(!' ) "' # "*# "!(!' +,
|
|
|
- Emil Davidson
- 10 years ago
- Views:
Transcription
1
2 MATLAB is a numeric computation software for engineering and scientific calculations. The name MATLAB stands for MATRIX LABORATORY. MATLAB is primarily a tool for matrix computations. It was developed by John Little and Cleve Moler of MathWorks, Inc. MATLAB was originally written to provide easy access to the matrix computation software packages LINPACK and EISPACK. MATLAB is a high-level language whose basic data type is a matrix that does not require dimensioning. There is no compilation and linking as is done in high-level languages, such as C or FORTRAN. Computer solutions in MATLAB seem to be much quicker than those of a high-level language such as C or FORTRAN. All computations are performed in complex-valued double precision arithmetic to guarantee high accuracy. MATLAB has a rich set of plotting capabilities. The graphics are integrated in MATLAB. Since MATLAB is also a programming environment, a user can extend the functional capabilities of MATLAB by writing new modules. MATLAB has a large collection of toolboxes in a variety of domains. Some examples of MATLAB toolboxes are control system, signal processing, neural network, image processing, and system identification. The toolboxes consist of functions that can be used to perform computations in a specific domain.
3 When MATLAB is invoked, the command window will display the prompt >>. MATLAB is then ready for entering data or executing commands. To quit MATLAB, type the command exit or quit MATLAB has on-line help. To see the list of MATLAB s help facility, type help The help command followed by a function name is used to obtain information on a specific MATLAB function. For example, to obtain information on the use of fast Fourier transform function, fft, one can type the command help fft
4 The basic data object in MATLAB is a rectangular numerical matrix with real or complex elements. Scalars are thought of as a 1-by-1 matrix. Vectors are considered as matrices with a row or column. MATLAB has no dimension statement or type declarations. Storage of data and variables is allocated automatically once the data and variables are used. MATLAB statements are normally of the form: variable = expression Expressions typed by the user are interpreted and immediately evaluated by the MATLAB system. If a MATLAB statement ends with a semicolon, MATLAB evaluates the statement but suppresses the display of the results. MATLAB is also capable of executing a number of commands that are stored in a file. This will be discussed in Section 1.6. A matrix 1 A = may be entered as follows: A = [1 2 3; 2 3 4; 3 4 5];
5 Note that the matrix entries must be surrounded by brackets [ ] with row elements separated by blanks or by commas. The end of each row, with the exception of the last row, is indicated by a semicolon. A matrix A can also be entered across three input lines as A = [ ]; In this case, the carriage returns replace the semicolons. A row vector B with four elements B = [ ] can be entered in MATLAB as B = [ ]; or B = [6, 9,12,15,18]
6 MATLAB is case sensitive in naming variables, commands and functions. Thus b and B are not the same variable. If you do not want MATLAB to be case sensitive, you can use the command casesen off To obtain the size of a specific variable, type size ( ). For example, to find the size of matrix A, you can execute the following command: size(a) The result will be a row vector with two entries. The first is the number of rows in A, the second the number of columns in A.
7 To find the list of variables that have been used in a MATLAB session, type the command whos There will be a display of variable names and dimensions. Table 1.1 shows the display of the variables that have been used so far in this lesson: Table 1.1 Display of an output of whos command The grand total is 21 elements using 168 bytes.
8 Table 1.2 shows additional MATLAB commands to get one started on MATLAB. Detailed descriptions and usages of the commands can be obtained from the MATLAB help facility or from MATLAB manuals. Table 1.2 Some Basic MATLAB Commands
9 The basic matrix operations are addition(+), subtraction(-), multiplication (*), and conjugate transpose( ) of matrices. In addition to the above basic operations, MATLAB has two forms of matrix division: the left inverse operator \ or the right inverse operator /. Matrices of the same dimension may be subtracted or added. Thus if E and F are entered in MATLAB as E = [7 2 3; 4 3 6; 8 1 5]; F = [1 4 2; 6 7 5; 1 9 1]; and G = E - F H = E + F then, matrices G and H will appear on the screen as G = H =
10 A scalar (1-by-1 matrix) may be added to or subtracted from a matrix. In this particular case, the scalar is added to or subtracted from all the elements of another matrix. For example, J = H + 1 gives J = Matrix multiplication is defined provided the inner dimensions of the two operands are the same. Thus, if X is an n-by-m matrix and Y is i-by-j matrix, X*Y is defined provided m is equal to i. Since E and F are 3-by-3 matrices, the product Q = E*F results as Q = Any matrix can be multiplied by a scalar. For example, 2*Q gives ans =
11 Note that if a variable name and the = sign are omitted, a variable name ans is automatically created. Matrix division can either be the left division operator \ or the right division operator /. The right division a/b, for instance, is algebraically equivalent to a while the left division a\b is algebraically equivalent to b. If Z * I = V and Z is non-singular, the left division, Z\V is equivalent to MATLAB expression I = inv(z) *V where inv is the MATLAB function for obtaining the inverse of a matrix. The right division denoted by V/Z is equivalent to the MATLAB expression I = V *inv(z) b a
12 There are MATLAB functions that can be used to produce special matrices. Examples are given in Table 1.3. Table 1.3 Some Utility Matrices
13 Array operations refer to element-by-element arithmetic operations. Preceding the linear algebraic matrix operations, * / \, by a period (.) indicates an array or element-by-element operation. Thus, the operators.*,.\,./,.^, represent element-by-element multiplication, left division, right division, and raising to the power, respectively. For addition and subtraction, the array and matrix operations are the same. Thus, + and.+ can be regarded as an array or matrix addition. If A1 and B1 are matrices of the same dimensions, then A1.*B1 denotes an array whose elements are products of the corresponding elements of A1 and B1.Thus, if A1 = [ ]; B1 = [ ]; then C1 = A1.*B1 results in C1 =
14 An array operation for left and right division also involves element-by-element operation. The expressions A1./B1 and A1.\B1 give the quotient of element-by-element division of matrices A1 and B1. The statement D1 = A1./B1 gives the result D1 = and the statement E1 = A1.\B1 gives E1 =
15 The array operation of raising to the power is denoted by.^. The general statement will be of the form: q = r1.^s1 If r1 and s1 are matrices of the same dimensions, then the result q is also a matrix of the same dimensions. For example, if r1 = [ 7 3 5]; s1 = [ 2 4 3]; then q1 = r1.^s1 gives the result q1 = One of the operands can be scalar. For example, q2 = r1.^2 q3 = (2).^s1 will give q2 = and q3 = Note that when one of the operands is scalar, the resulting matrix will have the same dimensions as the matrix operand.
16 MATLAB allows operations involving complex numbers. Complex numbers are entered using function i or j. For example, a number z = 2 + j2 may be entered in MATLAB as z = 2+2*i or z = 2+2*j Also, a complex number za za = 2 2 exp[( / 4) j] can be entered in MATLAB as za = 2*sqrt(2)*exp((pi/4)*j) It should be noted that when complex numbers are entered as matrix elements within brackets, one should avoid any blank spaces. For example, y = 3 + j4 is represented in MATLAB as y = 3+4*j If spaces exist around the + sign, such as u= 3 + 4*j MATLAB considers it as two separate numbers, and y will not be equal to u.
17 If w is a complex matrix given as 1+ j1 2 j2 w = 3 + j2 4 + j3 then we can represent it in MATLAB as w = [1+j 2-2*j; 3+2*j 4+3*j] which will produce the result w = i i i i If the entries in a matrix are complex, then the prime ( ) operator produces the conjugate transpose. Thus, wp = w' will produce wp = i i i i
18 For the unconjugate transpose of a complex matrix, we can use the point transpose (. ) command. For example, wt = w.' will yield wt = i i i i
19 The colon symbol (:) is one of the most important operators in MATLAB. It can be used (1) to create vectors and matrices, (2) to specify submatrices and vectors, and (3) to perform iterations. The statement t1 = 1:6 will generate a row vector containing the numbers from 1 to 6 with unit increment. MATLAB produces the result t1 = Non-unity, positive or negative increments, may be specified. For example, the statement t2 = 3:-0.5:1 will result in t2 = The statement t3 = [(0:2:10);(5:-0.2:4)] will result in a 2-by-4 matrix t3 =
20 Other MATLAB functions for generating vectors are linspace and logspace. Linspace generates linearly evenly spaced vectors, while logspace generates logarithmically evenly spaced vectors. The usage of these functions is of the form: linspace(i_value, f_value, np) logspace(i_value, f_value, np) where i_value is the initial value f_value is the final value np is the total number of elements in the vector.for example, t4 = linspace(2, 6, 8) will generate the vector t4 = Columns 1 through Column
21 Individual elements in a matrix can be referenced with subscripts inside parentheses. For example, t2(4) is the fourth element of vector t2. Also, for matrix t3, t3(2,3) denotes the entry in the second row and third column. Using the colon as one of the subscripts denotes all of the corresponding row or column. For example, t3(:,4) is the fourth column of matrix t3. Thus, the statement t5 = t3(:,4) will give t5 = Also, the statement t3(2,:) is the second row of matrix t3. That is the statement t6 = t3(2,:) will result in t6 =
22 If the colon exists as the only subscript, such as t3(:), the latter denotes the elements of matrix t3 strung out in a long column vector. Thus, the statement t7 = t3(:) will result in t7 =
23 !"# The voltage, v, across a resistance is given as (Ohm s Law), v = Ri, where i is the current and R the resistance. The power dissipated in resistor R is given by the expression 2 P = R.i If R = 10 Ohms and the current is increased from 0 to 10 A with increments of 2A, write a MATLAB program to generate a table of current, voltage and power dissipation.
24 $"%&'$( MATLAB Script diary ex1_1.dat % diary causes output to be written into file ex1_1.dat % Voltage and power calculation R=10; % Resistance value i=(0:2:10); % Generate current values v=i.*r; % array multiplication to obtain voltage p=(i.^2)*r; % power calculation sol=[i v p] % current, voltage and power values are printed diary % the last diary command turns off the diary state
25 MATLAB produces the following result: sol = Columns 1 through Columns 7 through Columns 13 through Columns 1 through 6 constitute the current values, columns 7 through 12 are the voltages, and columns 13 through 18 are the power dissipation values.
26 END POINT FOR THIS PART
AMATH 352 Lecture 3 MATLAB Tutorial Starting MATLAB Entering Variables
AMATH 352 Lecture 3 MATLAB Tutorial MATLAB (short for MATrix LABoratory) is a very useful piece of software for numerical analysis. It provides an environment for computation and the visualization. Learning
2+2 Just type and press enter and the answer comes up ans = 4
Demonstration Red text = commands entered in the command window Black text = Matlab responses Blue text = comments 2+2 Just type and press enter and the answer comes up 4 sin(4)^2.5728 The elementary functions
MATLAB Basics MATLAB numbers and numeric formats
MATLAB Basics MATLAB numbers and numeric formats All numerical variables are stored in MATLAB in double precision floating-point form. (In fact it is possible to force some variables to be of other types
ELECTRONICS and CIRCUIT ANALYSIS using MATLAB
ELECTRONICS and CIRCUIT ANALYSIS using MATLAB JOHN O. ATTIA Department of Electrical Engineering Prairie View A&M University CRC Press Boca Raton London New York Washington, D.C. Library of Congress Cataloging-in-Publication
Introduction to Matlab
Introduction to Matlab Social Science Research Lab American University, Washington, D.C. Web. www.american.edu/provost/ctrl/pclabs.cfm Tel. x3862 Email. [email protected] Course Objective This course provides
MATLAB Workshop 3 - Vectors in MATLAB
MATLAB: Workshop - Vectors in MATLAB page 1 MATLAB Workshop - Vectors in MATLAB Objectives: Learn about vector properties in MATLAB, methods to create row and column vectors, mathematical functions with
u = [ 2 4 5] has one row with three components (a 3 v = [2 4 5] has three rows separated by semicolons (a 3 w = 2:5 generates the row vector w = [ 2 3
MATLAB Tutorial You need a small numb e r of basic commands to start using MATLAB. This short tutorial describes those fundamental commands. You need to create vectors and matrices, to change them, and
Beginning Matlab Exercises
Beginning Matlab Exercises R. J. Braun Department of Mathematical Sciences University of Delaware 1 Introduction This collection of exercises is inted to help you start learning Matlab. Matlab is a huge
Financial Econometrics MFE MATLAB Introduction. Kevin Sheppard University of Oxford
Financial Econometrics MFE MATLAB Introduction Kevin Sheppard University of Oxford October 21, 2013 2007-2013 Kevin Sheppard 2 Contents Introduction i 1 Getting Started 1 2 Basic Input and Operators 5
How To Use Matlab
INTRODUCTION TO MATLAB FOR ENGINEERING STUDENTS David Houcque Northwestern University (version 1.2, August 2005) Contents 1 Tutorial lessons 1 1 1.1 Introduction.................................... 1 1.2
Beginner s Matlab Tutorial
Christopher Lum [email protected] Introduction Beginner s Matlab Tutorial This document is designed to act as a tutorial for an individual who has had no prior experience with Matlab. For any questions
(!' ) "' # "*# "!(!' +,
Normally, when single line commands are entered, MATLAB processes the commands immediately and displays the results. MATLAB is also capable of processing a sequence of commands that are stored in files
Lecture 2 Matrix Operations
Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrix-vector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or
Operation Count; Numerical Linear Algebra
10 Operation Count; Numerical Linear Algebra 10.1 Introduction Many computations are limited simply by the sheer number of required additions, multiplications, or function evaluations. If floating-point
Introductory Course to Matlab with Financial Case Studies
University of Cyprus Public Business Administration Department Introductory Course to Matlab with Financial Case Studies Prepared by: Panayiotis Andreou PhD Candidate PBA UCY Lefkosia, September 003 Table
MatLab Basics. Now, press return to see what Matlab has stored as your variable x. You should see:
MatLab Basics MatLab was designed as a Matrix Laboratory, so all operations are assumed to be done on matrices unless you specifically state otherwise. (In this context, numbers (scalars) are simply regarded
CD-ROM Appendix E: Matlab
CD-ROM Appendix E: Matlab Susan A. Fugett Matlab version 7 or 6.5 is a very powerful tool useful for many kinds of mathematical tasks. For the purposes of this text, however, Matlab 7 or 6.5 will be used
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
Matrix Differentiation
1 Introduction Matrix Differentiation ( and some other stuff ) Randal J. Barnes Department of Civil Engineering, University of Minnesota Minneapolis, Minnesota, USA Throughout this presentation I have
Here are some examples of combining elements and the operations used:
MATRIX OPERATIONS Summary of article: What is an operation? Addition of two matrices. Multiplication of a Matrix by a scalar. Subtraction of two matrices: two ways to do it. Combinations of Addition, Subtraction,
1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
Introduction to Matlab: Application to Electrical Engineering
Introduction to Matlab: Application to Electrical Engineering Houssem Rafik El Hana Bouchekara Umm El Qura University (version 1, Februray 2011) 1 Contents 1 CHAPTER 1... 7 1.1 TUTORIAL LESSONS 1... 7
Matrix Algebra in R A Minimal Introduction
A Minimal Introduction James H. Steiger Department of Psychology and Human Development Vanderbilt University Regression Modeling, 2009 1 Defining a Matrix in R Entering by Columns Entering by Rows Entering
Chapter One Introduction to Programming
Chapter One Introduction to Programming 1-1 Algorithm and Flowchart Algorithm is a step-by-step procedure for calculation. More precisely, algorithm is an effective method expressed as a finite list of
Programming Languages & Tools
4 Programming Languages & Tools Almost any programming language one is familiar with can be used for computational work (despite the fact that some people believe strongly that their own favorite programming
3 Orthogonal Vectors and Matrices
3 Orthogonal Vectors and Matrices The linear algebra portion of this course focuses on three matrix factorizations: QR factorization, singular valued decomposition (SVD), and LU factorization The first
MATLAB LECTURE NOTES. Dr. ADİL YÜCEL. Istanbul Technical University Department of Mechanical Engineering
MATLAB LECTURE NOTES Dr. ADİL YÜCEL Istanbul Technical University Department of Mechanical Engineering MATLAB LECTURE NOTES Student Name Student ID Dr. ADİL YÜCEL Istanbul Technical University Department
Appendix: Tutorial Introduction to MATLAB
Resampling Stats in MATLAB 1 This document is an excerpt from Resampling Stats in MATLAB Daniel T. Kaplan Copyright (c) 1999 by Daniel T. Kaplan, All Rights Reserved This document differs from the published
15.062 Data Mining: Algorithms and Applications Matrix Math Review
.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation
THE NAS KERNEL BENCHMARK PROGRAM
THE NAS KERNEL BENCHMARK PROGRAM David H. Bailey and John T. Barton Numerical Aerodynamic Simulations Systems Division NASA Ames Research Center June 13, 1986 SUMMARY A benchmark test program that measures
Typical Linear Equation Set and Corresponding Matrices
EWE: Engineering With Excel Larsen Page 1 4. Matrix Operations in Excel. Matrix Manipulations: Vectors, Matrices, and Arrays. How Excel Handles Matrix Math. Basic Matrix Operations. Solving Systems of
How long is the vector? >> length(x) >> d=size(x) % What are the entries in the matrix d?
MATLAB : A TUTORIAL 1. Creating vectors..................................... 2 2. Evaluating functions y = f(x), manipulating vectors. 4 3. Plotting............................................ 5 4. Miscellaneous
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
Introduction. Chapter 1
Chapter 1 Introduction MATLAB (Matrix laboratory) is an interactive software system for numerical computations and graphics. As the name suggests, MATLAB is especially designed for matrix computations:
1. Classification problems
Neural and Evolutionary Computing. Lab 1: Classification problems Machine Learning test data repository Weka data mining platform Introduction Scilab 1. Classification problems The main aim of a classification
Scientific Programming in Python
UCSD March 9, 2009 What is Python? Python in a very high level (scripting) language which has gained widespread popularity in recent years. It is: What is Python? Python in a very high level (scripting)
MBA Jump Start Program
MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Online Appendix: Basic Mathematical Concepts 2 1 The Number Spectrum Generally we depict numbers increasing from left to right
Basic Concepts in Matlab
Basic Concepts in Matlab Michael G. Kay Fitts Dept. of Industrial and Systems Engineering North Carolina State University Raleigh, NC 769-7906, USA [email protected] September 00 Contents. The Matlab Environment.
13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.
3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms
WEEK #3, Lecture 1: Sparse Systems, MATLAB Graphics
WEEK #3, Lecture 1: Sparse Systems, MATLAB Graphics Visualization of Matrices Good visuals anchor any presentation. MATLAB has a wide variety of ways to display data and calculation results that can be
Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving MATLAB Tutorial VI
Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving MATLAB Tutorial VI Solving a System of Linear Algebraic Equations (last updated 5/19/05 by GGB) Objectives:
3.2 Matrix Multiplication
3.2 Matrix Multiplication Question : How do you multiply two matrices? Question 2: How do you interpret the entries in a product of two matrices? When you add or subtract two matrices, you add or subtract
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
PTC Mathcad Prime 3.0 Keyboard Shortcuts
PTC Mathcad Prime 3.0 Shortcuts Swedish s Regions Inserting Regions Operator/Command Description Shortcut Swedish Area Inserts a collapsible area you can collapse or expand to toggle the display of your
SOLVING LINEAR SYSTEMS
SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis
MATLAB Primer. R2015b
MATLAB Primer R25b How to Contact MathWorks Latest news: www.mathworks.com Sales and services: www.mathworks.com/sales_and_services User community: www.mathworks.com/matlabcentral Technical support: www.mathworks.com/support/contact_us
Using MATLAB to Measure the Diameter of an Object within an Image
Using MATLAB to Measure the Diameter of an Object within an Image Keywords: MATLAB, Diameter, Image, Measure, Image Processing Toolbox Author: Matthew Wesolowski Date: November 14 th 2014 Executive Summary
How To Understand And Solve Algebraic Equations
College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1 Course Description This course provides
WESTMORELAND COUNTY PUBLIC SCHOOLS 2011 2012 Integrated Instructional Pacing Guide and Checklist Computer Math
Textbook Correlation WESTMORELAND COUNTY PUBLIC SCHOOLS 2011 2012 Integrated Instructional Pacing Guide and Checklist Computer Math Following Directions Unit FIRST QUARTER AND SECOND QUARTER Logic Unit
Linear Algebra Review. Vectors
Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka [email protected] http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length
Chapter 07: Instruction Level Parallelism VLIW, Vector, Array and Multithreaded Processors. Lesson 05: Array Processors
Chapter 07: Instruction Level Parallelism VLIW, Vector, Array and Multithreaded Processors Lesson 05: Array Processors Objective To learn how the array processes in multiple pipelines 2 Array Processor
Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11
Content Credits 11 Chapter 1 Arithmetic Refresher 13 1.1 Algebra 14 Real Numbers 14 Real Polynomials 19 1.2 Equations in one variable 21 Linear Equations 21 Quadratic Equations 22 1.3 Exercises 28 Chapter
Lecture Notes 2: Matrices as Systems of Linear Equations
2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably
SQL Server Array Library 2010-11 László Dobos, Alexander S. Szalay
SQL Server Array Library 2010-11 László Dobos, Alexander S. Szalay The Johns Hopkins University, Department of Physics and Astronomy Eötvös University, Department of Physics of Complex Systems http://voservices.net/sqlarray,
Introduction to Matrix Algebra
Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary
This is a square root. The number under the radical is 9. (An asterisk * means multiply.)
Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize
Math 1050 Khan Academy Extra Credit Algebra Assignment
Math 1050 Khan Academy Extra Credit Algebra Assignment KhanAcademy.org offers over 2,700 instructional videos, including hundreds of videos teaching algebra concepts, and corresponding problem sets. In
Linear Algebra and TI 89
Linear Algebra and TI 89 Abdul Hassen and Jay Schiffman This short manual is a quick guide to the use of TI89 for Linear Algebra. We do this in two sections. In the first section, we will go over the editing
CUDAMat: a CUDA-based matrix class for Python
Department of Computer Science 6 King s College Rd, Toronto University of Toronto M5S 3G4, Canada http://learning.cs.toronto.edu fax: +1 416 978 1455 November 25, 2009 UTML TR 2009 004 CUDAMat: a CUDA-based
Chapter 5 Programming Statements. Chapter Table of Contents
Chapter 5 Programming Statements Chapter Table of Contents OVERVIEW... 57 IF-THEN/ELSE STATEMENTS... 57 DO GROUPS... 58 IterativeExecution... 59 JUMPING... 61 MODULES... 62 Defining and Executing a Module....
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column
Digital Image Processing
Digital Image Processing Using MATLAB Second Edition Rafael C. Gonzalez University of Tennessee Richard E. Woods MedData Interactive Steven L. Eddins The MathWorks, Inc. Gatesmark Publishing A Division
MS-EXCEL: ANALYSIS OF EXPERIMENTAL DATA
MS-EXCEL: ANALYSIS OF EXPERIMENTAL DATA Rajender Parsad and Shashi Dahiya I.A.S.R.I., Library Avenue, New Delhi-110 012 The inbuilt functions and procedures of MS-EXCEL can be utilized for the analysis
NUMERICAL METHODS TOPICS FOR RESEARCH PAPERS
Faculty of Civil Engineering Belgrade Master Study COMPUTATIONAL ENGINEERING Fall semester 2004/2005 NUMERICAL METHODS TOPICS FOR RESEARCH PAPERS 1. NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS - Matrices
CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES. From Exploratory Factor Analysis Ledyard R Tucker and Robert C.
CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES From Exploratory Factor Analysis Ledyard R Tucker and Robert C MacCallum 1997 180 CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES In
Informatica e Sistemi in Tempo Reale
Informatica e Sistemi in Tempo Reale Introduction to C programming Giuseppe Lipari http://retis.sssup.it/~lipari Scuola Superiore Sant Anna Pisa October 25, 2010 G. Lipari (Scuola Superiore Sant Anna)
Introduction to Matrices for Engineers
Introduction to Matrices for Engineers C.T.J. Dodson, School of Mathematics, Manchester Universit 1 What is a Matrix? A matrix is a rectangular arra of elements, usuall numbers, e.g. 1 0-8 4 0-1 1 0 11
Electrical Engineering 103 Applied Numerical Computing
UCLA Fall Quarter 2011-12 Electrical Engineering 103 Applied Numerical Computing Professor L Vandenberghe Notes written in collaboration with S Boyd (Stanford Univ) Contents I Matrix theory 1 1 Vectors
Similar matrices and Jordan form
Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive
Notes on Factoring. MA 206 Kurt Bryan
The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor
MS Access: Advanced Tables and Queries. Lesson Notes Author: Pamela Schmidt
Lesson Notes Author: Pamela Schmidt Tables Text Fields (Default) Text or combinations of text and numbers, as well as numbers that don't require calculations, such as phone numbers. or the length set by
Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.
This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra
The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression
The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonal-diagonal-orthogonal type matrix decompositions Every
Exercise 0. Although Python(x,y) comes already with a great variety of scientic Python packages, we might have to install additional dependencies:
Exercise 0 Deadline: None Computer Setup Windows Download Python(x,y) via http://code.google.com/p/pythonxy/wiki/downloads and install it. Make sure that before installation the installer does not complain
Modeling with Python
H Modeling with Python In this appendix a brief description of the Python programming language will be given plus a brief introduction to the Antimony reaction network format and libroadrunner. Python
MATLAB MANUAL AND INTRODUCTORY TUTORIALS
MATLAB MANUAL AND INTRODUCTORY TUTORIALS Ivan Graham, with some revisions by Nick Britton, Mathematical Sciences, University of Bath February 9, 2005 This manual provides an introduction to MATLAB with
Introduction to MATLAB Gergely Somlay Application Engineer [email protected]
Introduction to MATLAB Gergely Somlay Application Engineer [email protected] 2012 The MathWorks, Inc. 1 What is MATLAB? High-level language Interactive development environment Used for: Numerical
The world s largest matrix computation. (This chapter is out of date and needs a major overhaul.)
Chapter 7 Google PageRank The world s largest matrix computation. (This chapter is out of date and needs a major overhaul.) One of the reasons why Google TM is such an effective search engine is the PageRank
Lecture 4: Partitioned Matrices and Determinants
Lecture 4: Partitioned Matrices and Determinants 1 Elementary row operations Recall the elementary operations on the rows of a matrix, equivalent to premultiplying by an elementary matrix E: (1) multiplying
SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison
SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections
MATLAB Primer. R2015a
MATLAB Primer R25a How to Contact MathWorks Latest news: www.mathworks.com Sales and services: www.mathworks.com/sales_and_services User community: www.mathworks.com/matlabcentral Technical support: www.mathworks.com/support/contact_us
26 Integers: Multiplication, Division, and Order
26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue
Vector Spaces; the Space R n
Vector Spaces; the Space R n Vector Spaces A vector space (over the real numbers) is a set V of mathematical entities, called vectors, U, V, W, etc, in which an addition operation + is defined and in which
Linear Algebra Notes for Marsden and Tromba Vector Calculus
Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of
Boolean Algebra Part 1
Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems
BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line
College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina - Beaufort Lisa S. Yocco, Georgia Southern University
MATLAB DFS. Interface Library. User Guide
MATLAB DFS Interface Library User Guide DHI Water Environment Health Agern Allé 5 DK-2970 Hørsholm Denmark Tel: +45 4516 9200 Fax: +45 4516 9292 E-mail: [email protected] Web: www.dhigroup.com 2007-03-07/MATLABDFS_INTERFACELIBRARY_USERGUIDE.DOC/JGR/HKH/2007Manuals/lsm
Fibonacci numbers introduce vectors, functions and recursion.
Chapter 2 Fibonacci Numbers Fibonacci numbers introduce vectors, functions and recursion. Leonardo Pisano Fibonacci was born around 1170 and died around 1250 in Pisa in what is now Italy. He traveled extensively
Computational Mathematics with Python
Computational Mathematics with Python Basics Claus Führer, Jan Erik Solem, Olivier Verdier Spring 2010 Claus Führer, Jan Erik Solem, Olivier Verdier Computational Mathematics with Python Spring 2010 1
9 MATRICES AND TRANSFORMATIONS
9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the
Maple Quick Start. Introduction. Talking to Maple. Using [ENTER] 3 (2.1)
Introduction Maple Quick Start In this introductory course, you will become familiar with and comfortable in the Maple environment. You will learn how to use context menus, task assistants, and palettes
ADVANCED APPLICATIONS OF ELECTRICAL ENGINEERING
Development of a Software Tool for Performance Evaluation of MIMO OFDM Alamouti using a didactical Approach as a Educational and Research support in Wireless Communications JOSE CORDOVA, REBECA ESTRADA
Signal Processing First Lab 01: Introduction to MATLAB. 3. Learn a little about advanced programming techniques for MATLAB, i.e., vectorization.
Signal Processing First Lab 01: Introduction to MATLAB Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment and go over all exercises in the Pre-Lab section
Question 2: How do you solve a matrix equation using the matrix inverse?
Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients
Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}
Notes on Determinant
ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without
