Design and Modelling of Distributed Industrial Manipulation System with Wireless Operated Moving Manipulation
|
|
|
- John Watts
- 10 years ago
- Views:
Transcription
1 Tncton on Electcl Enneen, Vol. (05), No Den nd Modelln of Dtbuted Indutl Mnpulton Sytem th Wele Opeted Movn Mnpulton Květolv Beld ) nd Pvel Píš ) ) Dept. of Adptve Sytem, Inttute of Infomton Theoy nd Automton of the Czech Acdemy of Scence Pod Vodáenkou věží, 8 08 Pue 8 Czech Republc, e-ml: [email protected] ) Deptment of Contol Enneen, culty of Electcl Enneen, Czech Techncl Unvety n Pue Klovo nám. 3, 35 Pue, Czech Republc, e-ml: [email protected] Abtct The ppe del th decpton of pncple nd pplcton concept of dtbuted ndutl mnpulton ytem contnn ele opeted movn mnpulton unt. In the ppe, thee novel pplcton of the ele dt communcton. The oluton ntended fo ndutl mnpulton ytem uppotn obotc plnt nd cente. An exmple of uch ytem ued n th ppe cont of evel movn mnpulton unt, evel ttony uxly unt nd contol compute. Keyod Mnpulton ytem, ele communcton, dtbuted ytem, poducton lne, phycl modelln, DC moto, obotc. I. INTRODUCTION The mnpulton opeton e nheent pt of hteve technolocl pocedue. Nody, uul moden ndutl poducton bed on flexble mnufctun ytem (MS) nd compute-nteted mnufctun (CIM) [], []. It men tht the ytem e ble to mne nd ect to the chne of technolocl pocedue o technolocl pmete mmedtely hen they occu. uthemoe, the mnufctun tke dvnte of compute to contol the ente poducton poce. Th nteton llo ndvdul ytem unt to exchne nfomton th ech othe nd ntte o execute conequent cton. Due to the compute nteton, the mnufctun my ccelete nd be le eo-pone. It ve the blty to cete fully utomted mnufctun pocee ncludn not only pue poducton opeton but lo mnpulton opeton. Typclly, t ele on the cloed-loop contol nd el-tme meuement fom eno. Specfed concept of the mnufctun e cloely elted to the ued mnpulton ytem. It uully olved by poducton nd embly lne, hch connect ndvdul ok-plce of the poducton (ee. ). The lne e fxed but compoed of modul component [3]. Such confuton dvnteou fo m mnufctun nd pecfclly fo mn technolocl flo of the poducton too. Hoeve, t become le flexble on locl level, fo one okplce, dcontnuou o btchmode opeton o lo fo flexble ee poducton. The equement fo the flexblty follo fom the demnd of hhly vble poducton detl o vble poduct themelve. The le flexblty of the conventonl poducton lne cont n the fxed tme cycle, fxed pth o lmted lod cpcty. uthe lmtton my le n the fxed poducton flo of nput mtel, fnhed poduct nd te thout ny condeton of dffeent hpe, eht etc. Th ppe del th decpton of pncple nd pplcton concept of the dtbuted ndutl mnpulton ytem. They e ntoduced n the lbotoy model of l mnpulton ytem th evel ndependent movn unt fo contnuou nd lo dcontnuou mtel mnpulton mon ndvdul okplce. The flexblty olved by the ele dt communcton [], movn nd contctle eno nd dptve lothm of clbton/dentfcton of key ytem pmete fo odomety nd mthemtcl modeln of the mnpulton unt. The ppe follo fom enel fetue of the dened lbotoy mnpulton ytem. Theefte, t focue on the phycl nly nd ppopte mthemtcl decpton ncludn poble mplfcton. Then, the dmble contol ppoche e dcued eltve to the ytem elzton nd evel exmple fom el contol poce e hon... Exmple of poducton lne n MS. TEEN050
2 Tncton on Electcl Enneen, Vol. (05), No STRUCTURE O MANIPUATION SYSTEM et u conde okplce th el obot nd ppopte pt of the mnpulton ytem (. ). 3.. Pt of the mnpulton ytem th obotc okplce. The okplce contn fxed optcl te, dve unt, unt fo lod, lod (mtel, tool, poduct, te etc.), optcl poton eno, obot-mnpulto (condeed opeton: mchnn, dlln, eldn, vnhn, cuttn, moldn, pckn, otn, embln etc.), ude l. A tuctue of the moden mnpulton ytem hould povde flexble chne of the mnpulton pth; collon vodn; dt exchne mon ndvdul unt nd ome coodnto on lobl level (.e. on level of the hole mnpulton ytem); nd mne vble lod eht nd lo e.. fety pocee on the locl level (.e. eltve to ndvdul movn mnpulton unt) [5]. The lobl-level tk cn be elzed v contol compute mn coodnto, hch povde the dt exchne nd the pocen. Such coodnto cn opete n to mode: offlne nd onlne. The offlne mode detemned fo the pepton nd evluton of poducton tk, pth/tectoy optmzton, mkn demnd on the upply. The onlne mode povde the eltme dt pocen nd contol cton eneton. The locl-level tk e olved utonomouly fo ech ndvdul movn unt. They nclude the dentfcton of phycl pmete (eht nd moment of net, electc dve contnt) nd clbton of poton eno. uthemoe, the tuctue of the mnpulton ytem pedetemne nfcntly lo ued dt tnfe communcton men. If the ytem h fxed mnpulton flo nd fxed component, t poble to conde conventonl e dt ce. o flexble tuctue o confuton, the ele communcton chnnel epeent pomn y of the oluton. Althouh ele y offe hh flexblty of the ytem tuctue o confuton, the utonomou movn unt hve to be equpped by ome ntenl ouce of eney not only fo the dt tnmon but mnly lo fo el mnpulton. Genelly, n ce of dtbuted eney elf-uffcent ytem unt, the oluton eched mon lo-poe communcton technoloe, hch do not lod the poe upply of the ppopte unt nd they e ble to be elf-ettn n flue tuton. Ued hde nd ofte elzton tkn nto ccount pncple mentoned bove e demontted fo the dened lbotoy mnpulton ytem n Secton 5. II. MATHEMATICA DESCRIPTION O COMPONRNENTS Th ecton ll focu on the mthemtcl decpton o compoton of the dynmcl model of one moton unt. Th due to the fct tht the movn unt dynmc contnuou ytem tht pefom the mn pupoe of the mnpulton ytem. o the decpton of the hole ytem, t uffcent to decbe one unt nd dentfy ny dffeence of othe unt loclly, t mentoned n the pevou ecton. Dffeence e ven e.. by dffeent dve, lod eht nd confuton. The devton of the dynmcl model epeent compoton of pue equton of moton: e () The equton () epeent the dynmcl equlbum of ll ntenl (the left de of the equton) nd ll extenl foce (the ht de of the equton). Intenl foce men net effect nd extenl foce men ll nput effect lke dve effect o uoundn effect. The detled pecfcton of ndvdul tem ndcted n the follon ubecton. A. Extenl oce Effect et u tt fom decpton of the dtbuton of extenl foce effect the ueful lod nd opetn lod n elton to the dve toque. et uoundn effect be omtted. The bc dm fo the foce dtbuton ctn on the movn unt hon n. 3. G G G. 3. Dtbuton of the extenl foce effect. The dtbuton of the foce effect cn be tten follo: G G G ) () ( hee totl tcton foce, nd nd e ppopte opetonl nd ueful tcton foce coepondn to the opetonl nd el ueful lod, G, G, G e eht nd coeffcent of the unnn (moton) etnce. The foce dtbuton () hould meet the condton fo the olln moton of the heel: ) (3) ( G G G hee totl dheon foce, coeffcent of dheon fcton nd um G G G totl dheon eht (totl noml foce) of the movn unt. The condton o nequlty (3) mpotnt o tht the heel of the movn unt e olled on the l nd do not lde on t [6]. Note: It poble to conde lo the mnetc [7] o levtton moton. The fome ce bed on the pncple of dect lne moto; the ltte uppoted by tcton fn. TEEN050
3 Tncton on Electcl Enneen, Vol. (05), No. 3 7 To decbe lnk beteen the dvn (moto) toque nd totl tcton foce on the dve unt.e. poe tnmon; let u conde the dm n.. Th dm epeent e confuton of the condeed lbotoy mnpulton ytem Tnfomton of the dvn toque nto tcton foce. The lnk of the poe tnfomton nclude unt moto (DC moto), flyheel, om, om th e heel (dle heel), e heel, dven heel, ude l. Indvdul foce effect e the toque on the moto hft, toque on om heel, toque on dven heel nd coepondn dheon foce nd tcton foce. Relton mon them follo fom the poe tnmon equton: P v () hee ymbol fo ppopte ndvdul nul ( ) velocte, du of the dven heel nd 5 v. Then, let the follon tnentl velocty on du equlte of tnentl velocte of the heel n the e meh be tken nto ccount: - tnentl velocty n the om e v (5) - tnentl velocty n the pu e v 5 (6) - tnentl velocty on the dven heel v (7) hee,,,, e the om due (moto hft), om heel, heel connected to the om, pu e nd dven heel epectvely. Then, the dependence of the tcton foce on the moto toque expeed follo: z z (8) z z hee z, z, z, z e numbe of teeth of the ppopte heel nd, e the e to of the pu e nd om. B. Model of the DC Moto The DC moto epeent the mplet moto confuton. It cn be modelled by the econd ode equton follo: R km km km u J (9) It phcl epeentton hon n. 5. DC moto u u e R km km. 5. Dm of the DC moto. J The dm fo the buh DC moto th pemnent mnet n the tto; u, ue e nput nd ntenl nduced volte; J moment of net of the moto hft nd othe pmete R,, km, km e electcl contnt etnce, nductnce, cuent nd volte contnt [8]. C. Intenl oce Effect A ledy mentoned, ntenl foce effect epeent net effect. In the ce of the movn unt, they e cued pedomnntly by the eht of ndvdul pt of the movn unt. Thu, they e decbed by the follon expeon: m m m ) x (0) ( D. Dynmcl Model of Movn Unt ull decpton of the dynmc of the movn unt (pue equton of the moton) cont only of the dynmcl equlbum of the foce effect n hozontl decton (nle lontudnl x),.e. ntenl nd extenl effect ncludn modelln of the unt dve. o the pupoe of the contol the dynmc of the dve cn be modelled by lne dependency. The utble model of the movn unt cn be expeed follo (epetton of () fom the bennn of th ecton): e () The complete model cn be tten fte the ppopte ubttuton : m m m x ) () ( e (3) R km km km u J () The equton () - () epeent complete dynmcl model of one movn mnpulton unt. Th detled mthemtcl model utble multon model. o contol pupoe, t cn be mplfed. The poble model mplfcton ll be hon n the follon ecton. TEEN050
4 Tncton on Electcl Enneen, Vol. (05), No. 3 7 III. CONTRO APPROACHES The contol of dtbuted mnpulton ytem epeent hechcl o multlevel tk. On the hhet lobl level, the contol lothm hve to povde ve mnpulton (mnpulton thout unt collon) nd optml mnpulton tectoe mon ndvdul tnd poton. Th level lotc tk []. The locl level elte to the ndvdul movn mnpulton unt. The contol tk on th level cn be defned follo: et the efeence vlue fo the moton tectoy o t fothcomn tectoy ement of ndvdul mnpulton unt be ven, then the tk of contol to enete uch contol cton to follo the ven efeence nd to meet ccutely equed tnd poton. o completene, n ddtonl level, the loet one, povde dt communcton tk nd dt pepocen. Th level mpotnt, hen the ele communcton mon ndvdul mnpulton unt nd communcton th the ytem coodnto ued. In th ppe, fully-bdectonl ele ZBee communcton condeed [9]. It povde dt tnmon fom the centl coodnton compute to the ndvdul mnpulton unt nd vce ve. om the contol theoy pont of ve, the follon thee mn contol ppoche cn be tken nto ccount: tchn to-level o mult-level locl contol mple PID contol (contol eo evluton) model-bed contol (e.. ne-qudtc contol) The ft ppoch ue lmted contol cton et, fom hch the ppopte contol cton elected ccodn fe pedefned tchn ule. It povde dcontnuou ftful mnpulton. Th ppoch utble fo mll ytem th lo eht of lod. The othe to ppoche ue contnuouly dt fom the meuement nd enete contol cton n the full ne of dmble dve nput. It cn offe mooth moton thout hp nd udden ocllton. Smple PID contol doe not ue model, t evlute only contol eo of the meued ytem output fom the efeence vlue. The model-bed contol ppoch bed on moe complex optmzton lothm ncludn mthemtcl model of the ndvdul mnpulton unt [0]. o lbotoy pupoe, t poble to conde mplfcton of the mthemtcl model ven by () (): m m m x ) k u (5) ( It follo fom the umpton of the tedy tte behvo of the ptcul unt. Then, the model of moto dynmc cn be ven fo mll poe by lne functon: u (6) hee k u volte coeffcent. All contnt coeffcent cn be condened n one coeffcent k follo: k u k k k (7) u hee k obtned fom the e to: (8) k The model (5) ued n ce of non-dptve modelbed contolle. Othe poblty to conde ome dentfcton fo detemnton of the model pmete [0]. IV. REAIZATION AND EXAMPES Th ecton focued on bef decpton of the ued lbotoy model of the dtbuted mnpulton ytem. The ytem (ee. 7) cont of evel dtbuted movn unt nd ttony unt. The movn unt povde dcontnued mnpultve opeton nd the ttony unt eve monton nd utlty ntefce. Both movn nd ttony unt e ndependent of othe unt (utonomou of othe) n ll epect,.e. elfcontolln nd eney elf-uffcent unt. The unt e dven by DC moto nd contn electo-optcl poton eno nd e equpped by ZBee communcton tnceve (tnmtte & eceve n one) []. The tnceve e connected to the ZBee communcton netok. The netok elzed t netok th one mn node okn the netok oute nd coodnto. It compe tey fo the contol compute, hch povde both the lobl nd locl level contol. The loet level povded dectly by the mn node (. 6).. 6. ZBee netok oute & coodnto ll n one node. TEEN050
5 00mm 00mm Tncton on Electcl Enneen, Vol. (05), No ttony unt pont tch optcl te movn unt l pont of the l 3000mm ytem okpce. 7. Dm of the lbotoy mnpulton ytem.. 8. Rel lbotoy model of the mnpulton ytem.. 9. Sceen hot of the el-tme contol ccut n the MATAB-Smulnk envonment. TEEN050
6 Tncton on Electcl Enneen, Vol. (05), No. 3 7 [mm] [] [V] 0 u mn u mx -u mx -u mn nentvty cton zone []. 0. Tme behvou of one movn unt: poton (on the top) nd contol cton (t the bottom). No. of ctvted IR optcl te [].. Exmple of the movn mnpulton unt.. 8 ho hlf of the lbotoy model of the mnpulton ytem. In. 8, thee e thee movn unt, fou pont tche nd fou fxed optcl te.. 9 ho the ued el-tme contol ccut mplemented n the MATAB-Smulnk envonment ntended fo the tet of the multneou cyclc moton of the movn mnpulton unt. The ccut peped fo up to fou movn unt th ndvdul optcl poton nd optcl te eno nd to ttony unt th eht pont tche nd eht fxed optcl te. Sttony unt povde opeton of the pont tche nd fxed optcl te. The te eve fo detemnton of the bolute poton of ll unt, hch contn only ncementl poton eno. The ytem telf connected thn the Smulnk model v Stndd Devce Sel Pot - Stem Output (PWM dt) nd Input (Senodt) Smulnk block. The Input - Output block povde communcton th el ntefce of the contol compute.. 0 ho tme behvou of one movn unt dun cyclc moton. The poton on the top. At the bottom, thee e ppopte contol cton. The tme behvou ecoded fo the tchn mult-level feedbck contol. The contol lothm elected contol cton dcetely eltve to topcl unt poton (potonl feedbck). In. 0, the eet of the poton meuement of the ncementl optcl poton eno e ndcted by the ed hozontl hot lne. They coepond to ppopte nl fom the fxed optcl te of the mnpulton ytem. To p the te men tht ptcul movn unt nteupt the optcl ccut nd the coepondn fxed optcl eno of the te end coded mee to the compute fo pocen. The dt ecod n. 0 ho occonl flue n the poton etmte. It cn be cued by n mpefect ufce fo the optcl eno. The ZBee communcton hd no flue n the dt tnmon. Thee flue my occu, f the tnmtted nl lo o blocked by ome obtcle. TEEN050
7 Tncton on Electcl Enneen, Vol. (05), No REERENCES.. Ge of the dve unt. nlly,. ho n exmple of one movn unt nd. ho detl ve on the tnmon of the dvn toque fom the hft of the DC moto by the e on the dven heel of the dve unt.. cloely coepond to the dm n.. V. CONCUSION The ppe del th mthemtcl phycl nly fo compoton of the mthemtcl model of the movn mnpulton unt mn dynmcl pt of dtbuted mnpulton ytem. In the ppe, the techncl pect of the contol ppoche ee dcued. The m of the futue nvetton nd development complete pplcton of the multtep model bed pedctve contol [0] on level of the ndvdul movn mnpulton unt of the mnpulton ytem dtbuted utonomou contol confuton. Pedctve contol model bed ppoch ould conde model (5) nd enete n ppopte level of the nput volte fo the ptcul movn mnpulton unt. [] Klpkn, S. nd Schmd, S., Mnufctun Enneen nd Technoloy. Pentce Hll, 006. [] Tolo, T., Den of lexble Poducton Sytem Methodoloe nd Tool. Spne, 009. [3] Tukune, H. et. l., Modul Mnufctun, J. of Intellent Mnufctun, volume (), 993, pp [] Koump, K., Andeon,.H.M. nd Johnon, M., Wele ndutl contol nd monton beyond cble eplcement, PROIBUS Int. Conf., 005, pp. -7. [5] Dnšová, N., Velšek, K. nd Košťál, P. (009). Automted Tool Chnn Sytem n the Intellent Mnufctun nd Aembly Cell, Int. Sympoum on Computn, Communcton, nd Contol, Snpoe, pp. -7. [6] Polák, J. nd Slív, A., Dopvní mnpulční zřízení III. (n Czech), TU Otv, 00, 6 pp. [7] Ntonl Hh Mnetc eld botoy: Mlev Tn Audo Sldeho, Mnetc evtton, 0, [8] Beld, K., Contol of Pllel Robotc Stuctue Dven by Electomoto. Detton. CTU n Pue, EE, 005, pp. [9] Knney, P., ZBee technoloy: Wele contol tht mply ok, Poc. of Communcton Den Conf., 003, pp. -. [0] Beld, K. nd Böhm, J., Adptve enelzed pedctve contol fo mechtonc ytem, WSEAS Tncton on Sytem, volume 5(8), 006, pp [] Beld, K., Rychnovký, V. nd Píš, P., Wele communcton fo contol of mnpulton ytem, Achve of Contol Scence, volume (), 0, pp. 9-. TEEN050
Simulation of Spacecraft Attitude and Orbit Dynamics
Smulton o Spcect Atttude nd Obt Dynmcs Ps Rhmäk, Jen-Pete Ylén Contol Engneeng Lbotoy Helsnk Unvesty o Technology PL-, TKK E-ml: ps.hmk@tkk., pete.ylen@tkk. KEYWORDS Smulton Model, Stellte, FDIR, Qutenon
G.GMD.1 STUDENT NOTES WS #5 1 REGULAR POLYGONS
G.GMD.1 STUDENT NOTES WS #5 1 REGULAR POLYGONS Regul polygon e of inteet to u becue we begin looking t the volume of hexgonl pim o Tethedl nd to do thee type of clcultion we need to be ble to olve fit
16. Mean Square Estimation
6 Me Sque stmto Gve some fomto tht s elted to uow qutty of teest the poblem s to obt good estmte fo the uow tems of the obseved dt Suppose epeset sequece of dom vbles bout whom oe set of obsevtos e vlble
(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m?
Em I Solutions PHY049 Summe 0 (Ch..5). Two smll, positively chged sphees hve combined chge of 50 μc. If ech sphee is epelled fom the othe by n electosttic foce of N when the sphees e.0 m pt, wht is the
(1) continuity equation: 0. momentum equation: u v g (2) u x. 1 a
Comment on The effect of vible viscosity on mied convection het tnsfe long veticl moving sufce by M. Ali [Intentionl Jounl of Theml Sciences, 006, Vol. 45, pp. 60-69] Asteios Pntoktos Associte Pofesso
Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:
Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos
Orbits and Kepler s Laws
Obits nd Keple s Lws This web pge intoduces some of the bsic ides of obitl dynmics. It stts by descibing the bsic foce due to gvity, then consides the ntue nd shpe of obits. The next section consides how
Screentrade Car Insurance Policy Summary
Sceentde C Insunce Policy Summy This is summy of the policy nd does not contin the full tems nd conditions of the cove, which cn be found in the policy booklet nd schedule. It is impotnt tht you ed the
JFET AMPLIFIER CONFIGURATIONS
JFET MPFE CONFGUTON 5 5 5 n G OUT n G OUT n OUT [a] Cn urce plfer [b] Cn ran [urce Fllwer] plfer [c] Cn Gate plfer Cte a: n ce, cure ateral fr 6.0 ntructry nal Electrnc abratry, prn 2007.MT OpenCureWare
Chapter 6 Best Linear Unbiased Estimate (BLUE)
hpter 6 Bet Lner Unbed Etmte BLUE Motvton for BLUE Except for Lner Model ce, the optml MVU etmtor mght:. not even ext. be dffcult or mpoble to fnd Reort to ub-optml etmte BLUE one uch ub-optml etmte Ide
Data Mining for extraction of fuzzy IF-THEN rules using Mamdani and Takagi-Sugeno-Kang FIS
Engneeng Lettes, 5:, EL_5 3 Dt Mnng fo extcton of fuzzy IF-THEN ules usng Mmdn nd Tkg-Sugeno-Kng FIS Jun E. Moeno, Osc Cstllo, Jun R. Csto, Lus G. Mtínez, Ptc Meln Abstct Ths ppe pesents clusteng technques
Formulas and Units. Transmission technical calculations Main Formulas. Size designations and units according to the SI-units.
Fomuls nd Units Tnsmission technicl clcultions Min Fomuls Size designtions nd units ccoding to the SI-units Line movement: s v = m/s t s = v t m s = t m v = m/s t P = F v W F = m N Rottion ω = π f d/s
Orbit dynamics and kinematics with full quaternions
bt dynamcs and knematcs wth full quatenons Davde Andes and Enco S. Canuto, Membe, IEEE Abstact Full quatenons consttute a compact notaton fo descbng the genec moton of a body n the space. ne of the most
N V V L. R a L I. Transformer Equation Notes
Tnsfome Eqution otes This file conts moe etile eivtion of the tnsfome equtions thn the notes o the expeiment 3 wite-up. t will help you to unestn wht ssumptions wee neee while eivg the iel tnsfome equtions
Bending Stresses for Simple Shapes
-6 Bendng Stesses fo Smple Sapes In bendng, te maxmum stess and amount of deflecton can be calculated n eac of te followng stuatons. Addtonal examples ae avalable n an engneeng andbook. Secton Modulus
r (1+cos(θ)) sin(θ) C θ 2 r cos θ 2
icles xmple 66: Rounding one ssume we hve cone of ngle θ, nd we ound it off with cuve of dius, how f wy fom the cone does the ound stt? nd wht is the chod length? (1+cos(θ)) sin(θ) θ 2 cos θ 2 xmple 67:
Electric Potential. otherwise to move the object from initial point i to final point f
PHY2061 Enched Physcs 2 Lectue Notes Electc Potental Electc Potental Dsclame: These lectue notes ae not meant to eplace the couse textbook. The content may be ncomplete. Some topcs may be unclea. These
Adaptive Control of a Production and Maintenance System with Unknown Deterioration and Obsolescence Rates
Int J of Mthemtic Sciences nd Appictions, Vo, No 3, Septembe Copyight Mind Rede Pubictions wwwjounshubcom Adptive Conto of Poduction nd Mintennce System with Unknown Deteiotion nd Obsoescence Rtes Fwzy
Perturbation Theory and Celestial Mechanics
Copyght 004 9 Petubaton Theoy and Celestal Mechancs In ths last chapte we shall sketch some aspects of petubaton theoy and descbe a few of ts applcatons to celestal mechancs. Petubaton theoy s a vey boad
A project management support tool using communication for agile software development
A poject anageent uppot tool ung councaton fo agle oftwae developent Noko Hanakawa, Khau Okua Hannan Unvety, Gaduate chool of copoate Infoaton, 5-4-33 Hgah-Aa, Matubaa, Oaka, 580-850, Japan [email protected]
Intro to Circle Geometry By Raymond Cheong
Into to Cicle Geomety By Rymond Cheong Mny poblems involving cicles cn be solved by constucting ight tingles then using the Pythgoen Theoem. The min chllenge is identifying whee to constuct the ight tingle.
Solution to Problem Set 1
CSE 5: Introduction to the Theory o Computtion, Winter A. Hevi nd J. Mo Solution to Prolem Set Jnury, Solution to Prolem Set.4 ). L = {w w egin with nd end with }. q q q q, d). L = {w w h length t let
Alternatives to an Inefficient International Telephony. Settlement System
Alterntve to n Ineffent Interntonl Telephony Settlement Sytem Alterntve to n Ineffent Interntonl Telephony Settlement Sytem Koj Domon Shool of Sol Sene Wed Unverty -6- Nh-Wed Shnjuku-ku Tokyo 69-8050 JAPAN
Lecture 2: Single Layer Perceptrons Kevin Swingler
Lecture 2: Sngle Layer Perceptrons Kevn Sngler [email protected] Recap: McCulloch-Ptts Neuron Ths vastly smplfed model of real neurons s also knon as a Threshold Logc Unt: W 2 A Y 3 n W n. A set of synapses
Basically, logarithmic transformations ask, a number, to what power equals another number?
Wht i logrithm? To nwer thi, firt try to nwer the following: wht i x in thi eqution? 9 = 3 x wht i x in thi eqution? 8 = 2 x Biclly, logrithmic trnformtion k, number, to wht power equl nother number? In
Table of Information and Equation Tables for AP Physics Exams
le of Infomton n Eton le fo P Py Em e ompnyng le of Infomton n Eton le wll e pove to tent wen tey tke te P Py Em. eefoe, tent my NO ng te own ope of tee tle to te em oom, ltog tey my e tem togot te ye
AP Physics Gravity and Circular Motion
AP Phyic Gity nd icul Motion Newton theoy i ey iple. Gity i foce of ttction between ny two object tht he. Two object itting on dektop ttct ech othe with foce tht we cll gity. They don t go flying togethe
Curvature. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015
Cuvtue Com S 477/577 Notes Yn-Bin Ji Oct 8, 205 We wnt to find mesue of how cuved cuve is. Since this cuvtue should depend only on the shpe of the cuve, it should not be chnged when the cuve is epmetized.
Random Variables and Distribution Functions
Topic 7 Rndom Vibles nd Distibution Functions 7.1 Intoduction Fom the univese of possible infomtion, we sk question. To ddess this question, we might collect quntittive dt nd ognize it, fo emple, using
ALABAMA ASSOCIATION of EMERGENCY MANAGERS
LBM SSOCTON of EMERGENCY MNGERS ON O PCE C BELLO MER E T R O CD NCY M N G L R PROFESSONL CERTFCTON PROGRM .. E. M. CERTFCTON PROGRM 2014 RULES ND REGULTONS 1. THERE WLL BE FOUR LEVELS OF CERTFCTON. BSC,
Chapter 7 Kinetic energy and work
Chpter 7 Kc energy nd wor I. Kc energy. II. or. III. or - Kc energy theorem. IV. or done by contnt orce - Grttonl orce V. or done by rble orce. VI. Power - Sprng orce. - Generl. D-Anly 3D-Anly or-kc Energy
THE ANALYSIS OF MERGERS THAT INVOLVE MULTI-SIDED PLATFORM BUSINESSES
Davd S. Evan and Mchael D. Noel A moe ecent veon of th atcle ha been accepted fo publcaton n: Jounal of Competton Law and Economc, 2008 THE ANALYSIS OF MERGERS THAT INVOLVE MULTI-SIDED PLATFORM USINESSES
C o a t i a n P u b l i c D e b tm a n a g e m e n t a n d C h a l l e n g e s o f M a k e t D e v e l o p m e n t Z a g e bo 8 t h A p i l 2 0 1 1 h t t pdd w w wp i j fp h D p u b l i c2 d e b td S t
The Can-Order Policy for One-Warehouse N-Retailer Inventory System: A Heuristic Approach
Atcle Te Can-Ode Polcy fo One-Waeouse N-Retale Inventoy ystem: A Heustc Appoac Vaapon Pukcanon, Paveena Caovaltongse, and Naagan Pumcus Depatment of Industal Engneeng, Faculty of Engneeng, Culalongkon
Gravitation. Definition of Weight Revisited. Newton s Law of Universal Gravitation. Newton s Law of Universal Gravitation. Gravitational Field
Defnton of Weght evsted Gavtaton The weght of an object on o above the eath s the gavtatonal foce that the eath exets on the object. The weght always ponts towad the cente of mass of the eath. On o above
Chapter 30: Magnetic Fields Due to Currents
d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.1-1 T) i to ue a lage cuent flowing though a wie.
WiMAX DBA Algorithm Using a 2-Tier Max-Min Fair Sharing Policy
WMAX DBA Algorthm Usng 2-Ter Mx-Mn Fr Shrng Polcy Pe-Chen Tseng 1, J-Yn Ts 2, nd Wen-Shyng Hwng 2,* 1 Deprtment of Informton Engneerng nd Informtcs, Tzu Ch College of Technology, Hulen, Twn [email protected]
32. The Tangency Problem of Apollonius.
. The Tngeny olem of Apollonius. Constut ll iles tngent to thee given iles. This eleted polem ws posed y Apollinius of eg (. 60-70 BC), the getest mthemtiin of ntiquity fte Eulid nd Ahimedes. His mjo wok
Resistance Thermometer
Resistnce Themmete Shethed - Minel Insulted, Type TRP Dt sheet TRP, Editin 011 Applictin Mesuing nge: 5 +60 Genel mchiney nd equipment design Mesuing tempetue f liquids, gses nd slid bdies All bnches f
AP Physics C: Mechanics 2011 Free-Response Questions
AP Phyc C: Mechanc Fee-Repone Queton About the College Boa The College Boa a mon-ven not-fo-poft oganzaton that connect tuent to college ucce an oppotunty. Foune n 9, the College Boa wa ceate to epan acce
Vehicle Navigation System Integration with GPS/INS/GSM
Chun Hu Journl of Scence nd Enneern, ol.,no., pp.3-(3) ehcle Nvton System Interton wth GPS/INS/GSM Jum-Mn Ln Chen-Wen Hun, nd Fon-Lon Ts Insttute of Aeronutcs nd Astronutcs Chun-Hw Unversty Hsn-Chu 3,
Binary Representation of Numbers Autar Kaw
Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy
Experiment 6: Centripetal Force
Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee
Lecture 3 Gaussian Probability Distribution
Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike
2.016 Hydrodynamics Prof. A.H. Techet
.016 Hydodynmics Reding #5.016 Hydodynmics Po. A.H. Techet Fluid Foces on Bodies 1. Stedy Flow In ode to design oshoe stuctues, suce vessels nd undewte vehicles, n undestnding o the bsic luid oces cting
Vector Algebra. Lecture programme. Engineering Maths 1.2
Leue pogmme Engneeng Mh. Veo lge Conen of leue. Genel noduon. Sl nd veo. Cen omponen. Deon one. Geome epeenon. Modulu of veo. Un veo. Pllel veo.. ddon of veo: pllelogm ule; ngle lw; polgon lw; veo lw fo
Chapter 04.00E Physical Problem for Electrical Engineering Simultaneous Linear Equations
hpter 04.00E Phyicl Prblem fr Electricl Egieerig Simulteu Lie Equti Prblem Sttemet Three-phe ytem e the rm fr mt idutril pplicti. pwer i the frm f vltge d curret it delivered frm the pwer cmpy uig three-phe
Optimal Pricing Scheme for Information Services
Optml rcng Scheme for Informton Servces Shn-y Wu Opertons nd Informton Mngement The Whrton School Unversty of ennsylvn E-ml: [email protected] e-yu (Shron) Chen Grdute School of Industrl Admnstrton
GFI EventsMnge vs Netikus.net EventSenty GFI Softwe www.gfi.com GFI EventsMnge vs Netikus.net EventSenty GFI EventsMnge EventSenty Who we e Suppot fo MS SQL Seve Suppot fo MSDE / MS SQL Expess Suppot fo
Department of Health & Human Services (DHHS) Centers for Medicare & Medicaid Services (CMS) Transmittal 1151 Date: November 16, 2012
nul ysem ub 100-20 One-Time Noificion Depmen of elh & umn evices (D) enes fo edice & edicid evices () Tnsmil 1151 De: Novembe 16, 2012 hnge eques 8124 UBJT: Use of Q6 odifie fo Locum Tenens by oviding
PREVENTIVE AND CORRECTIVE SECURITY MARKET MODEL
REVENTIVE AND CORRECTIVE SECURITY MARKET MODEL Al Ahmad-hat Rachd Cheaou and Omd Alzadeh Mousav Ecole olytechnque Fédéale de Lausanne Lausanne Swzeland [email protected] [email protected] [email protected]
MANAGEMENT LEAD RESPONSE RESEARCH PAPER A 2012 RETROSPECTIVE: FIVE YEARS AFTER THE ORIGINAL DEMAND GENERATION SUMMIT
0 RETRECTIVE: FIVE YER FTER THE RIGINL LED RENE NE REERCH ER REED BY DVID ELKINGTN, CE F INIDELE.C N D D R. J E L D R Y D, h D T THE 007 RKETING HER BUINE-T-BUINE DEND GENERTIN UIT FUNDL R E N YUR LE TE
ACUSCOMP and ACUSYS A powerful hybrid linear/non linear simulation suite to analyse pressure pulsations in piping
ACUSCOMP n ACUSYS A owerful hybr lner/non lner multon ute to nlye reure ulton n ng Ing Attlo Brghent, Ing Anre Pvn, SATE Sytem n Avnce Technology Engneerng, Snt Croce 664/A, 335 Venez, Itly e-ml: ttlobrghent@te-tlycom
Review Problems for the Final of Math 121, Fall 2014
Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd.7 6.6 of the text which constitute only prt of the common Mth Finl. Since
PSYCHROMETRICS: HEATING & HUMIDIFYING or COOLING & DEHUMIDIFYING
PSYCHROMETRICS: HEATING & HUMIDIYING or COOLING & DEHUMIDIYING I) Objective The objective of this experiment is to exmine the stte of moist ir s it enters nd psses through the ir hndling unit. When ether
VEHICLE PLANAR DYNAMICS BICYCLE MODEL
Auptions -Do, VEHE PANA DYNAMS BYE MODE o tel, (esued o instntneous cente o ottion O) o Yw, (wt Globl Ais) ongitudinl elocit is ued to be constnt. Sll slip ngles, i.e. ties opete in the line egion. No
LOW VOLTAGE CONTROL CIRCUIT WIRING
INSTLLTION INSTUTIONS LOW VOLTE ONTOL IUIT WIIN W** W***D W*S* MODELS W**L WL*S* Bard Manufacturing ompany, Inc. Bryan, Ohio 506 Since 9...Moving ahead just as planned. Manual : 00-507K Supersedes: 00-507J
Keywords: Transportation network, Hazardous materials, Risk index, Routing, Network optimization.
IUST Intenatonal Jounal of Engneeng Scence, Vol. 19, No.3, 2008, Page 57-65 Chemcal & Cvl Engneeng, Specal Issue A ROUTING METHODOLOGY FOR HAARDOUS MATIALS TRANSPORTATION TO REDUCE THE RISK OF ROAD NETWORK
NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582
NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 7. Root Dynamcs 7.2 Intro to Root Dynamcs We now look at the forces requred to cause moton of the root.e. dynamcs!!
AREA COVERAGE SIMULATIONS FOR MILLIMETER POINT-TO-MULTIPOINT SYSTEMS USING STATISTICAL MODEL OF BUILDING BLOCKAGE
Radoengneeng Aea Coveage Smulatons fo Mllmete Pont-to-Multpont Systems Usng Buldng Blockage 43 Vol. 11, No. 4, Decembe AREA COVERAGE SIMULATIONS FOR MILLIMETER POINT-TO-MULTIPOINT SYSTEMS USING STATISTICAL
A New replenishment Policy in a Two-echelon Inventory System with Stochastic Demand
A ew eplenshment Polcy n a wo-echelon Inventoy System wth Stochastc Demand Rasoul Haj, Mohammadal Payesh eghab 2, Amand Babol 3,2 Industal Engneeng Dept, Shaf Unvesty of echnology, ehan, Ian ([email protected],
Rotating DC Motors Part II
Rotting Motors rt II II.1 Motor Equivlent Circuit The next step in our consiertion of motors is to evelop n equivlent circuit which cn be use to better unerstn motor opertion. The rmtures in rel motors
A Coverage Gap Filling Algorithm in Hybrid Sensor Network
A Coveage Ga Fllng Algothm n Hybd Senso Netwok Tan L, Yang Mnghua, Yu Chongchong, L Xuanya, Cheng Bn A Coveage Ga Fllng Algothm n Hybd Senso Netwok 1 Tan L, 2 Yang Mnghua, 3 Yu Chongchong, 4 L Xuanya,
WHAT HAPPENS WHEN YOU MIX COMPLEX NUMBERS WITH PRIME NUMBERS?
WHAT HAPPES WHE YOU MIX COMPLEX UMBERS WITH PRIME UMBERS? There s n ol syng, you n t pples n ornges. Mthemtns hte n t; they love to throw pples n ornges nto foo proessor n see wht hppens. Sometmes they
ON THE CHINESE CHECKER SPHERE. Mine TURAN, Nihal DONDURMACI ÇİN DAMA KÜRESİ ÜZERİNE
DÜ Fen Bilimlei Enstitüsü Degisi Sı 9 Ağustos 9 On The Chinese Cheke Sphee M. Tun N. Donumı ON THE CHINESE CHECKER SHERE Mine TURAN Nihl DONDURMACI Deptment of Mthemtis Fult of Ats n Sienes Dumlupin Univesit
Lesson 28 Psychrometric Processes
1 Lesson 28 Psychrometrc Processes Verson 1 ME, IIT Khrgpur 1 2 The specfc objectves of ths lecture re to: 1. Introducton to psychrometrc processes nd ther representton (Secton 28.1) 2. Importnt psychrometrc
Chapter 13 Fluids. Use the definition of density to express the mass of the gold sphere: The mass of the copper sphere is given by:
Chapte Fluid 5 One phee i ade of gold and ha a adiu and anothe phee i ade of coppe and ha a adiu. f the phee have equal a, hat i the atio of the adii, /? ictue the oble We can ue the definition of denity
CANKAYA UNIVERSITY FACULTY OF ENGINEERING MECHANICAL ENGINEERING DEPARTMENT ME 212 THERMODYNAMICS II HW# 11 SOLUTIONS
CNKY UNIVESIY FCULY OF ENGINEEING MECHNICL ENGINEEING DEMEN ME HEMODYNMICS II HW# SOLUIONS Deterne te ulton reure of wter or t -60 0 C ung dt lle n te te tle. Soluton Ste tle do not ge turton reure for
Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding
1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde
Lecture 5. Inner Product
Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right
Additional File 1 - A model-based circular binary segmentation algorithm for the analysis of array CGH data
1 Addtonal Fle 1 - A model-based ccula bnay segmentaton algothm fo the analyss of aay CGH data Fang-Han Hsu 1, Hung-I H Chen, Mong-Hsun Tsa, Lang-Chuan La 5, Ch-Cheng Huang 1,6, Shh-Hsn Tu 6, Ec Y Chuang*
4. SHAFT SENSORLESS FORCED DYNAMICS CONTROL OF RELUCTANCE SYNCHRONOUS MOTOR DRIVES
4. SHAFT SENSORLESS FORCED DYNAMICS CONTROL OF RELUCTANCE SYNCHRONOUS MOTOR DRIVES 4.. VECTOR CONTROLLED RELUCTANCE SYNCHRONOUS MOTOR DRIVES WITH PRESCRIBED CLOSED-LOOP SPEED DYNAMICS Abstact: A new spee
Common Drain Amplifier or Source Follower
mmn Drin mplifier r urce Fller Fiure ( h the urce fller ith idel current urce ld. Fiure ( h the idel current urce implemented NM ith cntnt te t urce vlte. DD DD i M i M TN M T0 ( ( Fiure. mmn drin r urce
Quick Reference Guide: One-time Account Update
Quick Reference Guide: One-time Account Updte How to complete The Quick Reference Guide shows wht existing SingPss users need to do when logging in to the enhnced SingPss service for the first time. 1)
Scal abil it y of ANSYS 16 applicat ions and Hardware select ion.
Technical white pape Scal abil it y of ANSYS 16 applicat ion and Hadwae elect ion. On multi-coe and floating point acceleato poceo ytem Table of Content Ab t a ct... 2 Tet configuation detail... 2 Meage
B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.
Hf Cd Na Nb Lr Ho Bi Ce u Ac I Fl Fr Mo i Md Co P Pa Tc Uut Rh K N Dy Cl N Am b At Md H Y Bh Cm H Bi s Mo Uus Lu P F Cu Ar Ag Mg K Thomas Jefferson National Accelerator Facility - Office of cience ducation
Incorporating Negative Values in AHP Using Rule- Based Scoring Methodology for Ranking of Sustainable Chemical Process Design Options
20 th Europen ymposum on Computer Aded Process Engneerng ECAPE20. Perucc nd G. Buzz Ferrrs (Edtors) 2010 Elsever B.V. All rghts reserved. Incorportng Negtve Vlues n AHP Usng Rule- Bsed corng Methodology
Continuous Compounding and Annualization
Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem
Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review
Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined
Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur
Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives
Using Model Checking to Analyze Network Vulnerabilities
Uing Model Checking to Analyze Netwok Vulneabilitie Ronald W. Ritchey Paul Ammann * National Secuity Team Infomation and Softwae Engineeing Depatment Booz Allen & Hamilton Geoge Maon Univeity Fall Chuch,
Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.
The nlysis of vrince (ANOVA) Although the t-test is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the t-test cn be used to compre the mens of only
TRIUMPH TR250 - TR6 WIRING DIAGRAMS
ATO-E www.autowire.com TMH T0 - T DAAM www.autowire.com A dmp CATO 00 A dmp CATO 00 ATO-E ATEATO D F _ + AMMETE ATEATO EATO + + F _ ATEATO A AM AKE A AM O O EE AM TO AKE A O O EE TO T A FAHE E DTTE HAZAD
Irregular Repeat Accumulate Codes 1
Irregulr epet Accumulte Codes 1 Hu Jn, Amod Khndekr, nd obert McElece Deprtment of Electrcl Engneerng, Clforn Insttute of Technology Psden, CA 9115 USA E-ml: {hu, mod, rjm}@systems.cltech.edu Abstrct:
3.32 In aircraft control systems, an ideal pitch response ( qo) versus a pitch command ( qc) is described by the transfer function
. In acaft contol ytem, an deal ptch epone ( qo) veu a ptch command ( qc) decbed by the tanfe functon Q () τωn ( + / τ ) Qc() + ζωn+ ωn The actual acaft epone moe complcated than th deal tanfe functon;
Graphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
Joint Virtual Machine and Bandwidth Allocation in Software Defined Network (SDN) and Cloud Computing Environments
IEEE ICC 2014 - Next-Geneaton Netwokng Symposum 1 Jont Vtual Machne and Bandwdth Allocaton n Softwae Defned Netwok (SDN) and Cloud Computng Envonments Jonathan Chase, Rakpong Kaewpuang, Wen Yonggang, and
Math 135 Circles and Completing the Square Examples
Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for
MATH 150 HOMEWORK 4 SOLUTIONS
MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive
Experiment 6: Friction
Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht
Parameter Identification of DC Motors
Paamete dentification of DC Moto utho: Dipl.-ng. ngo öllmecke dvantage of the Paamete dentification Method Saving time and money in the teting poce: no anical coupling neceay Full infomation: Entie chaacteitic
MENT STATUS. cd subject to resolution of indicated comments, :ptance or approval of design detiuls, calculations, the supplier and does not relieve
. COGMA-A-79, Rev. STRUCTURAL NTrGRlT ASSSSMNT OF TH LOW ACTVT WAST FACLT (LAW) SCONDAR OFFGASNSSL VNT PROCSS SSTM (LVP) MSCLLANOUS TRATMNT UNT (MTU) SUBSSTMS ANCLLAR QUPMNT JobNo. 259 MNT STATUS cd subject
Models and Software for Urban and Regional Transportation Planning : The Contributions of the Center for Research on Transportation
Models nd Softwre for Urbn nd Regonl Plnnng : The Contrbutons of the Center for Reserch on Mchel Florn Aprl 2008 CIRRELT-2008-11 Models nd Softwre for Urbn Regonl Plnnng: The Contrbutons of the Center
c b 5.00 10 5 N/m 2 (0.120 m 3 0.200 m 3 ), = 4.00 10 4 J. W total = W a b + W b c 2.00
Chter 19, exmle rolems: (19.06) A gs undergoes two roesses. First: onstnt volume @ 0.200 m 3, isohori. Pressure inreses from 2.00 10 5 P to 5.00 10 5 P. Seond: Constnt ressure @ 5.00 10 5 P, isori. olume
