Separation Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Overview Drag. The boundary-layer
walberla: A software framework for CFD applications on 300.000 Compute Cores
walberla: A software framework for CFD applications on 300.000 Compute Cores J. Götz (LSS Erlangen, [email protected]), K. Iglberger, S. Donath, C. Feichtinger, U. Rüde Lehrstuhl für Informatik 10 (Systemsimulation)
Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics
Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.
Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics
Lecture 16 - Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in
AN INVESTIGATION ON THE AERODYNAMIC PERFORMANCE OF A VERTICAL AXIS WIND TURBINE ETESH VAISHNAV
AN INVESTIGATION ON THE AERODYNAMIC PERFORMANCE OF A VERTICAL AXIS WIND TURBINE By ETESH VAISHNAV Bachelor of Science in Mechanical Engineering Bhilai Institute of Technology Durg, India 2007 Submitted
LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR
LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR Frédéric Kuznik, frederic.kuznik@insa lyon.fr 1 Framework Introduction Hardware architecture CUDA overview Implementation details A simple case:
Hardware-Aware Analysis and. Presentation Date: Sep 15 th 2009 Chrissie C. Cui
Hardware-Aware Analysis and Optimization of Stable Fluids Presentation Date: Sep 15 th 2009 Chrissie C. Cui Outline Introduction Highlights Flop and Bandwidth Analysis Mehrstellen Schemes Advection Caching
Simulation at Aeronautics Test Facilities A University Perspective Helen L. Reed, Ph.D., P.E. ASEB meeting, Irvine CA 15 October 2014 1500-1640
Simulation at Aeronautics Test A University Perspective Helen L. Reed, Ph.D., P.E. ASEB meeting, Irvine CA 15 October 2014 1500-1640 Questions How has the ability to do increasingly accurate modeling and
The Application of a Black-Box Solver with Error Estimate to Different Systems of PDEs
The Application of a Black-Bo Solver with Error Estimate to Different Systems of PDEs Torsten Adolph and Willi Schönauer Forschungszentrum Karlsruhe Institute for Scientific Computing Karlsruhe, Germany
High Performance. CAEA elearning Series. Jonathan G. Dudley, Ph.D. 06/09/2015. 2015 CAE Associates
High Performance Computing (HPC) CAEA elearning Series Jonathan G. Dudley, Ph.D. 06/09/2015 2015 CAE Associates Agenda Introduction HPC Background Why HPC SMP vs. DMP Licensing HPC Terminology Types of
CFD Analysis of Civil Transport Aircraft
IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 06, 2015 ISSN (online): 2321-0613 CFD Analysis of Civil Transport Aircraft Parthsarthi A Kulkarni 1 Dr. Pravin V Honguntikar
CFD Based Air Flow and Contamination Modeling of Subway Stations
CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George
Parallel Computing. Introduction
Parallel Computing Introduction Thorsten Grahs, 14. April 2014 Administration Lecturer Dr. Thorsten Grahs (that s me) [email protected] Institute of Scientific Computing Room RZ 120 Lecture Monday 11:30-13:00
Fast Multipole Method for particle interactions: an open source parallel library component
Fast Multipole Method for particle interactions: an open source parallel library component F. A. Cruz 1,M.G.Knepley 2,andL.A.Barba 1 1 Department of Mathematics, University of Bristol, University Walk,
High-Lift Systems. High Lift Systems -- Introduction. Flap Geometry. Outline of this Chapter
High-Lift Systems Outline of this Chapter The chapter is divided into four sections. The introduction describes the motivation for high lift systems, and the basic concepts underlying flap and slat systems.
Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412
, July 2-4, 2014, London, U.K. Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 Arvind Prabhakar, Ayush Ohri Abstract Winglets are angled extensions or vertical projections
High-Order CFD Methods: Current Status and Perspective
INTERNATIONAL JOURNAL FOR NERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2012; 00:1 42 Published online in Wiley InterScience (www.interscience.wiley.com). High-Order CFD Methods: Current Status
A CFD-BEM coupling technique for low Mach number flow induced noise
Proceedings of Acoustics 2013 - Victor Harbor 17-20 November 2013, Victor Harbor, Australia A CFD-BEM coupling technique for low Mach number flow induced noise P. Croaker (1), N. Kessissoglou (1), S. Marburg
NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES
Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: [email protected] Research field: Statics and Dynamics Fluids mechanics
CFD simulations using an AMR-like approach in the PDE Framework Peano
CFD simulations using an AMR-like approach in the PDE Framework Peano, Fakultät für Informatik Technische Universität München Germany Miriam Mehl, Hans-Joachim Bungartz, Takayuki Aoki Outline PDE Framework
GPU System Architecture. Alan Gray EPCC The University of Edinburgh
GPU System Architecture EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? GPU-CPU comparison Architectural reasons for GPU performance advantages GPU accelerated systems
Spatial Discretisation Schemes in the PDE framework Peano for Fluid-Structure Interactions
Spatial Discretisation Schemes in the PDE framework Peano for Fluid-Structure Interactions T. Neckel, H.-J. Bungartz, B. Gatzhammer, M. Mehl, C. Zenger TUM Department of Informatics Chair of Scientific
CFD and wave and current induced loads on offshore wind turbines
CFD and wave and current induced loads on offshore wind turbines O. M. Faltinsen and M. Greco, CeSOS, NTNU SPH predictions by CNR-Insean Relevant offshore wind turbines Relevant hydrodynamic problems are
Aeroacoustic Analogy for the Computation of Aeroacoustic Fields in Partially Closed Domains
INSTITUT FÜR MECHANIK UND MECHATRONIK Messtechnik und Aktorik Aeroacoustic Analogy for the Computation of Aeroacoustic Fields in Partially Closed Domains A. Hüppe 1, M. Kaltenbacher 1, A. Reppenhagen 2,
Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements
K. Stein Department of Physics, Bethel College, St. Paul, MN 55112 T. Tezduyar Mechanical Engineering, Rice University, MS 321, Houston, TX 77005 R. Benney Natick Soldier Center, Natick, MA 01760 Mesh
CFD and EXPERIMENTAL ANALYSIS of VORTEX SHEDDING BEHIND D-SHAPED CYLINDER
CFD and EXPERIMENTAL ANALYSIS of VORTEX SHEDDING BEHIND D-SHAPED CYLINDER Chandrakant D. Mhalungekar Department of Mechanical Engineering, MIT College of Engineering, Pune 411038, Pune University, India.
Part II: Finite Difference/Volume Discretisation for CFD
Part II: Finite Difference/Volume Discretisation for CFD Finite Volume Metod of te Advection-Diffusion Equation A Finite Difference/Volume Metod for te Incompressible Navier-Stokes Equations Marker-and-Cell
Using Computational Fluid Dynamics for Aerodynamics Antony Jameson and Massimiliano Fatica Stanford University
Using Computational Fluid Dynamics for Aerodynamics Antony Jameson and Massimiliano Fatica Stanford University In this white paper we survey the use of computational simulation for aerodynamics, focusing
HPC Deployment of OpenFOAM in an Industrial Setting
HPC Deployment of OpenFOAM in an Industrial Setting Hrvoje Jasak [email protected] Wikki Ltd, United Kingdom PRACE Seminar: Industrial Usage of HPC Stockholm, Sweden, 28-29 March 2011 HPC Deployment
AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL
14 th European Conference on Mixing Warszawa, 10-13 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski
LS-DYNA Scalability on Cray Supercomputers. Tin-Ting Zhu, Cray Inc. Jason Wang, Livermore Software Technology Corp.
LS-DYNA Scalability on Cray Supercomputers Tin-Ting Zhu, Cray Inc. Jason Wang, Livermore Software Technology Corp. WP-LS-DYNA-12213 www.cray.com Table of Contents Abstract... 3 Introduction... 3 Scalability
Development of Numerical Algorithm Based on a Modified Equation of Fluid Motion with Application to Turbomachinery Flow
Development of Numerical Algorithm Based on a Modified Equation of Fluid Motion with Application to Turbomachinery Flow Von der Fakultät für Ingenieurwissenschaften, Abteilung Maschinenbau der Universität
Large-Scale Reservoir Simulation and Big Data Visualization
Large-Scale Reservoir Simulation and Big Data Visualization Dr. Zhangxing John Chen NSERC/Alberta Innovates Energy Environment Solutions/Foundation CMG Chair Alberta Innovates Technology Future (icore)
CS 294-73 Software Engineering for Scientific Computing. http://www.cs.berkeley.edu/~colella/cs294fall2013. Lecture 16: Particle Methods; Homework #4
CS 294-73 Software Engineering for Scientific Computing http://www.cs.berkeley.edu/~colella/cs294fall2013 Lecture 16: Particle Methods; Homework #4 Discretizing Time-Dependent Problems From here on in,
Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA. CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design
Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design Background Introduction ATS Company Background New and
CFD ANALYSIS OF CONTROLLABLE PITCH PROPELLER USED IN MARINE VEHICLE
CFD ANALYSIS OF CONROLLABLE PICH PROPELLER USED IN MARINE VEHICLE Aditya Kolakoti 1,.V.K.Bhanuprakash 2 & H.N.Das 3 1 M.E in Marine Engineering And Mechanical Handling, Dept of Marine Engineering, Andhra
Overset Grids Technology in STAR-CCM+: Methodology and Applications
Overset Grids Technology in STAR-CCM+: Methodology and Applications Eberhard Schreck, Milovan Perić and Deryl Snyder [email protected] [email protected] [email protected]
Multiphase Flow - Appendices
Discovery Laboratory Multiphase Flow - Appendices 1. Creating a Mesh 1.1. What is a geometry? The geometry used in a CFD simulation defines the problem domain and boundaries; it is the area (2D) or volume
CFD MODELLING OF TOP SUBMERGED LANCE GAS INJECTION
CFD MODELLING OF TOP SUBMERGED LANCE GAS INJECTION Nazmul Huda PhD Student Faculty of Engineering and Industrial Science Swinburne University of Technology Melbourne, Australia Supervised by Dr. Jamal
Performance Comparison of a Vertical Axis Wind Turbine using Commercial and Open Source Computational Fluid Dynamics based Codes
Performance Comparison of a Vertical Axis Wind Turbine using Commercial and Open Source Computational Fluid Dynamics based Codes Taimoor Asim 1, Rakesh Mishra 1, Sree Nirjhor Kaysthagir 1, Ghada Aboufares
DYNAMIC LOAD BALANCING APPLICATIONS ON A HETEROGENEOUS UNIX/NT CLUSTER
European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2000 Barcelona, 11-14 September 2000 ECCOMAS DYNAMIC LOAD BALANCING APPLICATIONS ON A HETEROGENEOUS UNIX/NT CLUSTER
Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1
Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors
Modelling and Computation of Compressible Liquid Flows with Phase Transition
JASS 2009 - Joint Advanced Student School, Saint Petersburg, 29. 03. - 07. 04. 2009 Modelling and Simulation in Multidisciplinary Engineering Modelling and Computation of Compressible Liquid Flows with
Experiences Extending the CFD Solver of the PDE Framework Peano
Experiences Extending the CFD Solver of the PDE Framework Peano T. Neckel, M. Lieb, R. Sangl TUM, Department of Informatics, Chair of Scientific Computing in Computer Science P. Schoeffel, F. Weyermann
Overset and Adaptive Meshes for Stabilized Finite-Element Scheme
Overset and Adaptive Meshes for Stabilized Finite-Element Scheme W. Kyle Anderson, Behzad Ahrabi, and Chao Liu 2014 CFD Summer School Modern Techniques for Aerodynamic Analysis and Design Beijing Computational
Performance of the JMA NWP models on the PC cluster TSUBAME.
Performance of the JMA NWP models on the PC cluster TSUBAME. K.Takenouchi 1), S.Yokoi 1), T.Hara 1) *, T.Aoki 2), C.Muroi 1), K.Aranami 1), K.Iwamura 1), Y.Aikawa 1) 1) Japan Meteorological Agency (JMA)
Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics
Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics David Corson Altair Engineering, Inc. Todd Griffith Sandia National Laboratories Tom Ashwill (Retired) Sandia National
AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE
AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE HITENDRA KURMI Research scholar, School of Energy and Environmental Managment,UTD, RGPV Bhopal,MP,INDIA [email protected]
Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
A Load Balancing Tool for Structured Multi-Block Grid CFD Applications
A Load Balancing Tool for Structured Multi-Block Grid CFD Applications K. P. Apponsah and D. W. Zingg University of Toronto Institute for Aerospace Studies (UTIAS), Toronto, ON, M3H 5T6, Canada Email:
Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi
Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi ICPP 6 th International Workshop on Parallel Programming Models and Systems Software for High-End Computing October 1, 2013 Lyon, France
GPUs for Scientific Computing
GPUs for Scientific Computing p. 1/16 GPUs for Scientific Computing Mike Giles [email protected] Oxford-Man Institute of Quantitative Finance Oxford University Mathematical Institute Oxford e-research
DESIGN OF THE MODERN FAMILY OF HELICOPTER AIRFOILS 51
DESIGN OF THE MODERN FAMILY OF HELICOPTER AIRFOILS Wojciech KANIA, Wieńczysław STALEWSKI, Bogumiła ZWIERZCHOWSKA Institute of Aviation Summary The paper presents results of numerical design and experimental
The Influence of Aerodynamics on the Design of High-Performance Road Vehicles
The Influence of Aerodynamics on the Design of High-Performance Road Vehicles Guido Buresti Department of Aerospace Engineering University of Pisa (Italy) 1 CONTENTS ELEMENTS OF AERODYNAMICS AERODYNAMICS
Dimensional Analysis
Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous
Current Status and Challenges in CFD at the DLR Institute of Aerodynamics and Flow Technology
Current Status and Challenges in CFD at the DLR Institute of Aerodynamics and Flow Technology N. Kroll, C.-C. Rossow DLR, Institute of Aerodynamics and Flow Technology DLR Institute of Aerodynamics and
