References. Importance Sampling. Jessi Cisewski (CMU) Carnegie Mellon University. June 2014
|
|
|
- Horatio Clark
- 10 years ago
- Views:
Transcription
1 Jessi Cisewski Carnegie Mellon University June 2014
2 Outline 1 Recall: Monte Carlo integration 2 3 Examples of (a) Monte Carlo, Monaco (b) Monte Carlo Casino Some content and examples from Wasserman (2004)
3 Simple illustration: what is π? Area = πr 2 Area (2r)(2r) = π 4
4 Monte Carlo Integration: motivation Goal: evaluate this integral I = b a h(y)dy Sometimes we can find I (e.g. if h( ) is a function from Calc I) But sometimes we can t and need a way to approximate I. Monte Carlo methods are one (of many) approaches to do this.
5 The Law of Large Numbers While nothing is more uncertain than the duration of a single life, nothing is more certain than the average duration of a thousand lives. Elizur Wright Figure: Elizur Wright ( ), American mathematician, the father of life insurance, father of insurance regulation (
6 Law of Large Numbers The Law of Large Numbers describes what happens when performing the same experiment many times. After many trials, the average of the results should be close to the expected value and will be more accurate with more trials. For Monte Carlo simulation, this means that we can learn properties of a random variable (mean, variance, etc.) simply by simulating it over many trials. Suppose we want to estimate the probability, p, of a coin landing heads up. How many times should we flip the coin?
7 Law of Large Numbers (LLN) Given an independent and identically distributed sequence of random variables Y 1, Y 2,..., Y n with Ȳ n = n 1 n i=1 Y i and E(Y i ) = µ, then for every ɛ > 0 as n. P( Ȳn µ > ɛ) 0,
8 Monte Carlo Integration General idea Monte Carlo methods are a form of stochastic integration used to approximate expectations by invoking the law of large numbers. I = b a h(y)dy = b a w(y)f (y)dy = E f (w(y )) where f (y) = 1 b a and w(y) = h(y) (b a) f (y) = 1 b a is the pdf of a U(a,b) random variable By the LLN, if we take an iid sample of size N from U(a, b), we can estimate I as Î = N 1 N i=1 w(y i ) E(w(Y )) = I
9 Monte Carlo Integration: standard error I = b a h(y)dy = b a w(y)f (y)dy = E f (w(y )) Monte Carlo estimator: Î = N 1 N i=1 w(y i) Standard error of estimator: SE ˆ = s N where s 2 = (N 1) 1 N i=1 ( ) 2 w(y i ) Î
10 Monte Carlo Integration: Gaussian CDF example Goal: estimate F Y (y) = P(Y y) = E [ I (,y) (Y ) ] where Y N(0, 1): y 1 F (Y y) = e t2 /2 1 dt = h(t) e t2 /2 dt 2π 2π where h(t) = 1 if t < y and h(t) = 0 if t y Draw an iid sample Y 1,..., Y N from a N(0, 1), then the estimator is N Î = N 1 h(y i ) = # draws < x N i=1 Example 24.2 of Wasserman (2004)
11 : motivation Standard Monte Carlo integration is great if you can sample from the target distribution (i.e. the desired distribution) But what if you can t sample from the target? Idea of importance sampling: draw the sample from a proposal distribution and re-weight the integral using importance weights so that the correct distribution is targeted
12 Monte Carlo Integration I = h(y)f (y)dy h is some function and f is the probability density function of Y When the density f is difficult to sample from, importance sampling can be used Rather than sampling from f, you specify a different probability density function, g, as the proposal distribution. I = h(y)f (y)dy = h(y) f (y) g(y) g(y)dy = h(y)f (y) g(y)dy g(y)
13 [ ] h(y)f (y) h(y )f (Y ) I = E f [h(y )] = g(y)dy = E g g(y) g(y ) Hence, given an iid sample Y 1,..., Y N from g, our estimator of I becomes Î = N 1 N i=1 h(y i )f (Y i ) g(y i ) [ ] h(y )f (Y ) E g = I g(y )
14 : selecting the proposal distribution The standard error of Î could be infinite if g( ) is not selected appropriately g should have thicker tails than f (don t want ratio f /g to get large) [ (h(y ) ] )f (Y ) 2 ( ) h(y)f (y) 2 E g = g(y)dy g(y ) g(y) Select a g that has a similar shape to f, but with thicker tails Variance of Î is minimized when g(y) f (y) Want to be able to sample from g(y) with ease
15 Importance sampling: Illustration Goal: estimate P(Y < 0.3) where Y f Try two proposal distributions: U(0,1) and U(0,4)
16 Importance sampling: Illustration, continued. If take 1000 samples of size 100, and find the IS estimates, we get the following estimated expected values and variances. Expected Value Variance Truth g 1 : U(0,1) g 2 : U(0,4)
17 Monte Carlo Integration: Gaussian tail probability example Goal: estimate P(Y 3) where Y N(0, 1) (Truth is ) 1 P(Y > 3) = e t2 /2 1 dt = h(t) e t2 /2 dt 3 2π 2π where h(t) = 1 if t > 3 and h(t) = 0 if t 3 Draw an iid sample Y 1,..., Y 100 from a N(0, 1), then the estimator is Î = i=1 Example 24.6 of Wasserman (2004) h(y i ) = # draws > 3 100
18 Gaussian tail probability example, continued. Draw an iid sample Y 1,..., Y 100 from a N(0, 1), then the estimator is Î = h(y i ) 100 i=1 Draw an iid sample Y 1,..., Y 100 from a N(4, 1), then the estimator is Î = h(y i )f (Y i ) 100 g(y i ) i=1 where f is the density of a N(0,1) and g is the density of N(4,1) Example 24.6 of Wasserman (2004)
19 Gaussian tail probability example, continued. If take N samples of size 100, and find the MC and IS estimates, we get the following estimated expected values and variances. N = 10 5 Expected Value Variance Truth Monte Carlo
20 Extensions of Sequential Sequential Monte Carlo (Particle Filtering) See Doucet et al. (2001) Approximate Bayesian Computation See Turner and Zandt (2012) for a tutorial, and Cameron and Pettitt (2012); Weyant et al. (2013) for applications to astronomy
21 Bibliography Cameron, E. and Pettitt, A. N. (2012), Approximate Bayesian Computation for Astronomical Model Analysis: A Case Study in Galaxy Demographics and Morphological Transformation at High Redshift, Monthly Notices of the Royal Astronomical Society, 425, Doucet, A., De Freitas, N., and Gordon, N. (2001), Sequential Monte Carlo Methods in Practice, Statistics for Engineering and Information Science, New York: Springer-Verlag. Turner, B. M. and Zandt, T. V. (2012), A tutorial on approximate Bayesian computation, Journal of Mathematical Psychology, 56, Wasserman, L. (2004), All of statistics: a concise course in statistical inference, Springer. Weyant, A., Schafer, C., and Wood-Vasey, W. M. (2013), Likeihood-free cosmological inference with type Ia supernovae: approximate Bayesian computation for a complete treatment of uncertainty, The Astrophysical Journal, 764, 116.
Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density
HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,
Law of Large Numbers. Alexandra Barbato and Craig O Connell. Honors 391A Mathematical Gems Jenia Tevelev
Law of Large Numbers Alexandra Barbato and Craig O Connell Honors 391A Mathematical Gems Jenia Tevelev Jacob Bernoulli Life of Jacob Bernoulli Born into a family of important citizens in Basel, Switzerland
1 Simulating Brownian motion (BM) and geometric Brownian motion (GBM)
Copyright c 2013 by Karl Sigman 1 Simulating Brownian motion (BM) and geometric Brownian motion (GBM) For an introduction to how one can construct BM, see the Appendix at the end of these notes A stochastic
Monte Carlo-based statistical methods (MASM11/FMS091)
Monte Carlo-based statistical methods (MASM11/FMS091) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 6 Sequential Monte Carlo methods II February 7, 2014 M. Wiktorsson
1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let
Copyright c 2009 by Karl Sigman 1 Stopping Times 1.1 Stopping Times: Definition Given a stochastic process X = {X n : n 0}, a random time τ is a discrete random variable on the same probability space as
Tutorial on Markov Chain Monte Carlo
Tutorial on Markov Chain Monte Carlo Kenneth M. Hanson Los Alamos National Laboratory Presented at the 29 th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Technology,
How To Solve A Sequential Mca Problem
Monte Carlo-based statistical methods (MASM11/FMS091) Jimmy Olsson Centre for Mathematical Sciences Lund University, Sweden Lecture 6 Sequential Monte Carlo methods II February 3, 2012 Changes in HA1 Problem
Sampling Distributions
Sampling Distributions You have seen probability distributions of various types. The normal distribution is an example of a continuous distribution that is often used for quantitative measures such as
Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization
Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization Wolfram Burgard, Maren Bennewitz, Diego Tipaldi, Luciano Spinello 1 Motivation Recall: Discrete filter Discretize
Master s thesis tutorial: part III
for the Autonomous Compliant Research group Tinne De Laet, Wilm Decré, Diederik Verscheure Katholieke Universiteit Leuven, Department of Mechanical Engineering, PMA Division 30 oktober 2006 Outline General
VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS
VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS Aswin C Sankaranayanan, Qinfen Zheng, Rama Chellappa University of Maryland College Park, MD - 277 {aswch, qinfen, rama}@cfar.umd.edu Volkan Cevher, James
Model-based Synthesis. Tony O Hagan
Model-based Synthesis Tony O Hagan Stochastic models Synthesising evidence through a statistical model 2 Evidence Synthesis (Session 3), Helsinki, 28/10/11 Graphical modelling The kinds of models that
An Introduction to Information Theory
An Introduction to Information Theory Carlton Downey November 12, 2013 INTRODUCTION Today s recitation will be an introduction to Information Theory Information theory studies the quantification of Information
Nonparametric adaptive age replacement with a one-cycle criterion
Nonparametric adaptive age replacement with a one-cycle criterion P. Coolen-Schrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK e-mail: [email protected]
Discrete Frobenius-Perron Tracking
Discrete Frobenius-Perron Tracing Barend J. van Wy and Michaël A. van Wy French South-African Technical Institute in Electronics at the Tshwane University of Technology Staatsartillerie Road, Pretoria,
6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS
6.4/6.43 Spring 28 Quiz 2 Wednesday, April 6, 7:3-9:3 PM. SOLUTIONS Name: Recitation Instructor: TA: 6.4/6.43: Question Part Score Out of 3 all 36 2 a 4 b 5 c 5 d 8 e 5 f 6 3 a 4 b 6 c 6 d 6 e 6 Total
Inference on Phase-type Models via MCMC
Inference on Phase-type Models via MCMC with application to networks of repairable redundant systems Louis JM Aslett and Simon P Wilson Trinity College Dublin 28 th June 202 Toy Example : Redundant Repairable
Simulation Techniques in Financial Risk Management
Simulation Techniques in Financial Risk Management NGAI HANG CHAN HOI YING WONG The Chinese University of Hong Kong Shatin, Hong Kong @E;!;iCIENCE A JOHN WILEY & SONS, INC., PUBLICATION This Page Intentionally
Statistics 100A Homework 3 Solutions
Chapter Statistics 00A Homework Solutions Ryan Rosario. Two balls are chosen randomly from an urn containing 8 white, black, and orange balls. Suppose that we win $ for each black ball selected and we
A Dynamic Supply-Demand Model for Electricity Prices
A Dynamic Supply-Demand Model for Electricity Prices Manuela Buzoianu, Anthony E. Brockwell, and Duane J. Seppi Abstract We introduce a new model for electricity prices, based on the principle of supply
A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking
174 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY 2002 A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking M. Sanjeev Arulampalam, Simon Maskell, Neil
Monte Carlo Methods in Finance
Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction
MAS108 Probability I
1 QUEEN MARY UNIVERSITY OF LONDON 2:30 pm, Thursday 3 May, 2007 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators. The paper
Monte Carlo simulations and option pricing
Monte Carlo simulations and option pricing by Bingqian Lu Undergraduate Mathematics Department Pennsylvania State University University Park, PA 16802 Project Supervisor: Professor Anna Mazzucato July,
Chapter 1. Introduction
Chapter 1 Introduction 1.1. Motivation Network performance analysis, and the underlying queueing theory, was born at the beginning of the 20th Century when two Scandinavian engineers, Erlang 1 and Engset
Monte Carlo Simulation
1 Monte Carlo Simulation Stefan Weber Leibniz Universität Hannover email: [email protected] web: www.stochastik.uni-hannover.de/ sweber Monte Carlo Simulation 2 Quantifying and Hedging
Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab
Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?
CHAPTER 2 Estimating Probabilities
CHAPTER 2 Estimating Probabilities Machine Learning Copyright c 2016. Tom M. Mitchell. All rights reserved. *DRAFT OF January 24, 2016* *PLEASE DO NOT DISTRIBUTE WITHOUT AUTHOR S PERMISSION* This is a
Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091)
Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I February
Deterministic Sampling-based Switching Kalman Filtering for Vehicle Tracking
Proceedings of the IEEE ITSC 2006 2006 IEEE Intelligent Transportation Systems Conference Toronto, Canada, September 17-20, 2006 WA4.1 Deterministic Sampling-based Switching Kalman Filtering for Vehicle
Exploring Geometric Probabilities with Buffon s Coin Problem
Exploring Geometric Probabilities with Buffon s Coin Problem Kady Schneiter Utah State University [email protected] Published: October 2012 Overview of Lesson Investigate Buffon s coin problem using
Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber 2011 1
Data Modeling & Analysis Techniques Probability & Statistics Manfred Huber 2011 1 Probability and Statistics Probability and statistics are often used interchangeably but are different, related fields
Monte Carlo-based statistical methods (MASM11/FMS091)
Monte Carlo-based statistical methods (MASM11/FMS091) Jimmy Olsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I February 5, 2013 J. Olsson Monte Carlo-based
Probability and Random Variables. Generation of random variables (r.v.)
Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly
Introduction to Probability
Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence
Optimal reinsurance with ruin probability target
Optimal reinsurance with ruin probability target Arthur Charpentier 7th International Workshop on Rare Event Simulation, Sept. 2008 http ://blogperso.univ-rennes1.fr/arthur.charpentier/ 1 Ruin, solvency
People have thought about, and defined, probability in different ways. important to note the consequences of the definition:
PROBABILITY AND LIKELIHOOD, A BRIEF INTRODUCTION IN SUPPORT OF A COURSE ON MOLECULAR EVOLUTION (BIOL 3046) Probability The subject of PROBABILITY is a branch of mathematics dedicated to building models
EE 570: Location and Navigation
EE 570: Location and Navigation On-Line Bayesian Tracking Aly El-Osery 1 Stephen Bruder 2 1 Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA 2 Electrical and Computer Engineering
THE CENTRAL LIMIT THEOREM TORONTO
THE CENTRAL LIMIT THEOREM DANIEL RÜDT UNIVERSITY OF TORONTO MARCH, 2010 Contents 1 Introduction 1 2 Mathematical Background 3 3 The Central Limit Theorem 4 4 Examples 4 4.1 Roulette......................................
Chapter 3 RANDOM VARIATE GENERATION
Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.
Frequentist vs. Bayesian Statistics
Bayes Theorem Frequentist vs. Bayesian Statistics Common situation in science: We have some data and we want to know the true hysical law describing it. We want to come u with a model that fits the data.
Gaussian Processes to Speed up Hamiltonian Monte Carlo
Gaussian Processes to Speed up Hamiltonian Monte Carlo Matthieu Lê Murray, Iain http://videolectures.net/mlss09uk_murray_mcmc/ Rasmussen, Carl Edward. "Gaussian processes to speed up hybrid Monte Carlo
5. Continuous Random Variables
5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be
The Bonferonni and Šidák Corrections for Multiple Comparisons
The Bonferonni and Šidák Corrections for Multiple Comparisons Hervé Abdi 1 1 Overview The more tests we perform on a set of data, the more likely we are to reject the null hypothesis when it is true (i.e.,
HT2015: SC4 Statistical Data Mining and Machine Learning
HT2015: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Bayesian Nonparametrics Parametric vs Nonparametric
Statistics 100A Homework 8 Solutions
Part : Chapter 7 Statistics A Homework 8 Solutions Ryan Rosario. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, the one-half
Introduction to Monte Carlo. Astro 542 Princeton University Shirley Ho
Introduction to Monte Carlo Astro 542 Princeton University Shirley Ho Agenda Monte Carlo -- definition, examples Sampling Methods (Rejection, Metropolis, Metropolis-Hasting, Exact Sampling) Markov Chains
Chapter 9 Monté Carlo Simulation
MGS 3100 Business Analysis Chapter 9 Monté Carlo What Is? A model/process used to duplicate or mimic the real system Types of Models Physical simulation Computer simulation When to Use (Computer) Models?
For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )
Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll
What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference
0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures
Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?
ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the
Real-Time Monitoring of Complex Industrial Processes with Particle Filters
Real-Time Monitoring of Complex Industrial Processes with Particle Filters Rubén Morales-Menéndez Dept. of Mechatronics and Automation ITESM campus Monterrey Monterrey, NL México [email protected] Nando de
Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin
Final Mathematics 51, Section 1, Fall 24 Instructor: D.A. Levin Name YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. A CORRECT ANSWER WITHOUT SHOWING YOUR REASONING WILL NOT RECEIVE CREDIT. Problem Points Possible
Binomial Sampling and the Binomial Distribution
Binomial Sampling and the Binomial Distribution Characterized by two mutually exclusive events." Examples: GENERAL: {success or failure} {on or off} {head or tail} {zero or one} BIOLOGY: {dead or alive}
Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions)
Math 370, Actuarial Problemsolving Spring 008 A.J. Hildebrand Practice Test, 1/8/008 (with solutions) About this test. This is a practice test made up of a random collection of 0 problems from past Course
Chapter 4 Lecture Notes
Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,
Impact of Remote Control Failure on Power System Restoration Time
Impact of Remote Control Failure on Power System Restoration Time Fredrik Edström School of Electrical Engineering Royal Institute of Technology Stockholm, Sweden Email: [email protected] Lennart
The Binomial Probability Distribution
The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability
Basics of Statistical Machine Learning
CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu [email protected] Modern machine learning is rooted in statistics. You will find many familiar
Probability and Expected Value
Probability and Expected Value This handout provides an introduction to probability and expected value. Some of you may already be familiar with some of these topics. Probability and expected value are
Aggregate Loss Models
Aggregate Loss Models Chapter 9 Stat 477 - Loss Models Chapter 9 (Stat 477) Aggregate Loss Models Brian Hartman - BYU 1 / 22 Objectives Objectives Individual risk model Collective risk model Computing
You flip a fair coin four times, what is the probability that you obtain three heads.
Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.
11. Time series and dynamic linear models
11. Time series and dynamic linear models Objective To introduce the Bayesian approach to the modeling and forecasting of time series. Recommended reading West, M. and Harrison, J. (1997). models, (2 nd
Principle of Data Reduction
Chapter 6 Principle of Data Reduction 6.1 Introduction An experimenter uses the information in a sample X 1,..., X n to make inferences about an unknown parameter θ. If the sample size n is large, then
6 PROBABILITY GENERATING FUNCTIONS
6 PROBABILITY GENERATING FUNCTIONS Certain derivations presented in this course have been somewhat heavy on algebra. For example, determining the expectation of the Binomial distribution (page 5.1 turned
Bayes and Naïve Bayes. cs534-machine Learning
Bayes and aïve Bayes cs534-machine Learning Bayes Classifier Generative model learns Prediction is made by and where This is often referred to as the Bayes Classifier, because of the use of the Bayes rule
Random variables, probability distributions, binomial random variable
Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that
BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I
BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential
Forecasting "High" and "Low" of financial time series by Particle systems and Kalman filters
Forecasting "High" and "Low" of financial time series by Particle systems and Kalman filters S. DABLEMONT, S. VAN BELLEGEM, M. VERLEYSEN Université catholique de Louvain, Machine Learning Group, DICE 3,
Review of Random Variables
Chapter 1 Review of Random Variables Updated: January 16, 2015 This chapter reviews basic probability concepts that are necessary for the modeling and statistical analysis of financial data. 1.1 Random
MATH 140 Lab 4: Probability and the Standard Normal Distribution
MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes
Math 431 An Introduction to Probability. Final Exam Solutions
Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <
Inference on the parameters of the Weibull distribution using records
Statistics & Operations Research Transactions SORT 39 (1) January-June 2015, 3-18 ISSN: 1696-2281 eissn: 2013-8830 www.idescat.cat/sort/ Statistics & Operations Research c Institut d Estadstica de Catalunya
Coin Flip Questions. Suppose you flip a coin five times and write down the sequence of results, like HHHHH or HTTHT.
Coin Flip Questions Suppose you flip a coin five times and write down the sequence of results, like HHHHH or HTTHT. 1 How many ways can you get exactly 1 head? 2 How many ways can you get exactly 2 heads?
Flood Risk Analysis considering 2 types of uncertainty
US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center Flood Risk Analysis considering 2 types of uncertainty Beth Faber, PhD, PE Hydrologic Engineering Center (HEC) US
On a Flat Expanding Universe
Adv. Studies Theor. Phys., Vol. 7, 2013, no. 4, 191-197 HIKARI Ltd, www.m-hikari.com On a Flat Expanding Universe Bo Lehnert Alfvén Laboratory Royal Institute of Technology, SE-10044 Stockholm, Sweden
Stochastic Processes and Advanced Mathematical Finance. Ruin Probabilities
Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Stochastic Processes and Advanced
Math 461 Fall 2006 Test 2 Solutions
Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two
Stats on the TI 83 and TI 84 Calculator
Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and
Lecture 8. Confidence intervals and the central limit theorem
Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of
Generating Random Numbers Variance Reduction Quasi-Monte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010
Simulation Methods Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Simulation Methods 15.450, Fall 2010 1 / 35 Outline 1 Generating Random Numbers 2 Variance Reduction 3 Quasi-Monte
Representing Uncertainty by Probability and Possibility What s the Difference?
Representing Uncertainty by Probability and Possibility What s the Difference? Presentation at Amsterdam, March 29 30, 2011 Hans Schjær Jacobsen Professor, Director RD&I Ballerup, Denmark +45 4480 5030
PTE505: Inverse Modeling for Subsurface Flow Data Integration (3 Units)
PTE505: Inverse Modeling for Subsurface Flow Data Integration (3 Units) Instructor: Behnam Jafarpour, Mork Family Department of Chemical Engineering and Material Science Petroleum Engineering, HED 313,
STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE
STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE TROY BUTLER 1. Random variables and distributions We are often presented with descriptions of problems involving some level of uncertainty about
Optimizing Prediction with Hierarchical Models: Bayesian Clustering
1 Technical Report 06/93, (August 30, 1993). Presidencia de la Generalidad. Caballeros 9, 46001 - Valencia, Spain. Tel. (34)(6) 386.6138, Fax (34)(6) 386.3626, e-mail: [email protected] Optimizing Prediction
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce
Regularized Logistic Regression for Mind Reading with Parallel Validation
Regularized Logistic Regression for Mind Reading with Parallel Validation Heikki Huttunen, Jukka-Pekka Kauppi, Jussi Tohka Tampere University of Technology Department of Signal Processing Tampere, Finland
Sums of Independent Random Variables
Chapter 7 Sums of Independent Random Variables 7.1 Sums of Discrete Random Variables In this chapter we turn to the important question of determining the distribution of a sum of independent random variables
Lecture Notes 1. Brief Review of Basic Probability
Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters -3 are a review. I will assume you have read and understood Chapters -3. Here is a very
Statistical Distributions in Astronomy
Data Mining In Modern Astronomy Sky Surveys: Statistical Distributions in Astronomy Ching-Wa Yip [email protected]; Bloomberg 518 From Data to Information We don t just want data. We want information from
Bias in the Estimation of Mean Reversion in Continuous-Time Lévy Processes
Bias in the Estimation of Mean Reversion in Continuous-Time Lévy Processes Yong Bao a, Aman Ullah b, Yun Wang c, and Jun Yu d a Purdue University, IN, USA b University of California, Riverside, CA, USA
Estimating the Degree of Activity of jumps in High Frequency Financial Data. joint with Yacine Aït-Sahalia
Estimating the Degree of Activity of jumps in High Frequency Financial Data joint with Yacine Aït-Sahalia Aim and setting An underlying process X = (X t ) t 0, observed at equally spaced discrete times
Stat 704 Data Analysis I Probability Review
1 / 30 Stat 704 Data Analysis I Probability Review Timothy Hanson Department of Statistics, University of South Carolina Course information 2 / 30 Logistics: Tuesday/Thursday 11:40am to 12:55pm in LeConte
Some Research Problems in Uncertainty Theory
Journal of Uncertain Systems Vol.3, No.1, pp.3-10, 2009 Online at: www.jus.org.uk Some Research Problems in Uncertainty Theory aoding Liu Uncertainty Theory Laboratory, Department of Mathematical Sciences
The Kelly criterion for spread bets
IMA Journal of Applied Mathematics 2007 72,43 51 doi:10.1093/imamat/hxl027 Advance Access publication on December 5, 2006 The Kelly criterion for spread bets S. J. CHAPMAN Oxford Centre for Industrial
Lecture 13: Martingales
Lecture 13: Martingales 1. Definition of a Martingale 1.1 Filtrations 1.2 Definition of a martingale and its basic properties 1.3 Sums of independent random variables and related models 1.4 Products of
